Effect of Artemisia absinthium and Malva sylvestris on Antioxidant Parameters and Abomasal Histopathology in Lambs Experimentally Infected with Haemonchus contortus
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
APVV 18-0131
Slovak Research and Development Agency
CA16230
COST Action
PubMed
33572477
PubMed Central
PMC7916408
DOI
10.3390/ani11020462
PII: ani11020462
Knihovny.cz E-zdroje
- Klíčová slova
- Artemisia absinthium, Haemonchus contortus, Malva sylvestris, abomasum, antioxidant parameters, gastrointestinal nematode parasite, histopathological changes, local immune response,
- Publikační typ
- časopisecké články MeSH
This study evaluated the effect of Artemisia absinthium and Malva sylvestris on antioxidant response and histopathological changes in the abomasa of the Haemonchus contortus infected lambs. Twenty-four lambs were divided into four groups: unsupplemented lambs (UNS), lambs supplemented with A. absinthium (ART), lambs supplemented with M. sylvestris (MAL), and lambs supplemented with both plants (ARTMAL). Lambs were infected orally with approximately 5000 third-stage (L3) larvae of H. contortus. The experiment was conducted for 75 d (days), all animals were then slaughtered; and the abomasal tissues were examined for antioxidant parameters and histopathology. The concentration of malondialdehyde in the abomasal mucosa was lower in ARTMAL (p < 0.05), and the total antioxidant capacity was higher in MAL (p < 0.05), than in UNS. Increased mucus production was observed in the ARTMAL. The number of mast cells in UNS and ART was significantly higher than the number in MAL (p < 0.01 and p < 0.05). Plasma cell numbers were higher in ARTMAL than the number in MAL (p < 0.05). Abomasal tissue regenerated more frequently in ARTMAL. These results represent the first report of the impact of A. absinthium and M. sylvestris on antioxidant parameters and local immune responses of abomasal mucosa of lambs infected with a GIN parasite.
Zobrazit více v PubMed
Besier R.B., Kahn L.P., Sargison N.D., Van Wyk J.A. The pathophysiology, ecology and epidemiology of Haemonchus contortus infection in small ruminants. In: Gasser R.B., Von Sampson-Himmelstjerna G., editors. Haemonchus contortus and Haemonchosis—Past, Present and Future Trends. 1st ed. Volume 93. Academic Press; London, UK: 2016. pp. 95–143. PubMed DOI
Jackson F., Varady M., Bartley D.J. Managing anthelmintic resistance in goats—Can we learn lessons from sheep? Small Rumin. Res. 2012;103:3–9. doi: 10.1016/j.smallrumres.2011.10.012. DOI
Burke J.M., Miller J.E. Sustainable approaches to parasite control in ruminant livestock. Vet. Clin. North Am. Food Anim. Pract. 2020;36:89–107. doi: 10.1016/j.cvfa.2019.11.007. PubMed DOI
Torres-Acosta J.F.J., Hoste H. Alternative or improved methods to limit gastro-intestinal parasitism in grazing sheep and goats. Small Rumin. Res. 2008;77:159–173. doi: 10.1016/j.smallrumres.2008.03.009. DOI
Zajíčková M., Nguyen L.T., Skálová L., Raisová Stuchlíková L., Matoušková P. Anthelmintics in the future: Current trends in the discovery and development of new drugs against gastrointestinal nematodes. Drug Discov. Today. 2020;25:430–437. doi: 10.1016/j.drudis.2019.12.007. PubMed DOI
