Biogenic Nanoparticle‒Chitosan Conjugates with Antimicrobial, Antibiofilm, and Anticancer Potentialities: Development and Characterization
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
30791374
PubMed Central
PMC6406235
DOI
10.3390/ijerph16040598
PII: ijerph16040598
Knihovny.cz E-zdroje
- Klíčová slova
- AgNPs, Convolvulus arvensis, antibacterial, antibiofilm, anticancer, chitosan,
- MeSH
- antibakteriální látky chemie farmakologie MeSH
- biofilmy účinky léků MeSH
- chitosan chemie MeSH
- Escherichia coli účinky léků MeSH
- kovové nanočástice chemie MeSH
- lidé MeSH
- mikrobiální testy citlivosti MeSH
- mikroskopie elektronová rastrovací MeSH
- protinádorové látky chemie farmakologie MeSH
- Pseudomonas aeruginosa účinky léků MeSH
- rostlinné extrakty chemie MeSH
- screeningové testy protinádorových léčiv MeSH
- spektroskopie infračervená s Fourierovou transformací MeSH
- Staphylococcus aureus účinky léků MeSH
- stříbro chemie MeSH
- transmisní elektronová mikroskopie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antibakteriální látky MeSH
- chitosan MeSH
- protinádorové látky MeSH
- rostlinné extrakty MeSH
- stříbro MeSH
In the 21st century, with ever-increasing consciousness and social awareness, researchers must tackle the microbial infections that pose a major threat to human safety. For many reasons, the emergence/re-emergence of threatening pathogens has increased and poses a serious challenge to health care services. Considering the changing dynamics of 21st-century materials with medical potentialities, the integration of bioactive agents into materials to engineer antibacterial matrices has received limited attention so far. Thus, antimicrobial active conjugates are considered potential candidates to eradicate infections and reduce microbial contaminations in healthcare facilities. In this context, eco-friendly and novel conjugates with antimicrobial, antibiofilm, and anticancer potentialities were developed using biogenic silver nanoparticles (AgNPs) from Convolvulus arvensis (C. arvensis) extract and chitosan (CHI). A range of instrumental and imaging tools, i.e., UV-Vis and FTIR spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive spectroscopy (EDX), and X-ray diffraction (XRD), were employed to characterize the freshly extracted C. arvensis AgNPs. Biogenic AgNPs obtained after a 24-h reaction period were used to engineer CHI-based conjugates and designated as CHI‒AgNPs1 to CHI‒AgNPs5, subject to the C. arvensis AgNPs concentration. After the stipulated loading period, 92% loading efficiency (LE) was recorded for a CHI‒AgNPs3 conjugate. Gram+ and Gram- bacterial isolates, i.e., Staphylococcus aureus, and Escherichia coli, were used to test the antibacterial activities of newly developed CHI‒AgNPs conjugates. In comparison to the control sample with bacterial cell count 1.5 × 10⁸ CFU/mL, a notable reduction in the log values was recorded for the CHI‒AgNPs3 conjugate. The antibiofilm potential of CHI‒AgNPs conjugates was tested against Pseudomonas aeruginosa. Moreover, the CHI‒AgNPs3 conjugate also showed substantial cytotoxicity against the MCF-7 (breast cancer) cell line. In summary, the newly engineered CHI‒AgNPs conjugates with antibacterial, antibiofilm, and anticancer potentialities are potential candidate materials for biomedical applications.
Zobrazit více v PubMed
Arivalagan K., Ravichandran S., Rangasamy K., Karthikeyan E. Nanomaterials and its potential applications. Int. J. Chemtech Res. 2011;3:534–538.
