Natural chemotherapeutic alternatives for controlling of haemonchosis in sheep

. 2019 Aug 20 ; 15 (1) : 302. [epub] 20190820

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, randomizované kontrolované studie veterinární

Perzistentní odkaz   https://www.medvik.cz/link/pmid31429752
Odkazy

PubMed 31429752
PubMed Central PMC6700814
DOI 10.1186/s12917-019-2050-2
PII: 10.1186/s12917-019-2050-2
Knihovny.cz E-zdroje

BACKGROUND: Parallel in vitro and in vivo experiments were designed to evaluate promising chemotherapeutic alternatives for controlling haemonchosis in ruminants. In vitro anthelmintic activities (egg hatch test - EHT; larval development test - LDT) of aqueous and methanolic herbal extracts Mix1 and Mix2 were investigated. The in vivo effects of dietary supplementation with Mix1 and Mix2 on the parasitological status, inflammatory response, antioxidant parameters and microbial community of the lambs infected experimentally with Haemonchus contortus were investigated. Lambs were divided into four groups for the in vivo study: uninfected control lambs (C), infected lambs (I), infected lambs supplemented with Mix1 (I + Mix1) and infected lambs supplemented with Mix2 (I + Mix2). The experimental period was 70 days. RESULTS: The number of eggs per gram (EPG) of feces was quantified 22, 30, 37, 44, 51, 58, 65 and 70 days post-infection, and mean abomasal worm counts were assessed 70 days post-infection. Quantitative analyses identified 57.3 and 22.2 mg/g phenolic acids, 41.5 and 29.5 mg/g flavonoids and 1.4 and 1.33 mg/g protoberberine-type alkaloids in Mix1 and Mix2, respectively. The methanolic extracts of the herbal mixtures in both in vitro tests had higher anthelmintic effects (P < 0.01) than the aqueous extracts, but the effects did not differ significantly between Mix1 and Mix2 (P > 0.05). I + Mix1 and I + Mix2 lowered mean EPGs between 44 and 70 d by 58.1 and 51.6%, respectively. The level of IgG antibodies against H. contortus increased significantly after infection in each infected group. CONCLUSION: These results represent the first monitoring of the in vitro anthelmintic effects of herbal mixtures on H. contortus. The in vivo experiment indicated that the anthelmintic effect was not sufficient for the elimination of parasites, but this herbal treatment may affect the host over a longer term, reducing the parasitic infection in the host.

Zobrazit více v PubMed

Wolstenholme AJ, Fairweather I, Prichard R, von Samson-Himmelstjerna G, Sangster NC. Drug resistance in veterinary helminths. Trends Parasitol. 2004;20:469–476. doi: 10.1016/j.pt.2004.07.010. PubMed DOI

Waghorn TS, Leathwick DM, Rhodes AP, Lawrence KE, Jackson R, Pomroy WE, West DM, Moffat JR. Prevalence of anthelmintic resistance on sheep farms in New Zealand. N Z Vet J. 2006;54:271–277. doi: 10.1080/00480169.2006.36710. PubMed DOI

Lamb J, Elliott T, Chambers M, Chick B. Broad spectrum anthelmintic resistance of Haemonchus contortus in northern NSW of Australia. Vet Parasitol. 2017;24:48–51. doi: 10.1016/j.vetpar.2017.05.008. PubMed DOI

Albuquerque ACA, Bassetto CC, Almeida FA, Amarante AFT. Development of Haemonchus contortus resistance in sheep under suppressive or targeted selective treatment with monepantel. Vet Parasitol. 2017;246:112–117. doi: 10.1016/j.vetpar.2017.09.010. PubMed DOI

Hoste H, Jackson F, Athanasiadou S, Thamsborg SM, Hoskin SO. The effects of tannin-rich plants on parasitic nematodes in ruminants. Trends Parasitol. 2006;22:253–261. doi: 10.1016/j.pt.2006.04.004. PubMed DOI

Hoste H, Torres-Acosta JFJ. Non chemical control of helminths in ruminants: adapting solutions for changing worms in a changing world. Vet Parasitol. 2011;180:144–154. doi: 10.1016/j.vetpar.2011.05.035. PubMed DOI