Githiori J.B., Athanasiadou S., Thamsborg S.M. Use of plants in novel approaches for control of gastrointestinal helminths in livestock with emphasis on small ruminants. Vet. Parasitol. 2006;139:308–320. doi: 10.1016/j.vetpar.2006.04.021. PubMed DOI
Hoste H., Torres-Acosta J.F.J., Quijada J., Chan-Perez I., Dakheel M.M., Kommuru D.S., Mueller-Harvey I., Terrill T.H. Interactions between nutrition and infections with Haemonchus contortus and related gastrointestinal nematodes in small ruminants. In: Gasser R.B., Von Sampson-Himmelstjerna G., editors. Haemonchus contortus and Haemonchosis—Past, Present and Future Trends. 1st ed. Volume 93. Academic Press; London, UK: 2016. pp. 239–351. PubMed DOI
Spiegler V., Liebau E., Hensel A. Medicinal plant extracts and plant-derived polyphenols with anthelmintic activity against intestinal nematodes. Nat. Prod. Rep. 2017;34:627–643. doi: 10.1039/C6NP00126B. PubMed DOI
Athanasiadou S., Kyriazakis I. Plant secondary metabolites: Antiparasitic effects and their role in ruminant production systems. Proc. Nutr. Soc. 2004;63:631–639. doi: 10.1079/PNS2004396. PubMed DOI
Acamovic T., Brooker J.D. Biochemistry of plant secondary metabolites and their effects in animals. Proc. Nutr. Soc. 2005;64:403–412. doi: 10.1079/PNS2005449. PubMed DOI
Wink M. Medicinal plants: A source of anti-parasitic secondary metabolites. Molecules. 2012;17:12771–12791. doi: 10.3390/molecules171112771. PubMed DOI PMC
Villalba J.J., Costes-Thiré M., Ginane C. Phytochemicals in animal health: Diet selection and trade-offs between costs and benefits. Proc. Nutr. Soc. 2017;76:113–121. doi: 10.1017/S0029665116000719. PubMed DOI
Athanasiadou S., Kyriazakis I., Jackson F., Coop R.L. Direct anthelmintic effects of condensed tannins towards different gastrointestinal nematodes of sheep: In vitro and in vivo studies. Vet. Parasitol. 2001;99:205–219. doi: 10.1016/S0304-4017(01)00467-8. PubMed DOI
Hoste H., Martinez-Ortiz-De-Montellano C., Manolaraki F., Brunet S., Ojeda-Robertos N., Fourquaux I., Torres-Acosta J.F.J., Sandoval-Castro C.A. Direct and indirect effects of bioactive tannin-rich tropical and temperate legumes against nematode infections. Vet. Parasitol. 2012;186:18–27. doi: 10.1016/j.vetpar.2011.11.042. PubMed DOI
Liu M., Panda S.K., Luyten W. Plant-based natural products for the discovery and development of novel anthelmintics against nematodes. Biomolecules. 2020;10:426. doi: 10.3390/biom10030426. PubMed DOI PMC
Castillo-Mitre G.F., Olmedo-Juárez A., Rojo-Rubio R., Gonzáles-Cortázar M., Mendoza-de Gives P., Hernández-Beteta E.E., Reyes-Guerrero D.E., López-Arellano M.E., Vázquez-Armijo J.F., Ramírez-Vargas G., et al. Caffeoyl and coumaroyl derivates from Acacia cochliacantha exhibit ovicidal activity against Haemonchus contortus. J. Ethnopharmacol. 2017;204:125–131. doi: 10.1016/j.jep.2017.04.010. PubMed DOI
Delgado-Núñez E.J., Zamilpa A., Gonzáles-Cortazar M., Olmedo-Juárez A., Cardoso-Taketa A., Sánchez-Mendoza E., Tapia-Maruri D., Salinas-Sánchez D.O., Mendoza-de Gives P. Isorhamnetin: A nematocidal flavonoid from Prosopis Leavigata leaves against Haemonchus contortus eggs and larvae. Biomolecules. 2020;10:733. doi: 10.3390/biom10050773. PubMed DOI PMC
Olmedo-Juárez A., Zarza-Albarran M.A., Rojo-Rubio R., Zamilpa A., Gonzáles-Cortazar M., Mondragón-Ancelmo J., Rivero-Péerez N., Mendoza-de Gives P. Acacia farnesiana pods (plant: Fabaceae) possesses anti-parasitic compounds against Haemonchus contortus in female lambs. Exp. Parasitol. 2020;218:107980. doi: 10.1016/j.exppara.2020.107980. PubMed DOI
