Antifouling polymer layers containing extracellular matrix-derived peptide motifs offer promising new options for biomimetic surface engineering. In this contribution, we report the design of antifouling vascular grafts bearing biofunctional peptide motifs for tissue regeneration applications based on hierarchical polymer brushes. Hierarchical diblock poly(methyl ether oligo(ethylene glycol) methacrylate-block-glycidyl methacrylate) brushes bearing azide groups (poly(MeOEGMA-block-GMA-N3)) were grown by surface-initiated atom transfer radical polymerization (SI-ATRP) and functionalized with biomimetic RGD peptide sequences. Varying the conditions of copper-catalyzed alkyne-azide "click" reaction allowed for the immobilization of RGD peptides in a wide surface concentration range. The synthesized hierarchical polymer brushes bearing peptide motifs were characterized in detail using various surface sensitive physicochemical methods. The hierarchical brushes presenting the RGD sequences provided excellent cell adhesion properties and at the same time remained resistant to fouling from blood plasma. The synthesis of anti-fouling hierarchical brushes bearing 1.2 × 103 nmol/cm2 RGD biomimetic sequences has been adapted for the surface modification of commercially available grafts of woven polyethylene terephthalate (PET) fibers. The fiber mesh was endowed with polymerization initiator groups via aminolysis and acylation reactions optimized for the material. The obtained bioactive antifouling vascular grafts promoted the specific adhesion and growth of endothelial cells, thus providing a potential avenue for endothelialization of artificial conduits.
- MeSH
- adsorpce MeSH
- aminokyselinové motivy MeSH
- azidy chemie MeSH
- biokompatibilní potahované materiály * MeSH
- biomimetické materiály * MeSH
- buněčná adheze MeSH
- buněčné dělení MeSH
- cévní endotel fyziologie MeSH
- cévní protézy * MeSH
- endoteliální buňky pupečníkové žíly (lidské) MeSH
- imobilizované proteiny MeSH
- křemík MeSH
- krevní plazma MeSH
- krevní proteiny MeSH
- lidé MeSH
- oligopeptidy chemie MeSH
- polyethylentereftaláty chemie MeSH
- polymerizace * MeSH
- povrchové vlastnosti MeSH
- řízená tkáňová regenerace přístrojové vybavení MeSH
- sklo MeSH
- syntetická chemie okamžité shody MeSH
- testování materiálů MeSH
- trombóza prevence a kontrola MeSH
- zlato MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- srovnávací studie MeSH
INTRODUCTION: Stroke is one of the most devastating diseases and a leading cause of mortality worldwide. So far, clinical management of stroke involves surgical clot retrieval or thrombolytic treatment inducing reperfusion of the occluded vessels in the cerebral infarcted area, which is dependent on early intervention following insult. New treatment strategies involve the promotion of angiogenesis and neuroplasticity, stimulation of endogenous neurogenesis, remyelinization, and immunomodulation by means of cell transplantation and sustained drug delivery. AREAS COVERED: This review describes different types of stem cells (endogenous and exogenous neural progenitors, pluripotent stem cell derivatives, mesenchymal stem cells [MSCs], olfactory ensheathing cells) and biomaterials, their routes of administration, means of noninvasive imaging, and the prerequisites and hurdles for the successful translation of the cell therapies to the clinic. EXPERT OPINION: Neural precursors (NPs) derived from pluripotent stem cells, unlike MSCs, can not only remodel the CNS by promoting neuroplasticity, angiogenesis, and immunomodulation, but also replace damaged cells. To transfer NPs into the clinic, step by step guidelines for researchers are identified and discussed.
