Biogenic Nanoparticle‒Chitosan Conjugates with Antimicrobial, Antibiofilm, and Anticancer Potentialities: Development and Characterization

. 2019 Feb 19 ; 16 (4) : . [epub] 20190219

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid30791374

In the 21st century, with ever-increasing consciousness and social awareness, researchers must tackle the microbial infections that pose a major threat to human safety. For many reasons, the emergence/re-emergence of threatening pathogens has increased and poses a serious challenge to health care services. Considering the changing dynamics of 21st-century materials with medical potentialities, the integration of bioactive agents into materials to engineer antibacterial matrices has received limited attention so far. Thus, antimicrobial active conjugates are considered potential candidates to eradicate infections and reduce microbial contaminations in healthcare facilities. In this context, eco-friendly and novel conjugates with antimicrobial, antibiofilm, and anticancer potentialities were developed using biogenic silver nanoparticles (AgNPs) from Convolvulus arvensis (C. arvensis) extract and chitosan (CHI). A range of instrumental and imaging tools, i.e., UV-Vis and FTIR spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive spectroscopy (EDX), and X-ray diffraction (XRD), were employed to characterize the freshly extracted C. arvensis AgNPs. Biogenic AgNPs obtained after a 24-h reaction period were used to engineer CHI-based conjugates and designated as CHI‒AgNPs1 to CHI‒AgNPs5, subject to the C. arvensis AgNPs concentration. After the stipulated loading period, 92% loading efficiency (LE) was recorded for a CHI‒AgNPs3 conjugate. Gram+ and Gram- bacterial isolates, i.e., Staphylococcus aureus, and Escherichia coli, were used to test the antibacterial activities of newly developed CHI‒AgNPs conjugates. In comparison to the control sample with bacterial cell count 1.5 × 10⁸ CFU/mL, a notable reduction in the log values was recorded for the CHI‒AgNPs3 conjugate. The antibiofilm potential of CHI‒AgNPs conjugates was tested against Pseudomonas aeruginosa. Moreover, the CHI‒AgNPs3 conjugate also showed substantial cytotoxicity against the MCF-7 (breast cancer) cell line. In summary, the newly engineered CHI‒AgNPs conjugates with antibacterial, antibiofilm, and anticancer potentialities are potential candidate materials for biomedical applications.

Zobrazit více v PubMed

Arivalagan K., Ravichandran S., Rangasamy K., Karthikeyan E. Nanomaterials and its potential applications. Int. J. Chemtech Res. 2011;3:534–538.

Bilal M., Rasheed T., Iqbal H.M., Hu H., Wang W., Zhang X. Macromolecular agents with antimicrobial potentialities: A drive to combat antimicrobial resistance. Int. J. Biol. Macromol. 2017;103:554–574. doi: 10.1016/j.ijbiomac.2017.05.071. PubMed DOI

Bilal M., Zhao Y., Rasheed T., Iqbal H.M. Magnetic nanoparticles as versatile carriers for enzymes immobilization: A review. Int. J. Biol. Macromol. 2018;120:2530–2544. doi: 10.1016/j.ijbiomac.2018.09.025. PubMed DOI

Saravanakumar K., Jeevithan E., Chelliah R., Kathiresan K., Wen-Hui W., Oh D.H., Wang M.H. Zinc-chitosan nanoparticles induced apoptosis in human acute T-lymphocyte leukemia through activation of tumor necrosis factor receptor CD95 and apoptosis-related genes. Int. J. Biol. Macromol. 2018;119:1144–1153. doi: 10.1016/j.ijbiomac.2018.08.017. PubMed DOI

MubarakAli D. Microwave irradiation mediated synthesis of needle-shaped hydroxyapatite nanoparticles as a flocculant for Chlorella vulgaris. Biocatal. Agric. Biotechnol. 2019;17:203–206. doi: 10.1016/j.bcab.2018.11.025. DOI