Mravčáková D., Komáromyová M., Babják M., Urda Dolinská M., Königová A., Petrič D., Čobanová K., Śluzarcyk S., Cieslak A., Várady M., et al. Anthelmintic activity of wormwood (Artemisia absinthium L.) and mallow (Malva sylvestris L.) against Haemonchus contortus in sheep. Animals. 2020;10:219. doi: 10.3390/ani10020219. PubMed DOI PMC
Váradyová Z., Kišidayová S., Čobanová K., Grešáková L., Babják M., Königová A., Urda Dolinská M., Várady M. The impact of a mixture of medicinal herbs on ruminal fermentation, parasitological status and hematological parameters of the lambs experimentally infected with Haemonchus contortus. Small Rumin. Res. 2017;151:124–132. doi: 10.1016/j.smallrumres.2017.04.023. DOI
Váradyová Z., Mravčáková D., Babják M., Bryszak M., Grešáková L., Čobanová K., Kišidayová S., Plachá I., Königová A., Cieslak A., et al. Effects of herbal nutraceuticals and/or zinc against Haemonchus contortus in lambs experimentally infected. BMC Vet. Res. 2018;14:78. doi: 10.1186/s12917-018-1405-4. PubMed DOI PMC
Mravčáková D., Váradyová Z., Kopčáková A., Čobanová K., Grešáková L., Kišidayová S., Babják M., Urda Dolinská M., Dvorožňáková E., Königová A., et al. Natural chemotherapeutic alternatives for controlling of haemonchosis in sheep. BMC Vet. Res. 2019;15:302. doi: 10.1186/s12917-019-2050-2. PubMed DOI PMC
Coop R.L., Kyriazakis I. Influence of host nutrition on the development and consequences of nematode parasitism in ruminants. Trends Parasitol. 2001;17:325–330. doi: 10.1016/S1471-4922(01)01900-6. PubMed DOI
Bambou J.C., Archimède H., Arquet R., Mahieu M., Alexandre G., González-Garcia E., Mandonnet N. Effect of dietary supplementation on resistance to experimental infection with Haemonchus contortus in Creole kids. Vet. Parasitol. 2011;178:279–285. doi: 10.1016/j.vetpar.2011.01.030. PubMed DOI
Costes-Thiré M., Laurent P., Ginane C., Villalba J.J. Diet selection and trade-offs between condensed tannins and nutrients in parasitized sheep. Vet. Parasitol. 2019;271:14–21. doi: 10.1016/j.vetpar.2019.05.013. PubMed DOI
Balic A., Bowles V.M., Meeusen E.N.T. Mechanisms of immunity to Haemonchus contortus infection in sheep. Parasite Immunol. 2002;24:39–46. doi: 10.1046/j.0141-9838.2001.00432.x. PubMed DOI
Alba-Hurtado F., Muñoz-Guzmán M.A. Immune responses associated with resistance to haemonchosis in sheep. Biomed. Res. Int. 2013;2013:162158. doi: 10.1155/2013/162158. PubMed DOI PMC
McRae K.M., Stear M.J., Good B., Keane O.M. The host immune response to gastrointestinal nematode infection in sheep. Parasite Immunol. 2015;37:605–613. doi: 10.1111/pim.12290. PubMed DOI PMC
Machado V., Da Silva A.S., Schafer A.S., Aires A.R., Tonin A.A., Oliveira C.B., Hermes C.L., Almeida T.C., Moresco R.F., Stefani L.M., et al. Relationship between oxidative stress and pathological findings in abomasum of infected lambs by Haemonchus contortus. Pathol. Res. Pract. 2014;210:812–817. doi: 10.1016/j.prp.2014.09.006. PubMed DOI
Gessner D.K., Ringseis R., Eder K. Potential of plant polyphenols to combat oxidative stress and inflammatory processes in farm animals. J. Anim. Physiol. Anim. Nutr. 2017;101:605–628. doi: 10.1111/jpn.12579. PubMed DOI
