keratinocyte
Dotaz
Zobrazit nápovědu
Journal of investigative dermatology, ISSN 0022-202X vol. 81, no. 1, suppl., July 1983
194s s. : il., tab., grafy ; 30 cm
BACKGROUND: Tissue culture techniques enable in vitro expansion of keratinocytes that can be used to treat burns and chronic wounds. These keratinocytes are commonly grafted onto the wounds as differentiated sheets of mature epithelium. Less is however known about the effects of transplanting the cells as suspensions. This study evaluated epidermal regeneration in fluid-treated skin wounds treated with suspensions of cultured and noncultured autologous keratinocytes. MATERIALS AND METHODS: Eighty-seven full-thickness excisional skin wounds were created on the back of 6 pigs and then transplanted with either cultured or noncultured autologous keratinocytes. The wounds were enclosed with liquid-tight chambers containing saline to provide a hydrated and standardized environment. RESULTS: Keratinocyte transplantation resulted in several cell colonies within the granulation tissue of the wound. These colonies progressively coalesced and contributed to a new epithelium. The origin of the transplanted keratinocytes was confirmed by histochemical staining of wounds transplanted with transfected keratinocytes expressing beta-galactosidase. Transplantation of 0.125 x 10(6), 0.5 x 10(6), and 2.0 x 10(6) cultured keratinocytes, and 0.5 x 10(6) and 5.0 x 10(6) noncultured keratinocytes, increased reepithelialization dose dependently over saline-treated controls. The epithelial barrier function recovered faster in transplanted wounds as demonstrated by less protein leakage over the wound surface on Days 7-10 as compared to control wounds. Wound reepithelialization and the number of keratinocyte colonies observed in granulation tissue were significantly less in wounds transplanted with noncultured keratinocytes compared to wounds seeded with cultured keratinocytes. CONCLUSION: Our study demonstrates successful transplantation of keratinocyte suspensions and their dose-dependent acceleration of wound repair. Selection of proliferative cells during culture and higher colony-forming efficiency may explain the greater effects observed with cultured keratinocytes.
- MeSH
- autologní transplantace MeSH
- epidermis zranění patologie chirurgie MeSH
- hojení ran * MeSH
- keratinocyty cytologie transplantace MeSH
- kultivované buňky MeSH
- prasata MeSH
- zvířata MeSH
- Check Tag
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, P.H.S. MeSH
INTRODUCTION: Autologous hematopoietic cell transplantation (AHCT) is a well-established treatment for lymphoma. Unintended effects of this therapy include oral mucositis (OM) and gastrointestinal toxicities, resulting in poor clinical outcomes. The gut microbiome has been previously linked to transplant toxicities among allogeneic recipients, but little is known about the effects of AHCT on the oral microbiome. METHODS: Seven patients with non-Hodgkin or Hodgkin lymphoma undergoing AHCT with palifermin (keratinocyte growth factor) were included. Buccal swab samples were collected at baseline and 14- and 28-days post-treatment. Oral microbial communities were characterized with 16 S rRNA amplicon sequencing. Temporal trends in community composition, alpha diversity, and beta diversity were investigated. RESULTS: A significant reduction in the relative abundance of the genera Gemella and Actinomyces were observed from baseline. No significant temporal differences in alpha diversity were observed. Significant changes in beta diversity were recorded. CONCLUSION: Results of this pilot study suggest treatment with AHCT and palifermin affects the oral microbiome, resulting in temporal shifts in oral microbial community composition. Future studies are warranted to confirm these trends and further investigate the effects of AHCT on the oral microbiome and how these shifts may affect health outcomes.
Acta dermato-venereologica, ISSN 0365-8341 Supplement. 202
23 s. : il. ; 30 cm
Phthalocyanines (Pcs, colored macromolecular compounds with the ability to generate singlet oxygen) represent a promising group of photosensitizers due to their intense absorption in the red and UV portion of the spectrum which leads to their excitation. In order to characterize possible toxic effects associated with eventual practical use and application of these chemicals, we employed an in vitro cell culture model to evaluate cytotoxic effects of 31 different phthalocyanines using neutral red uptake assay. An immortalized human keratinocyte cell line HaCaT was exposed to the tested chemicals for 2 or 24h, either with or without illumination in the last 60 min of the exposure period. After 2- or 24-h exposure without illumination, no cytotoxic effects or weak cytotoxic effects were induced by any Pc under the study and EC50 values could not be obtained within the tested concentration ranges (1.25-20 mg L(-1) or 0.625-10 mg L(-1)). On the other hand, exposure to phthalocyanines under illumination induced a significant cytotoxic effect. The most pronounced cytotoxicity was elicited by Pcs previously shown to have high positive charge densities at peripheral parts of substituent groups, which is most likely the factor responsible for the binding of Pc to negatively charged membranes on the cell surface and thus guaranteeing the tight connection necessary for the singlet oxygen attack on the cell surface.