Pérez J.A.C., Sosa-Hernández J.E., Hussain S.M., Bilal M., Parra-Saldivar R., Iqbal H.M. Bioinspired Biomaterials and Enzyme-Based Biosensors for Point-of-Care Applications with Reference to Cancer and Bio-Imaging. Biocatal. Agric. Biotechnol. 2019;17:168–176. doi: 10.1016/j.bcab.2018.11.015. DOI

Morones J.R., Elechiguerra J.L., Camacho A., Holt K., Kouri J.B., Ramírez J.T., Yacaman M.J. The bactericidal effect of silver nanoparticles. Nanotechnology. 2005;16:2346. doi: 10.1088/0957-4484/16/10/059. PubMed DOI

Schoen D.T., Schoen A.P., Hu L., Kim H.S., Heilshorn S.C., Cui Y. High speed water sterilization using one-dimensional nanostructures. Nano Lett. 2010;10:3628–3632. doi: 10.1021/nl101944e. PubMed DOI

Lee H.Y., Park H.K., Lee Y.M., Kim K., Park S.B. A practical procedure for producing silver nanocoated fabric and its antibacterial evaluation for biomedical applications. Chem. Commun. 2007;28:2959–2961. doi: 10.1039/b703034g. PubMed DOI

Stevens K.N., Crespo-Biel O., van den Bosch E.E., Dias A.A., Knetsch M.L., Aldenhoff Y.B., Koole L.H. The relationship between the antimicrobial effect of catheter coatings containing silver nanoparticles and the coagulation of contacting blood. Biomaterials. 2009;30:3682–3690. doi: 10.1016/j.biomaterials.2009.03.054. PubMed DOI

Shi Q., Vitchuli N., Nowak J., Noar J., Caldwell J.M., Breidt F., Zhang X. One-step synthesis of silver nanoparticle-filled nylon 6 nanofibers and their antibacterial properties. J. Mater. Chem. 2011;21:10330–10335. doi: 10.1039/c1jm11492a. DOI

Stevens K.N., Croes S., Boersma R.S., Stobberingh E.E., van der Marel C., van der Veen F.H., Koole L.H. Hydrophilic surface coatings with embedded biocidal silver nanoparticles and sodium heparin for central venous catheters. Biomaterials. 2011;32:1264–1269. doi: 10.1016/j.biomaterials.2010.10.042. PubMed DOI

Cui J., Hu C., Yang Y., Wu Y., Yang L., Wang Y., Jiang Z. Facile fabrication of carbonaceous nanospheres loaded with silver nanoparticles as antibacterial materials. J. Mater. Chem. 2012;22:8121–8126. doi: 10.1039/c2jm16441h. DOI

Bilal M., Rasheed T., Iqbal H.M.N., Hu H., Zhang X. Silver nanoparticles: Biosynthesis and antimicrobial potentialities. Int. J. Pharmacol. 2017;13:832–845. doi: 10.3923/ijp.2017.832.845. DOI

Sun Y., Xia Y. Shape-controlled synthesis of gold and silver nanoparticles. Science. 2002;298:2176–2179. doi: 10.1126/science.1077229. PubMed DOI

Chamakura K., Perez-Ballestero R., Luo Z., Bashir S., Liu J. Comparison of bactericidal activities of silver nanoparticles with common chemical disinfectants. Colloids Surf. B Biointerfaces. 2011;84:88–96. doi: 10.1016/j.colsurfb.2010.12.020. PubMed DOI

Kong H., Jang J. Antibacterial properties of novel poly (methyl methacrylate) nanofiber containing silver nanoparticles. Langmuir. 2008;24:2051–2056. doi: 10.1021/la703085e. PubMed DOI

Li Z., Fan L., Zhang T., Li K. Facile synthesis of Ag nanoparticles supported on MWCNTs with favorable stability and their bactericidal properties. J. Hazard. Mater. 2011;187:466–472. doi: 10.1016/j.jhazmat.2011.01.050. PubMed DOI