Bilal M., Rasheed T., Iqbal H.M., Hu H., Wang W., Zhang X. Macromolecular agents with antimicrobial potentialities: A drive to combat antimicrobial resistance. Int. J. Biol. Macromol. 2017;103:554–574. doi: 10.1016/j.ijbiomac.2017.05.071. PubMed DOI
Bilal M., Zhao Y., Rasheed T., Iqbal H.M. Magnetic nanoparticles as versatile carriers for enzymes immobilization: A review. Int. J. Biol. Macromol. 2018;120:2530–2544. doi: 10.1016/j.ijbiomac.2018.09.025. PubMed DOI
Saravanakumar K., Jeevithan E., Chelliah R., Kathiresan K., Wen-Hui W., Oh D.H., Wang M.H. Zinc-chitosan nanoparticles induced apoptosis in human acute T-lymphocyte leukemia through activation of tumor necrosis factor receptor CD95 and apoptosis-related genes. Int. J. Biol. Macromol. 2018;119:1144–1153. doi: 10.1016/j.ijbiomac.2018.08.017. PubMed DOI
MubarakAli D. Microwave irradiation mediated synthesis of needle-shaped hydroxyapatite nanoparticles as a flocculant for Chlorella vulgaris. Biocatal. Agric. Biotechnol. 2019;17:203–206. doi: 10.1016/j.bcab.2018.11.025. DOI
Pérez J.A.C., Sosa-Hernández J.E., Hussain S.M., Bilal M., Parra-Saldivar R., Iqbal H.M. Bioinspired Biomaterials and Enzyme-Based Biosensors for Point-of-Care Applications with Reference to Cancer and Bio-Imaging. Biocatal. Agric. Biotechnol. 2019;17:168–176. doi: 10.1016/j.bcab.2018.11.015. DOI
Morones J.R., Elechiguerra J.L., Camacho A., Holt K., Kouri J.B., Ramírez J.T., Yacaman M.J. The bactericidal effect of silver nanoparticles. Nanotechnology. 2005;16:2346. doi: 10.1088/0957-4484/16/10/059. PubMed DOI
Schoen D.T., Schoen A.P., Hu L., Kim H.S., Heilshorn S.C., Cui Y. High speed water sterilization using one-dimensional nanostructures. Nano Lett. 2010;10:3628–3632. doi: 10.1021/nl101944e. PubMed DOI
Lee H.Y., Park H.K., Lee Y.M., Kim K., Park S.B. A practical procedure for producing silver nanocoated fabric and its antibacterial evaluation for biomedical applications. Chem. Commun. 2007;28:2959–2961. doi: 10.1039/b703034g. PubMed DOI
Stevens K.N., Crespo-Biel O., van den Bosch E.E., Dias A.A., Knetsch M.L., Aldenhoff Y.B., Koole L.H. The relationship between the antimicrobial effect of catheter coatings containing silver nanoparticles and the coagulation of contacting blood. Biomaterials. 2009;30:3682–3690. doi: 10.1016/j.biomaterials.2009.03.054. PubMed DOI
Shi Q., Vitchuli N., Nowak J., Noar J., Caldwell J.M., Breidt F., Zhang X. One-step synthesis of silver nanoparticle-filled nylon 6 nanofibers and their antibacterial properties. J. Mater. Chem. 2011;21:10330–10335. doi: 10.1039/c1jm11492a. DOI
Stevens K.N., Croes S., Boersma R.S., Stobberingh E.E., van der Marel C., van der Veen F.H., Koole L.H. Hydrophilic surface coatings with embedded biocidal silver nanoparticles and sodium heparin for central venous catheters. Biomaterials. 2011;32:1264–1269. doi: 10.1016/j.biomaterials.2010.10.042. PubMed DOI
Cui J., Hu C., Yang Y., Wu Y., Yang L., Wang Y., Jiang Z. Facile fabrication of carbonaceous nanospheres loaded with silver nanoparticles as antibacterial materials. J. Mater. Chem. 2012;22:8121–8126. doi: 10.1039/c2jm16441h. DOI
Bilal M., Rasheed T., Iqbal H.M.N., Hu H., Zhang X. Silver nanoparticles: Biosynthesis and antimicrobial potentialities. Int. J. Pharmacol. 2017;13:832–845. doi: 10.3923/ijp.2017.832.845. DOI