Hoste H, Torres-Acosta JF, Sandoval-Castro CA, Mueller-Harvey I, Sotiraki S, Louvandini H, Thamsborg SM, Terrill TH. Tannin containing legumes as a model for nutraceuticals against digestive parasites in livestock. Vet Parasitol. 2015;212:5–17. doi: 10.1016/j.vetpar.2015.06.026. PubMed DOI

Sandoval-Castro CA, Torres-Acosta JFJ, Hoste H, Salem AF, Chan-Pérez JI. Using plant bioactive materials to control gastrointestinal tract helminths in livestock. Anim Feed Sci Technol. 2012;176:192–201. doi: 10.1016/j.anifeedsci.2012.07.023. DOI

Viegi L, Pieroni A, Guarrera PM, Vangelisti R. A review of plants used in folk veterinary medicine in Italy as basis for a databank. J Ethnopharmacol. 2003;89:221–244. doi: 10.1016/j.jep.2003.08.003. PubMed DOI

Lans C, Turner N, Khan T, Brauer G, Boepple W. Ethnoveterinary medicines used for ruminants in British Columbia. Canada J Ethnobiol Ethnomed. 2007;3:11. doi: 10.1186/1746-4269-3-11. PubMed DOI PMC

Kabera JN, Semana E, Mussa AR, He X. Plant secondary metabolites: biosynthesis, classification, function and pharmacological properties. J Pharm Pharmacol. 2014;2:377–392.

Atanasov AG, Waltenberger B, Pferschy-Wenzig EM, Linder T, Wawrosch C, Uhrin P, Temml V, Wang L, Schwaiger S, Heiss EH, Rollinger JM, Schuster D, Breuss JM, Bochkov V, Mihovilovic MD, Kopp B, Bauer R, Dirsch VM, Stuppner H. Discovery and resupply of pharmacologically active plant-derived natural products: a review. Biotechnol Adv. 2015;33:1582–1614. doi: 10.1016/j.biotechadv.2015.08.001. PubMed DOI PMC

Lisonbee LD, Villalba JJ, Provenza FD, Hall JO. Tannins and self-medication: implications for sustainable parasite control in herbivores. Behav Process. 2009;82:184–189. doi: 10.1016/j.beproc.2009.06.009. PubMed DOI

Villalba JJ, Miller J, Ungar ED, Landau SY, Glendinning J. Ruminant self-medication against gastrointestinal nematodes: evidence, mechanism, and origins. Parasite. 2014;21:31. doi: 10.1051/parasite/2014032. PubMed DOI PMC

Athanasiadou S, Githiori J, Kyriazakis I. Medicinal plants for helminth parasite control: facts and fiction. Animal. 2007;1:1392–1400. doi: 10.1017/S1751731107000730. PubMed DOI

Spiegler V, Liebau E, Hensel A. Medicinal plant extracts and plant-derived polyphenols with anthelmintic activity against intestinal nematodes. Nat Prod Rep. 2017;34:627–643. doi: 10.1039/C6NP00126B. PubMed DOI

Pandey AK, Mishra AK, Mishra A. Antifungal and antioxidative potential of oil and extracts derived from leaves of Indian spice plant Cinnamomum tamala. Cell Mol Biol. 2012;58:142–147. PubMed

Kumar Shashank, Pandey Abhay K. Chemistry and Biological Activities of Flavonoids: An Overview. The Scientific World Journal. 2013;2013:1–16. PubMed PMC

Hoste H, Torres-Acosta JF, Quijada J, Chan-Perez I, Dakheel MM, Kommuru DS, Mueller-Harvey I, Terrill TH. Interactions between nutrition and infections with Haemonchus contortus and related gastrointestinal nematodes in small ruminants. Adv Parasitol. 2016;93:239–351. doi: 10.1016/bs.apar.2016.02.025. PubMed DOI

McRae KM, Stear MJ, Good B, Keane OM. The host immune response to gastrointestinal nematode infection in sheep. Parasite Immunol. 2015;37:605–613. doi: 10.1111/pim.12290. PubMed DOI PMC