Henglein A. Colloidal silver nanoparticles: Photochemical preparation and interaction with O2, CCl4, and some metal ions. Chem. Mater. 1998;10:444–450. doi: 10.1021/cm970613j. DOI

Darroudi M., Zak A.K., Muhamad M.R., Huang N.M., Hakimi M. Green synthesis of colloidal silver nanoparticles by sonochemical method. Mater. Lett. 2012;66:117–120. doi: 10.1016/j.matlet.2011.08.016. DOI

Lin X.Z., Terepka A.D., Yang H. Synthesis of silver nanoparticles in a continuous flow tubular microreactor. Nano Lett. 2004;4:2227–2232. doi: 10.1021/nl0485859. DOI

Huang J., Lin L., Li Q., Sun D., Wang Y., Lu Y., Wang W. Continuous-flow biosynthesis of silver nanoparticles by lixivium of sundried Cinnamomum camphora leaf in tubular microreactors. Ind. Eng. Chem. Res. 2008;47:6081–6090. doi: 10.1021/ie701698e. DOI

Arunachalam R., Dhanasingh S., Kalimuthu B., Uthirappan M., Rose C., Mandal A.B. Phytosynthesis of silver nanoparticles using Coccinia grandis leaf extract and its application in the photocatalytic degradation. Colloids Surf. B Biointerfaces. 2012;94:226–230. doi: 10.1016/j.colsurfb.2012.01.040. PubMed DOI

Zamiri R., Azmi B.Z., Ahangar H.A., Zamiri G., Husin M.S., Wahab Z.A. Preparation and characterization of silver nanoparticles in natural polymers using laser ablation. Bull. Mater. Sci. 2012;35:727–731. doi: 10.1007/s12034-012-0360-0. DOI

Zhang Y., Chen F., Zhuang J., Tang Y., Wang D., Wang Y., Ren N. Synthesis of silver nanoparticles via electrochemical reduction on compact zeolite film modified electrodes. Chem. Commun. 2002;23:2814–2815. doi: 10.1039/b208222e. PubMed DOI

Maier S.A., Brongersma M.L., Kik P.G., Meltzer S., Requicha A.A., Atwater H.A. Plasmonics—A route to nanoscale optical devices. Adv. Mater. 2001;13:1501–1505. doi: 10.1002/1521-4095(200110)13:19<1501::AID-ADMA1501>3.0.CO;2-Z. DOI

Rasheed T., Bilal M., Li C., Iqbal H.M.N. Biomedical Potentialities of Taraxacum officinale-based Nanoparticles Biosynthesized Using Methanolic Leaf Extract. Curr. Pharm. Biotechnol. 2017;18:1116–1123. doi: 10.2174/1389201019666180214145421. PubMed DOI

Rasheed T., Bilal M., Li C., Nabeel F., Khalid M., Iqbal H.M. Catalytic potential of bio-synthesized silver nanoparticles using Convolvulus arvensis extract for the degradation of environmental pollutants. J. Photochem. Photobiol. B Biol. 2018;181:44–52. doi: 10.1016/j.jphotobiol.2018.02.024. PubMed DOI

Navaladian S., Viswanathan B., Viswanath R.P., Varadarajan T.K. Thermal decomposition as route for silver nanoparticles. Nanoscale Res. Lett. 2007;2:44–48. doi: 10.1007/s11671-006-9028-2. PubMed DOI PMC

Leopold N., Lendl B. A new method for fast preparation of highly surface-enhanced Raman scattering (SERS) active silver colloids at room temperature by reduction of silver nitrate with hydroxylamine hydrochloride. J. Phys. Chem. B. 2003;107:5723–5727. doi: 10.1021/jp027460u. DOI

Kahrilas G.A., Wally L.M., Fredrick S.J., Hiskey M., Prieto A.L., Owens J.E. Microwave-assisted green synthesis of silver nanoparticles using orange peel extract. ACS Sustain. Chem. Eng. 2013;2:367–376. doi: 10.1021/sc4003664. DOI