Sun Y., Xia Y. Shape-controlled synthesis of gold and silver nanoparticles. Science. 2002;298:2176–2179. doi: 10.1126/science.1077229. PubMed DOI
Chamakura K., Perez-Ballestero R., Luo Z., Bashir S., Liu J. Comparison of bactericidal activities of silver nanoparticles with common chemical disinfectants. Colloids Surf. B Biointerfaces. 2011;84:88–96. doi: 10.1016/j.colsurfb.2010.12.020. PubMed DOI
Kong H., Jang J. Antibacterial properties of novel poly (methyl methacrylate) nanofiber containing silver nanoparticles. Langmuir. 2008;24:2051–2056. doi: 10.1021/la703085e. PubMed DOI
Li Z., Fan L., Zhang T., Li K. Facile synthesis of Ag nanoparticles supported on MWCNTs with favorable stability and their bactericidal properties. J. Hazard. Mater. 2011;187:466–472. doi: 10.1016/j.jhazmat.2011.01.050. PubMed DOI
Henglein A. Colloidal silver nanoparticles: Photochemical preparation and interaction with O2, CCl4, and some metal ions. Chem. Mater. 1998;10:444–450. doi: 10.1021/cm970613j. DOI
Darroudi M., Zak A.K., Muhamad M.R., Huang N.M., Hakimi M. Green synthesis of colloidal silver nanoparticles by sonochemical method. Mater. Lett. 2012;66:117–120. doi: 10.1016/j.matlet.2011.08.016. DOI
Lin X.Z., Terepka A.D., Yang H. Synthesis of silver nanoparticles in a continuous flow tubular microreactor. Nano Lett. 2004;4:2227–2232. doi: 10.1021/nl0485859. DOI
Huang J., Lin L., Li Q., Sun D., Wang Y., Lu Y., Wang W. Continuous-flow biosynthesis of silver nanoparticles by lixivium of sundried Cinnamomum camphora leaf in tubular microreactors. Ind. Eng. Chem. Res. 2008;47:6081–6090. doi: 10.1021/ie701698e. DOI
Arunachalam R., Dhanasingh S., Kalimuthu B., Uthirappan M., Rose C., Mandal A.B. Phytosynthesis of silver nanoparticles using Coccinia grandis leaf extract and its application in the photocatalytic degradation. Colloids Surf. B Biointerfaces. 2012;94:226–230. doi: 10.1016/j.colsurfb.2012.01.040. PubMed DOI
Zamiri R., Azmi B.Z., Ahangar H.A., Zamiri G., Husin M.S., Wahab Z.A. Preparation and characterization of silver nanoparticles in natural polymers using laser ablation. Bull. Mater. Sci. 2012;35:727–731. doi: 10.1007/s12034-012-0360-0. DOI
Zhang Y., Chen F., Zhuang J., Tang Y., Wang D., Wang Y., Ren N. Synthesis of silver nanoparticles via electrochemical reduction on compact zeolite film modified electrodes. Chem. Commun. 2002;23:2814–2815. doi: 10.1039/b208222e. PubMed DOI
Maier S.A., Brongersma M.L., Kik P.G., Meltzer S., Requicha A.A., Atwater H.A. Plasmonics—A route to nanoscale optical devices. Adv. Mater. 2001;13:1501–1505. doi: 10.1002/1521-4095(200110)13:19<1501::AID-ADMA1501>3.0.CO;2-Z. DOI
Rasheed T., Bilal M., Li C., Iqbal H.M.N. Biomedical Potentialities of Taraxacum officinale-based Nanoparticles Biosynthesized Using Methanolic Leaf Extract. Curr. Pharm. Biotechnol. 2017;18:1116–1123. doi: 10.2174/1389201019666180214145421. PubMed DOI
Rasheed T., Bilal M., Li C., Nabeel F., Khalid M., Iqbal H.M. Catalytic potential of bio-synthesized silver nanoparticles using Convolvulus arvensis extract for the degradation of environmental pollutants. J. Photochem. Photobiol. B Biol. 2018;181:44–52. doi: 10.1016/j.jphotobiol.2018.02.024. PubMed DOI