Berrilli F, Di Cave D, Cavallero S, D'Amelio S. Interactions between parasites and microbial communities in the human gut. Front Cell Infect Microbiol. 2012;2:141. doi: 10.3389/fcimb.2012.00141. PubMed DOI PMC

Váradyová Z, Kišidayová S, Čobanová K, Grešáková Ľ, Babják M, Königová A, Urda Dolinská M, Várady M. The impact of a mixture of medicinal herbs on ruminal fermentation, parasitological status and hematological parameters of the lambs experimentally infected with Haemonchus contortus. Small Rumin Res. 2017;151:124–132. doi: 10.1016/j.smallrumres.2017.04.023. DOI

Váradyová Z, Mravčáková D, Babják M, Bryszak M, Grešáková Ľ, Čobanová K, Kišidayová S, Plachá I, Königová A, Cieslak A, Slusarczyk S, Pecio L, Kowalczyk M, Várady M. Effects of herbal nutraceuticals and/or zinc against Haemonchus contortus in lambs experimentally infected. BMC Vet Res. 2018;14:78. doi: 10.1186/s12917-018-1405-4. PubMed DOI PMC

Kresánek JJ, Kresánek J. Atlas of medicinal plants and berries. fourth ed. Slovakia: Osveta; 2008.

Kasote DM, Katyare SS, Hegde MV, Bae H. Significance of antioxidant potential of plants and its relevance to therapeutic application. Int J Biol Sci. 2015;11:982–991. doi: 10.7150/ijbs.12096. PubMed DOI PMC

Da Silva VC, De Carvalho MG, Borba HR, Silva SLC. Anthelmintic activity of flavonoids isolated from roots of Andira anthelmia (Leguminosae) Rev Bras Farm. 2008;18:573–576. doi: 10.1590/S0102-695X2008000400013. DOI

Xiong J, Li S, Wang W, Hong Y, Tang K, Luo Q. Screening and identification of the antibacterial bioactive compounds from Lonicera japonica Thunb. Leaves. Food Chem. 2013;138:327–333. doi: 10.1016/j.foodchem.2012.10.127. PubMed DOI

Borrás-Linares I, Stojanović Z, Quirantes-Piné R, Arráez-Román D, Švarc-Gajić J, Fernández-Gutiérrez A, Segura-Carretero A. Rosmarinus officinalis leaves as a natural source of bioactive compounds. Int J Mol Sci. 2014;15:20585–20606. doi: 10.3390/ijms151120585. PubMed DOI PMC

Mengistu G, Hoste H, Karonen M, Salminen JP, Hendriks WH, Pellikaan WF. The in vitro anthelmintic properties of browse plant species against Haemonchus contortus is determined by the polyphenol content and composition. Vet Parasitol. 2017;237:110–116. doi: 10.1016/j.vetpar.2016.12.020. PubMed DOI

Barrau E, Fabre N, Fouraste I, Hoste H. Effect of bioactive compounds from sainfoin (Onobrychis viciifolia Scop.) on the in vitro larval migration of Haemonchus contortus: role of tannins and flavonol glycosides. Parasitology. 2005;131:531–538. doi: 10.1017/S0031182005008024. PubMed DOI

Sultana B, Anwar F. Flavonols (Kaempeferol, quercetin, myricetin) contents of selected fruits, vegetables and medicinal plants. Food Chem. 2008;108:879–884. doi: 10.1016/j.foodchem.2007.11.053. PubMed DOI

David AVD, Arulmoli R, Parasuraman S. Overviews of biological importance of quercetin: a bioactive flavonoid. Pharmacogn Rev. 2016;10:84–89. doi: 10.4103/0973-7847.194044. PubMed DOI PMC

Proestos C, Lytoudi K, Mavromelanidou OK, Zoumpoulakis P, Sinanoglou VJ. Antioxidant capacity of selected plant extracts and their essential oils. Antioxidants. 2013;2:11–22. doi: 10.3390/antiox2010011. PubMed DOI PMC