Maretti L., Billone P.S., Liu Y., Scaiano J.C. Facile photochemical synthesis and characterization of highly fluorescent silver nanoparticles. J. Am. Chem. Soc. 2009;131:13972–13980. doi: 10.1021/ja900201k. PubMed DOI

Rosemary M.J., Pradeep T. Solvothermal synthesis of silver nanoparticles from thiolates. J. Colloid Interface Sci. 2003;268:81–84. doi: 10.1016/j.jcis.2003.08.009. PubMed DOI

Jana N.R., Gearheart L., Murphy C.J. Wet chemical synthesis of silver nanorods and nanowires of controllable aspect ratioElectronic supplementary information (ESI) available: UV–VIS spectra of silver nanorods. Chem. Commun. 2001;7:617–618. doi: 10.1039/b100521i. DOI

Zhang Q., Li W., Moran C., Zeng J., Chen J., Wen L.P., Xia Y. Seed-mediated synthesis of Ag nanocubes with controllable edge lengths in the range of 30−200 nm and comparison of their optical properties. J. Am. Chem. Soc. 2010;132:11372–11378. doi: 10.1021/ja104931h. PubMed DOI PMC

Sun Y., Chen M., Zhou S., Hu J., Wu L. Controllable synthesis and surface wettability of flower-shaped silver nanocube-organosilica hybrid colloidal nanoparticles. ACS Nano. 2015;9:12513–12520. doi: 10.1021/acsnano.5b06051. PubMed DOI

Borrego B., Lorenzo G., Mota-Morales J.D., Almanza-Reyes H., Mateos F., López-Gil E., Bogdanchikova N. Potential application of silver nanoparticles to control the infectivity of Rift Valley fever virus in vitro and in vivo. Nanomed. Nanotechnol. Biol. Med. 2016;12:1185–1192. doi: 10.1016/j.nano.2016.01.021. PubMed DOI

Saikia I., Sonowal S., Pal M., Boruah P.K., Das M.R., Tamuly C. Biosynthesis of gold decorated reduced graphene oxide and its biological activities. Mater. Lett. 2016;178:239–242. doi: 10.1016/j.matlet.2016.05.011. DOI

Mohanpuria P., Rana N.K., Yadav S.K. Biosynthesis of nanoparticles: Technological concepts and future applications. J. Nanopart. Res. 2008;10:507–517. doi: 10.1007/s11051-007-9275-x. DOI

Božanić D.K., Trandafilović L.V., Luyt A.S., Djoković V. ‘Green’synthesis and optical properties of silver–chitosan complexes and nanocomposites. React. Funct. Polym. 2010;70:869–873. doi: 10.1016/j.reactfunctpolym.2010.08.001. DOI

Gardea-Torresdey J.L., Gomez E., Peralta-Videa J.R., Parsons J.G., Troiani H., Jose-Yacaman M. Alfalfa sprouts: A natural source for the synthesis of silver nanoparticles. Langmuir. 2003;19:1357–1361. doi: 10.1021/la020835i. DOI

Nadagouda M.N., Castle A.B., Murdock R.C., Hussain S.M., Varma R.S. In vitro biocompatibility of nanoscale zerovalent iron particles (NZVI) synthesized using tea polyphenols. Green Chem. 2010;12:114–122. doi: 10.1039/B921203P. DOI

Tagad C.K., Dugasani S.R., Aiyer R., Park S., Kulkarni A., Sabharwal S. Green synthesis of silver nanoparticles and their application for the development of optical fiber based hydrogen peroxide sensor. Sens. Actuators B Chem. 2013;183:144–149. doi: 10.1016/j.snb.2013.03.106. DOI

Saravanakumar K., Chelliah R., Shanmugam S., Varukattu N.B., Oh D.H., Kathiresan K., Wang M.H. Green synthesis and characterization of biologically active nanosilver from seed extract of Gardenia jasminoides Ellis. J. Photochem. Photobiol. B Biol. 2018;185:126–135. doi: 10.1016/j.jphotobiol.2018.05.032. PubMed DOI