Navaladian S., Viswanathan B., Viswanath R.P., Varadarajan T.K. Thermal decomposition as route for silver nanoparticles. Nanoscale Res. Lett. 2007;2:44–48. doi: 10.1007/s11671-006-9028-2. PubMed DOI PMC
Leopold N., Lendl B. A new method for fast preparation of highly surface-enhanced Raman scattering (SERS) active silver colloids at room temperature by reduction of silver nitrate with hydroxylamine hydrochloride. J. Phys. Chem. B. 2003;107:5723–5727. doi: 10.1021/jp027460u. DOI
Kahrilas G.A., Wally L.M., Fredrick S.J., Hiskey M., Prieto A.L., Owens J.E. Microwave-assisted green synthesis of silver nanoparticles using orange peel extract. ACS Sustain. Chem. Eng. 2013;2:367–376. doi: 10.1021/sc4003664. DOI
Maretti L., Billone P.S., Liu Y., Scaiano J.C. Facile photochemical synthesis and characterization of highly fluorescent silver nanoparticles. J. Am. Chem. Soc. 2009;131:13972–13980. doi: 10.1021/ja900201k. PubMed DOI
Rosemary M.J., Pradeep T. Solvothermal synthesis of silver nanoparticles from thiolates. J. Colloid Interface Sci. 2003;268:81–84. doi: 10.1016/j.jcis.2003.08.009. PubMed DOI
Jana N.R., Gearheart L., Murphy C.J. Wet chemical synthesis of silver nanorods and nanowires of controllable aspect ratioElectronic supplementary information (ESI) available: UV–VIS spectra of silver nanorods. Chem. Commun. 2001;7:617–618. doi: 10.1039/b100521i. DOI
Zhang Q., Li W., Moran C., Zeng J., Chen J., Wen L.P., Xia Y. Seed-mediated synthesis of Ag nanocubes with controllable edge lengths in the range of 30−200 nm and comparison of their optical properties. J. Am. Chem. Soc. 2010;132:11372–11378. doi: 10.1021/ja104931h. PubMed DOI PMC
Sun Y., Chen M., Zhou S., Hu J., Wu L. Controllable synthesis and surface wettability of flower-shaped silver nanocube-organosilica hybrid colloidal nanoparticles. ACS Nano. 2015;9:12513–12520. doi: 10.1021/acsnano.5b06051. PubMed DOI
Borrego B., Lorenzo G., Mota-Morales J.D., Almanza-Reyes H., Mateos F., López-Gil E., Bogdanchikova N. Potential application of silver nanoparticles to control the infectivity of Rift Valley fever virus in vitro and in vivo. Nanomed. Nanotechnol. Biol. Med. 2016;12:1185–1192. doi: 10.1016/j.nano.2016.01.021. PubMed DOI
Saikia I., Sonowal S., Pal M., Boruah P.K., Das M.R., Tamuly C. Biosynthesis of gold decorated reduced graphene oxide and its biological activities. Mater. Lett. 2016;178:239–242. doi: 10.1016/j.matlet.2016.05.011. DOI
Mohanpuria P., Rana N.K., Yadav S.K. Biosynthesis of nanoparticles: Technological concepts and future applications. J. Nanopart. Res. 2008;10:507–517. doi: 10.1007/s11051-007-9275-x. DOI
Božanić D.K., Trandafilović L.V., Luyt A.S., Djoković V. ‘Green’synthesis and optical properties of silver–chitosan complexes and nanocomposites. React. Funct. Polym. 2010;70:869–873. doi: 10.1016/j.reactfunctpolym.2010.08.001. DOI
Gardea-Torresdey J.L., Gomez E., Peralta-Videa J.R., Parsons J.G., Troiani H., Jose-Yacaman M. Alfalfa sprouts: A natural source for the synthesis of silver nanoparticles. Langmuir. 2003;19:1357–1361. doi: 10.1021/la020835i. DOI
Nadagouda M.N., Castle A.B., Murdock R.C., Hussain S.M., Varma R.S. In vitro biocompatibility of nanoscale zerovalent iron particles (NZVI) synthesized using tea polyphenols. Green Chem. 2010;12:114–122. doi: 10.1039/B921203P. DOI