Serine protease inhibitors of the Kazal-type 9 (SPINK9) is a keratinocyte-derived cationic peptide that is found most abundantly in the upper layers of the palmar-plantar epidermis. In vitro, the peptide displays the capacity to inhibit specifically kallikrein-related peptidase 5 (KLK5). Here, we report that cells expressing SPINK9 secrete the peptide constitutively. Recombinant SPINK9 (rSPINK9) provoked transactivation of the EGFR in human keratinocytes, resulting in efficient downstream triggering of cell migration. Transactivation occurred via functional upregulation of a disintegrin and metalloproteases (ADAMs), as evidenced by suppression with a metalloproteinase inhibitor and an EGFR-blocking antibody. SPINK9 preparations isolated from human skin also displayed EGFR-transactivating capacity. The classical purinergic receptor antagonists oxidized ATP and pyridoxalphosphate-6-azophenyl-2',4',-disulfonic acid effectively suppressed EGFR transactivation by rSPINK9, indicating that in analogy to what has recently been reported for the cationic antimicrobial peptides cathelicidin LL-37 and bee venom melittin, purinergic receptors have an essential bridging role in promoting the upregulation of ADAM function by the cationic peptide. SPINK9 could represent an example of how a cationic peptide may subserve multiple and interrelated functions that contribute to the maintenance of the physical and immunological barrier of the skin.
- MeSH
- erbB receptory metabolismus MeSH
- HEK293 buňky MeSH
- hojení ran MeSH
- kalikreiny metabolismus MeSH
- kationické antimikrobiální peptidy metabolismus MeSH
- keratinocyty cytologie MeSH
- klonování DNA MeSH
- lidé MeSH
- metaloproteasy metabolismus MeSH
- pohyb buněk * MeSH
- proliferace buněk MeSH
- purinergní receptory metabolismus MeSH
- regulace genové exprese enzymů * MeSH
- rekombinantní proteiny metabolismus MeSH
- sekreční inhibitory proteinas metabolismus MeSH
- signální transdukce MeSH
- transfekce MeSH
- viabilita buněk MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
A number of implantable biomaterials derived from animal tissues are now used in modern surgery. Xe-Derma is a dry, sterile, acellular porcine dermis. It has a remarkable healing effect on burns and other wounds. Our hypothesis was that the natural biological structure of Xe-Derma plays an important role in keratinocyte proliferation and formation of epidermal architecture in vitro as well as in vivo. The bioactivity of Xe-Derma was studied by a cell culture assay. We analyzed growth and differentiation of human keratinocytes cultured in vitro on Xe-Derma, and we compared the results with formation of neoepidermis in the deep dermal wounds treated with Xe-Derma. Keratinocytes cultured on Xe-Derma submerged in the culture medium achieved confluence in 7-10 days. After lifting the cultures to the air-liquid interface, the keratinocytes were stratified and differentiated within one week, forming an epidermis with basal, spinous, granular, and stratum corneum layers. Immunohistochemical detection of high-molecular weight cytokeratins (HMW CKs), CD29, p63, and involucrin confirmed the similarity of organization and differentiation of the cultured epidermal cells to the normal epidermis. The results suggest that the firm natural structure of Xe-Derma stimulates proliferation and differentiation of human primary keratinocytes and by this way improves wound healing.
- MeSH
- extracelulární matrix metabolismus MeSH
- fibroblasty cytologie fyziologie MeSH
- hojení ran fyziologie MeSH
- keratinocyty cytologie fyziologie MeSH
- kultivované buňky MeSH
- lidé MeSH
- proliferace buněk MeSH
- řízená tkáňová regenerace přístrojové vybavení metody MeSH
- tkáňové inženýrství přístrojové vybavení metody MeSH
- tkáňové podpůrné struktury MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Research Support, N.I.H., Extramural MeSH