Tang C., Hu D., Cao Q., Yan W., Xing B. Silver nanoparticles-loaded activated carbon fibers using chitosan as binding agent: Preparation, mechanism, and their antibacterial activity. Appl. Surf. Sci. 2017;394:457–465. doi: 10.1016/j.apsusc.2016.10.095. DOI

Miretzky P., Cirelli A.F. Hg (II) removal from water by chitosan and chitosan derivatives: A review. J. Hazard. Mater. 2009;167:10–23. doi: 10.1016/j.jhazmat.2009.01.060. PubMed DOI

Jimtaisong A., Saewan N. Utilization of carboxymethyl chitosan in cosmetics. Int. J. Cosmet. Sci. 2014;36:12–21. doi: 10.1111/ics.12102. PubMed DOI

Epure V., Griffon M., Pollet E., Avérous L. Structure and properties of glycerol-plasticized chitosan obtained by mechanical kneading. Carbohydr. Polym. 2011;83:947–952. doi: 10.1016/j.carbpol.2010.09.003. DOI

Youssef A.M., Abou-Yousef H., El-Sayed S.M., Kamel S. Mechanical and antibacterial properties of novel high performance chitosan/nanocomposite films. Int. J. Biol. Macromol. 2015;76:25–32. doi: 10.1016/j.ijbiomac.2015.02.016. PubMed DOI

Iqbal H.M.N. Ph.D. Thesis. University of Westminster; London, UK: 2015. Development of Bio-Composites with Novel Characteristics through Enzymatic Grafting.

Iqbal H.M.N., Kyazze G., Locke I.C., Tron T., Keshavarz T. Development of bio-composites with novel characteristics: Evaluation of phenol-induced antibacterial, biocompatible and biodegradable behaviours. Carbohydr. Polym. 2015;131:197–207. doi: 10.1016/j.carbpol.2015.05.046. PubMed DOI

Elegir G., Kindl A., Sadocco P., Orlandi M. Development of antimicrobial cellulose packaging through laccase-mediated grafting of phenolic compounds. Enzym. Microb. Technol. 2008;43:84–92. doi: 10.1016/j.enzmictec.2007.10.003. DOI

Mulvaney P. Surface plasmon spectroscopy of nanosized metal particles. Langmuir. 1996;12:788–800. doi: 10.1021/la9502711. DOI

Bilal M., Rasheed T., Iqbal H.M., Li C., Hu H., Zhang X. Development of silver nanoparticles loaded chitosan-alginate constructs with biomedical potentialities. Int. J. Biol. Macromol. 2017;105:393–400. doi: 10.1016/j.ijbiomac.2017.07.047. PubMed DOI

Chandran S.P., Chaudhary M., Pasricha R., Ahmad A., Sastry M. Synthesis of gold nanotriangles and silver nanoparticles using Aloevera plant extract. Biotechnol. Prog. 2006;22:577–583. doi: 10.1021/bp0501423. PubMed DOI

Rao B.R., Kaul P.N., Syamasundar K.V., Ramesh S. Water soluble fractions of rose-scented geranium (Pelargonium species) essential oil. Bioresour. Technol. 2002;84:243–246. PubMed

Shankar S.S., Ahmad A., Sastry M. Geranium leaf assisted biosynthesis of silver nanoparticles. Biotechnol. Prog. 2003;19:1627–1631. doi: 10.1021/bp034070w. PubMed DOI

Dong C., Zhang X., Cai H. Green synthesis of monodisperse silver nanoparticles using hydroxy propyl methyl cellulose. J. Alloy Compd. 2014;583:267–271. doi: 10.1016/j.jallcom.2013.08.207. DOI

Singh N., Khanna P.K. In situ synthesis of silver nano-particles in polymethylmethacrylate. Mater. Chem. Phys. 2007;104:367–372. doi: 10.1016/j.matchemphys.2007.03.026. DOI