Tagad C.K., Dugasani S.R., Aiyer R., Park S., Kulkarni A., Sabharwal S. Green synthesis of silver nanoparticles and their application for the development of optical fiber based hydrogen peroxide sensor. Sens. Actuators B Chem. 2013;183:144–149. doi: 10.1016/j.snb.2013.03.106. DOI
Saravanakumar K., Chelliah R., Shanmugam S., Varukattu N.B., Oh D.H., Kathiresan K., Wang M.H. Green synthesis and characterization of biologically active nanosilver from seed extract of Gardenia jasminoides Ellis. J. Photochem. Photobiol. B Biol. 2018;185:126–135. doi: 10.1016/j.jphotobiol.2018.05.032. PubMed DOI
Tang C., Hu D., Cao Q., Yan W., Xing B. Silver nanoparticles-loaded activated carbon fibers using chitosan as binding agent: Preparation, mechanism, and their antibacterial activity. Appl. Surf. Sci. 2017;394:457–465. doi: 10.1016/j.apsusc.2016.10.095. DOI
Miretzky P., Cirelli A.F. Hg (II) removal from water by chitosan and chitosan derivatives: A review. J. Hazard. Mater. 2009;167:10–23. doi: 10.1016/j.jhazmat.2009.01.060. PubMed DOI
Jimtaisong A., Saewan N. Utilization of carboxymethyl chitosan in cosmetics. Int. J. Cosmet. Sci. 2014;36:12–21. doi: 10.1111/ics.12102. PubMed DOI
Epure V., Griffon M., Pollet E., Avérous L. Structure and properties of glycerol-plasticized chitosan obtained by mechanical kneading. Carbohydr. Polym. 2011;83:947–952. doi: 10.1016/j.carbpol.2010.09.003. DOI
Youssef A.M., Abou-Yousef H., El-Sayed S.M., Kamel S. Mechanical and antibacterial properties of novel high performance chitosan/nanocomposite films. Int. J. Biol. Macromol. 2015;76:25–32. doi: 10.1016/j.ijbiomac.2015.02.016. PubMed DOI
Iqbal H.M.N. Ph.D. Thesis. University of Westminster; London, UK: 2015. Development of Bio-Composites with Novel Characteristics through Enzymatic Grafting.
Iqbal H.M.N., Kyazze G., Locke I.C., Tron T., Keshavarz T. Development of bio-composites with novel characteristics: Evaluation of phenol-induced antibacterial, biocompatible and biodegradable behaviours. Carbohydr. Polym. 2015;131:197–207. doi: 10.1016/j.carbpol.2015.05.046. PubMed DOI
Elegir G., Kindl A., Sadocco P., Orlandi M. Development of antimicrobial cellulose packaging through laccase-mediated grafting of phenolic compounds. Enzym. Microb. Technol. 2008;43:84–92. doi: 10.1016/j.enzmictec.2007.10.003. DOI
Mulvaney P. Surface plasmon spectroscopy of nanosized metal particles. Langmuir. 1996;12:788–800. doi: 10.1021/la9502711. DOI
Bilal M., Rasheed T., Iqbal H.M., Li C., Hu H., Zhang X. Development of silver nanoparticles loaded chitosan-alginate constructs with biomedical potentialities. Int. J. Biol. Macromol. 2017;105:393–400. doi: 10.1016/j.ijbiomac.2017.07.047. PubMed DOI
Chandran S.P., Chaudhary M., Pasricha R., Ahmad A., Sastry M. Synthesis of gold nanotriangles and silver nanoparticles using Aloevera plant extract. Biotechnol. Prog. 2006;22:577–583. doi: 10.1021/bp0501423. PubMed DOI
Rao B.R., Kaul P.N., Syamasundar K.V., Ramesh S. Water soluble fractions of rose-scented geranium (Pelargonium species) essential oil. Bioresour. Technol. 2002;84:243–246. PubMed
Shankar S.S., Ahmad A., Sastry M. Geranium leaf assisted biosynthesis of silver nanoparticles. Biotechnol. Prog. 2003;19:1627–1631. doi: 10.1021/bp034070w. PubMed DOI
Dong C., Zhang X., Cai H. Green synthesis of monodisperse silver nanoparticles using hydroxy propyl methyl cellulose. J. Alloy Compd. 2014;583:267–271. doi: 10.1016/j.jallcom.2013.08.207. DOI