Poli C.H.E.C., Thornton-Kurth K.J., Legako J.F., Bremm C., Hampel V.S., Hall J., Ipharraguerre I.R., Villalba J.J. Self-selection of plant bioactive compounds by sheep in response to challenge infection with Haemonchus contortus. Physiol. Behav. 2018;194:302–310. doi: 10.1016/j.physbeh.2018.06.013. PubMed DOI
Balic A., Bowles V.M., Meeusen E.N.T. Cellular profiles in the abomasal mucosa and lymph node during primary infection with Haemonchus contortus in sheep. Vet. Immunol. Immunopathol. 2000;75:109–120. doi: 10.1016/S0165-2427(00)00189-6. PubMed DOI
Amarante A.F.T., Bricarello P.A., Huntley J.F., Mazzolin L.P., Gomes J.C. Relationship of abomasal histology and parasite-specific immunoglobulin A with the resistance to Haemonchus contortus infection in three breeds of sheep. Vet. Parasitol. 2005;128:99–107. doi: 10.1016/j.vetpar.2004.11.021. PubMed DOI
Muñoz-Guzmán M.A., Cuenca-Verde C., Valdivia-Anda G., Cuéllar-Ordaz J.A., Alba-Hurtado F. Differential immune response between fundic and pyloric abomasal regions upon experimental ovine infection with Haemonchus contortus. Vet. Parasitol. 2012;185:175–180. doi: 10.1016/j.vetpar.2011.11.001. PubMed DOI
Čobanová K., Chrastinová Chrenková M., Polačiková M., Formelová Z., Ivanišinová O., Ryzner M., Grešáková L. The effect of different dietary zinc sources on mineral deposition and antioxidant indices in rabbit tissues. World Rabbit Sci. 2018;26:241–248. doi: 10.4995/wrs.2018.9206. DOI
Paglia D.E., Valentine W.N. Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J. Lab. Clin. Med. 1967;70:158–169. doi: 10.5555/uri:pii:0022214367900765. PubMed DOI
Benzie I.F.F., Strain J.J. Ferric reducing/antioxidant power assay: Direct measure of total antioxidant activity of biological fluids and modified version for stimultaneous measurement of total antioxidant power and ascorbic acid concentration. Methods Enzymol. 1999;299:15–27. doi: 10.1016/s0076-6879(99)99005-5. PubMed DOI
Jo C., Ahn D.U. Fluorometric analysis of 2-thiobarbituric acid reactive substances in Turkey. Poult. Sci. 1998;77:475–480. doi: 10.1093/ps/77.3.475. PubMed DOI
Bradford M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976;72:248–254. doi: 10.1016/0003-2697(76)90527-3. PubMed DOI
Barros L., Carvalho A.M., Ferreira I.C.F.R. Leaves, flowers, immature fruits and leafy flowered stems of Malva sylvestris: A comparative study of the nutraceutical potential and composition. Food Chem. Toxicol. 2010;48:1466–1472. doi: 10.1016/j.fct.2010.03.012. PubMed DOI
El-Saber Batiha G., Olatunde A., El-Mleeh A., Hetta H.F., Al-Rejaie S., Alghamdi S., Zahoor M., Beshbishy A.M., Murata T., Zaragoza-Bastida A., et al. Bioactive compounds, pharmacological actions, and pharmacokinetics of wormwood (Artemisia absinthium) Antibiotics. 2020;9:353. doi: 10.3390/antibiotics9060353. PubMed DOI PMC
Do Reo Leal M.L., De Camargo E.V., Henrique Ross D., Molento M.B., Dos Anjos Lopes S.T., Da Rocha J.B.T. Effect of selenium and vitamin E on oxidative stress in lambs experimentally infected with Haemonchus contortus. Vet. Res. Commun. 2010;34:549–555. doi: 10.1007/s11259-010-9426-x. PubMed DOI
Kaurinovic B., Vastag D. Flavonoids and phenolic acids as potential natural antioxidants. In: Shalaby E., editor. Antioxidants. 1st ed. IntechOpen; London, UK: 2019. pp. 127–146. DOI