Das R., Nath S.S., Chakdar D., Gope G., Bhattacharjee R. Synthesis of silver nanoparticles and their optical properties. J. Exp. Nanosci. 2010;5:357–362. doi: 10.1080/17458080903583915. DOI

Francis L., Balakrishnan A., Sanosh K.P., Marsano E. Hydroxy propyl cellulose capped silver nanoparticles produced by simple dialysis process. Mater. Res. Bull. 2010;45:989–992. doi: 10.1016/j.materresbull.2010.04.007. DOI

Gopinath V., MubarakAli D., Priyadarshini S., Priyadharsshini N.M., Thajuddin N., Velusamy P. Biosynthesis of silver nanoparticles from Tribulus terrestris and its antimicrobial activity: A novel biological approach. Colloids Surf. B Biointerfaces. 2012;96:69–74. doi: 10.1016/j.colsurfb.2012.03.023. PubMed DOI

Marambio-Jones C., Hoek E.M. A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J. Nanopart. Res. 2010;12:1531–1551. doi: 10.1007/s11051-010-9900-y. DOI

Taglietti A., Arciola C.R., D’Agostino A., Dacarro G., Montanaro L., Campoccia D., Visai L. Antibiofilm activity of a monolayer of silver nanoparticles anchored to an amino-silanized glass surface. Biomaterials. 2014;35:1779–1788. doi: 10.1016/j.biomaterials.2013.11.047. PubMed DOI

Damm C., Münstedt H., Rösch A. The antimicrobial efficacy of polyamide 6/silver-nano-and microcomposites. Mater. Chem. Phys. 2008;108:61–66. doi: 10.1016/j.matchemphys.2007.09.002. DOI

Zhang X.F., Liu Z.G., Shen W., Gurunathan S. Silver nanoparticles: Synthesis, characterization, properties, applications, and therapeutic approaches. Int. J. Mol. Sci. 2016;17:1534. doi: 10.3390/ijms17091534. PubMed DOI PMC

Mohanty S., Mishra S., Jena P., Jacob B., Sarkar B., Sonawane A. An investigation on the antibacterial, cytotoxic, and antibiofilm efficacy of starch-stabilized silver nanoparticles. Nanomed. Nanotechnol. Biol. Med. 2012;8:916–924. doi: 10.1016/j.nano.2011.11.007. PubMed DOI

Chaudhari P.R., Masurkar S.A., Shidore V.B., Kamble S.P. Effect of biosynthesized silver nanoparticles on Staphylococcus aureus biofilm quenching and prevention of biofilm formation. Nano-Micro Lett. 2012;4:34–39. doi: 10.1007/BF03353689. PubMed DOI

Qi L., Xu Z. In vivo antitumor activity of chitosan nanoparticles. Bioorg. Med. Chem. Lett. 2006;16:4243–4245. doi: 10.1016/j.bmcl.2006.05.078. PubMed DOI

Qi L.F., Xu Z.R., Li Y., Jiang X., Han X.Y. In vitro effects of chitosan nanoparticles on proliferation of human gastric carcinoma cell line MGC803 cells. World J. Gastroenterol. 2005;11:5136–5141. PubMed PMC

Jeyaraj M., Sathishkumar G., Sivanandhan G., MubarakAli D., Rajesh M., Arun R., Ganapathi A. Biogenic silver nanoparticles for cancer treatment: An experimental report. Colloids Surf. B Biointerfaces. 2013;106:86–92. doi: 10.1016/j.colsurfb.2013.01.027. PubMed DOI

Piao M.J., Kang K.A., Lee I.K., Kim H.S., Kim S., Choi J.Y., Hyun J.W. Silver nanoparticles induce oxidative cell damage in human liver cells through inhibition of reduced glutathione and induction of mitochondria-involved apoptosis. Toxicol. Lett. 2011;201:92–100. doi: 10.1016/j.toxlet.2010.12.010. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...