Singh N., Khanna P.K. In situ synthesis of silver nano-particles in polymethylmethacrylate. Mater. Chem. Phys. 2007;104:367–372. doi: 10.1016/j.matchemphys.2007.03.026. DOI
Das R., Nath S.S., Chakdar D., Gope G., Bhattacharjee R. Synthesis of silver nanoparticles and their optical properties. J. Exp. Nanosci. 2010;5:357–362. doi: 10.1080/17458080903583915. DOI
Francis L., Balakrishnan A., Sanosh K.P., Marsano E. Hydroxy propyl cellulose capped silver nanoparticles produced by simple dialysis process. Mater. Res. Bull. 2010;45:989–992. doi: 10.1016/j.materresbull.2010.04.007. DOI
Gopinath V., MubarakAli D., Priyadarshini S., Priyadharsshini N.M., Thajuddin N., Velusamy P. Biosynthesis of silver nanoparticles from Tribulus terrestris and its antimicrobial activity: A novel biological approach. Colloids Surf. B Biointerfaces. 2012;96:69–74. doi: 10.1016/j.colsurfb.2012.03.023. PubMed DOI
Marambio-Jones C., Hoek E.M. A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J. Nanopart. Res. 2010;12:1531–1551. doi: 10.1007/s11051-010-9900-y. DOI
Taglietti A., Arciola C.R., D’Agostino A., Dacarro G., Montanaro L., Campoccia D., Visai L. Antibiofilm activity of a monolayer of silver nanoparticles anchored to an amino-silanized glass surface. Biomaterials. 2014;35:1779–1788. doi: 10.1016/j.biomaterials.2013.11.047. PubMed DOI
Damm C., Münstedt H., Rösch A. The antimicrobial efficacy of polyamide 6/silver-nano-and microcomposites. Mater. Chem. Phys. 2008;108:61–66. doi: 10.1016/j.matchemphys.2007.09.002. DOI
Zhang X.F., Liu Z.G., Shen W., Gurunathan S. Silver nanoparticles: Synthesis, characterization, properties, applications, and therapeutic approaches. Int. J. Mol. Sci. 2016;17:1534. doi: 10.3390/ijms17091534. PubMed DOI PMC
Mohanty S., Mishra S., Jena P., Jacob B., Sarkar B., Sonawane A. An investigation on the antibacterial, cytotoxic, and antibiofilm efficacy of starch-stabilized silver nanoparticles. Nanomed. Nanotechnol. Biol. Med. 2012;8:916–924. doi: 10.1016/j.nano.2011.11.007. PubMed DOI
Chaudhari P.R., Masurkar S.A., Shidore V.B., Kamble S.P. Effect of biosynthesized silver nanoparticles on Staphylococcus aureus biofilm quenching and prevention of biofilm formation. Nano-Micro Lett. 2012;4:34–39. doi: 10.1007/BF03353689. PubMed DOI
Qi L., Xu Z. In vivo antitumor activity of chitosan nanoparticles. Bioorg. Med. Chem. Lett. 2006;16:4243–4245. doi: 10.1016/j.bmcl.2006.05.078. PubMed DOI
Qi L.F., Xu Z.R., Li Y., Jiang X., Han X.Y. In vitro effects of chitosan nanoparticles on proliferation of human gastric carcinoma cell line MGC803 cells. World J. Gastroenterol. 2005;11:5136–5141. PubMed PMC
Jeyaraj M., Sathishkumar G., Sivanandhan G., MubarakAli D., Rajesh M., Arun R., Ganapathi A. Biogenic silver nanoparticles for cancer treatment: An experimental report. Colloids Surf. B Biointerfaces. 2013;106:86–92. doi: 10.1016/j.colsurfb.2013.01.027. PubMed DOI
Piao M.J., Kang K.A., Lee I.K., Kim H.S., Kim S., Choi J.Y., Hyun J.W. Silver nanoparticles induce oxidative cell damage in human liver cells through inhibition of reduced glutathione and induction of mitochondria-involved apoptosis. Toxicol. Lett. 2011;201:92–100. doi: 10.1016/j.toxlet.2010.12.010. PubMed DOI