Celi P. The role of oxidative stress in small ruminants’ health and production. Rev. Bras. Zootec. 2010;39:348–363. doi: 10.1590/S1516-35982010001300038. DOI
Bora K.S., Sharma A. Evaluation of antioxidant and free-radical scavenging potential of Artemisia absinthium. Pharm. Biol. 2011;49:1216–1223. doi: 10.3109/13880209.2011.578142. PubMed DOI
Paolini V., Bergeaud J.P., Grisez C., Prevot F., Dorchies P., Hoste H. Effects of condensed tannins on goats experimentally infected with Haemonchus contortus. Vet. Parasitol. 2003;113:253–261. doi: 10.1016/S0304-4017(03)00064-5. PubMed DOI
Pérez J., Garcia P.M., Hernandez S., Martinez-Moreno A., Martin De Las Mulas J., Camara S. Pathological and immunohistochemical study of the abomasum and abomasal lymph nodes in goats experimentally infected with Haemonchus contortus. Vet. Res. 2001;32:463–473. doi: 10.1051/vetres:2001138. PubMed DOI
Venturina V.M., Gossner A.G., Hopkins J. The immunology and genetics of resistance of sheep to Teladorsagia circumcincta. Vet. Res. Commun. 2013;37:171–181. doi: 10.1007/s11259-013-9559-9. PubMed DOI
Salman S.K., Duncan J.L. The abomasal histology of worm-free sheep given primary and challenge infections of Haemonchus contortus. Vet. Parasitol. 1984;16:43–54. doi: 10.1016/0304-4017(84)90007-4. PubMed DOI
Grencis R.K., Humphreys N.E., Bancroft A.J. Immunity to gastrointestinal nematodes: Mechanisms and myths. Immunol. Rev. 2014;260:183–205. doi: 10.1111/imr.12188. PubMed DOI PMC
Balic A., Cunningham C.P., Meeusen E.N.T. Eosinophil interactions with Haemonchus contortus larvae in the ovine gastrointestinal tract. Parasite Immunol. 2006;28:107–115. doi: 10.1111/j.1365-3024.2006.00816.x. PubMed DOI
Balic A., Bowles V.M., Meeusen E.N.T., Bowles M. The immunobiology of gastrointestinal nematode infections in ruminants. Adv. Parasitol. 2000;45:181–241. doi: 10.1016/s0065-308x(00)45005-0. PubMed DOI
Terefe G., Lacroux C., Andreoletti O., Grisez C., Prevot F., Bergeaud J.P., Penicaud J., Rouillon V., Gruner L., Brunel J.C., et al. Immune response to Haemonchus contortus infection in susceptible (INRA 401) and resistant (Barbados Black Belly) breeds of lambs. Parasite Immunol. 2007;29:415–424. doi: 10.1111/j.1365-3024.2007.00958.x. PubMed DOI
Krystel-Whittemore M., Dileepan K.N., Wood J.G. Mast cell: A multi-functional master cell. Front. Immunol. 2016;6:620. doi: 10.3389/fimmu.2015.00620. PubMed DOI PMC
Galli S.J., Nakae S., Tsai M. Mast cells in the development of adaptive immune responses. Nat. Immunol. 2005;6:135–142. doi: 10.1038/ni1158. PubMed DOI
Tzamaloukas O., Athanasiadou S., Kyriazakis I., Huntley J.F., Jackson F. The effect of chicory (Cichorium intybus) and sulla (Hedysarum coronarium) on larval development and mucosal cell responses of growing lambs challenged with Teladorsagia circumcincta. Parasitology. 2006;132:419–426. doi: 10.1017/S0031182005009194. PubMed DOI
Robinson N., Piedrafita D., Snibson K., Harrison P., Meeusen E.N.T. Immune cell kinetics in the ovine abomasal mucosa following hyperimmunization and challenge with Haemonchus contortus. Vet. Res. 2010;41:37. doi: 10.1051/vetres/2010009. PubMed DOI PMC
Penissi A.B., Piezzi R.S. Effect of dehydroleucodine on mucus production: A quantitative study. Dig. Dis. Sci. 1999;44:708–712. doi: 10.1023/A:1026601506677. PubMed DOI