- MeSH
- biokompatibilní materiály terapeutické užití MeSH
- buněčná a tkáňová terapie metody trendy MeSH
- cévní mozková příhoda patofyziologie terapie MeSH
- hojení ran fyziologie MeSH
- lidé MeSH
- neurogeneze fyziologie MeSH
- neuroplasticita fyziologie MeSH
- nika kmenových buněk fyziologie MeSH
- pluripotentní kmenové buňky cytologie fyziologie transplantace MeSH
- regenerace nervu fyziologie MeSH
- řízená tkáňová regenerace * přístrojové vybavení metody MeSH
- tkáňové inženýrství přístrojové vybavení metody MeSH
- tkáňové podpůrné struktury chemie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
Polysaccharides are long carbohydrate molecules of monosaccharide units joined together by glycosidic bonds. These biological polymers have emerged as promising materials for tissue engineering due to their biocompatibility, mostly good availability and tailorable properties. This complex group of biomolecules can be classified using several criteria, such as chemical composition (homo- and heteropolysaccharides), structure (linear and branched), function in the organism (structural, storage and secreted polysaccharides), or source (animals, plants, microorganisms). Polysaccharides most widely used in tissue engineering include starch, cellulose, chitosan, pectins, alginate, agar, dextran, pullulan, gellan, xanthan and glycosaminoglycans. Polysaccharides have been applied for engineering and regeneration of practically all tissues, though mostly at the experimental level. Polysaccharides have been tested for engineering of blood vessels, myocardium, heart valves, bone, articular and tracheal cartilage, intervertebral discs, menisci, skin, liver, skeletal muscle, neural tissue, urinary bladder, and also for encapsulation and delivery of pancreatic islets and ovarian follicles. For these purposes, polysaccharides have been applied in various forms, such as injectable hydrogels or porous and fibrous scaffolds, and often in combination with other natural or synthetic polymers or inorganic nanoparticles. The immune response evoked by polysaccharides is usually mild, and can be reduced by purifying the material or by choosing appropriate crosslinking agents.
- MeSH
- biokompatibilní materiály chemická syntéza MeSH
- buněčné kultury přístrojové vybavení metody MeSH
- celulosa chemie MeSH
- cévní protézy MeSH
- cévy cytologie růst a vývoj MeSH
- endoteliální buňky cytologie fyziologie MeSH
- kultivované buňky MeSH
- lidé MeSH
- protézy - design MeSH
- řízená tkáňová regenerace přístrojové vybavení MeSH
- tkáňové inženýrství přístrojové vybavení metody MeSH
- tkáňové podpůrné struktury * MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
A number of implantable biomaterials derived from animal tissues are now used in modern surgery. Xe-Derma is a dry, sterile, acellular porcine dermis. It has a remarkable healing effect on burns and other wounds. Our hypothesis was that the natural biological structure of Xe-Derma plays an important role in keratinocyte proliferation and formation of epidermal architecture in vitro as well as in vivo. The bioactivity of Xe-Derma was studied by a cell culture assay. We analyzed growth and differentiation of human keratinocytes cultured in vitro on Xe-Derma, and we compared the results with formation of neoepidermis in the deep dermal wounds treated with Xe-Derma. Keratinocytes cultured on Xe-Derma submerged in the culture medium achieved confluence in 7-10 days. After lifting the cultures to the air-liquid interface, the keratinocytes were stratified and differentiated within one week, forming an epidermis with basal, spinous, granular, and stratum corneum layers. Immunohistochemical detection of high-molecular weight cytokeratins (HMW CKs), CD29, p63, and involucrin confirmed the similarity of organization and differentiation of the cultured epidermal cells to the normal epidermis. The results suggest that the firm natural structure of Xe-Derma stimulates proliferation and differentiation of human primary keratinocytes and by this way improves wound healing.
- MeSH
- extracelulární matrix metabolismus MeSH
- fibroblasty cytologie fyziologie MeSH
- hojení ran fyziologie MeSH
- keratinocyty cytologie fyziologie MeSH
- kultivované buňky MeSH
- lidé MeSH
- proliferace buněk MeSH
- řízená tkáňová regenerace přístrojové vybavení metody MeSH
- tkáňové inženýrství přístrojové vybavení metody MeSH
- tkáňové podpůrné struktury MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Research Support, N.I.H., Extramural MeSH