Seelinger G, Merfort I, Schempp CM. Anti-oxidant, anti-inflammatory and anti-allergic activities of luteolin. Planta Med. 2008;74:1667–1677. doi: 10.1055/s-0028-1088314. PubMed DOI

Kozan E, Anul SA, Tatli II. In vitro anthelmintic effect of Vicia pannonica var. purpurascens on trichostrongylosis in sheep. Exp Parasitol. 2013;134:299–303. doi: 10.1016/j.exppara.2013.03.018. PubMed DOI

Klongsiriwet C, Quijada J, Williams AR, Mueller-Harvey I, Williamson EM, Hoste H. Synergistic inhibition of Haemonchus contortus exsheathment by flavonoid monomers and condensed tannins. Int J Parasitol Drugs Drug Resist. 2015;5:127–134. doi: 10.1016/j.ijpddr.2015.06.001. PubMed DOI PMC

Cortinovis C, Caloni F. Alkaloid-containing plants poisonous to cattle and horses in Europe. Toxins (Basel) 2015;7:5301–5307. doi: 10.3390/toxins7124884. PubMed DOI PMC

Grycová L, Dostál J, Marek R. Quaternary protoberberine alkaloids. Phytochemistry. 2007;68:150–175. doi: 10.1016/j.phytochem.2006.10.004. PubMed DOI

Wang GX, Zhou Z, Jiang DX, Han J, Wang JF, Zhao LW, Li J. In vivo anthelmintic activity of five alkaloids from Macleaya microcarpa (maxim) Fedde against Dactylogyrus intermedius in Carassius auratus. Vet Parasitol. 2010;171:305–313. doi: 10.1016/j.vetpar.2010.03.032. PubMed DOI

Zenebe Selamawit, Feyera Teka, Assefa Solomon. In Vitro Anthelmintic Activity of Crude Extracts of Aerial Parts of Cissus quadrangularis L. and Leaves of Schinus molle L. against Haemonchus contortus. BioMed Research International. 2017;2017:1–6. doi: 10.1155/2017/1905987. PubMed DOI PMC

Maqbool A, Hayat CS, Tanveer A. Comparative efficacy of various indigenous and allopathic drugs against fascioliasis in buffaloes. Vet Arch. 2004;74:107–114.

Satou T, Akao N, Matsuhashi R, Koike K, Fujita K, Nikaido T. Inhibitory effect of isoquinoline alkaloids on movement of second-stage larvae of Toxocara canis. Biol Pharm Bull. 2002;25:1651–1654. doi: 10.1248/bpb.25.1651. PubMed DOI

Al-Shaibani IRM, Phulan MS, Shiekh M. Anthelmintic activity of Fumaria parviflora (Fumariaceae) against gastrointestinal nematodes of sheep. Int J Agric Biol. 2009;11:431–436.

Dubois O, Allanic C, Charvet CL, Guégnard F, Février H, Théry-Koné I, Cortet J, Koch C, Bouvier F, Fassier T, Marcon D, Magnin-Robert JB, Peineau N, Courtot E, Huau C, Meynadier A, Enguehard-Gueiffier C, Neveu C, Boudesocque-Delaye L, Sallé G. Lupin (Lupinus spp.) seeds exert anthelmintic activity associated with their alkaloid content. Sci Rep. 2019;9:9070. doi: 10.1038/s41598-019-45654-6. PubMed DOI PMC

Váradyová Z, Pisarčíková J, Babják M, Hodges A, Mravčáková D, Kišidayová S, Königová A, Vadlejch J, Várady M. Ovicidal and larvicidal activity of extracts from medicinal-plants against Haemonchus contortus. Exp Parasitol. 2018;195:71–77. doi: 10.1016/j.exppara.2018.10.009. PubMed DOI

Ahmed M, Laing MD, Nsahlai IV. In vitro anthelmintic activity of crude extracts of selected medicinal plants against Haemonchus contortus from sheep. J Helminthol. 2013;87:174–179. doi: 10.1017/S0022149X1200020X. PubMed DOI

Akkari H, Rtibi K, B'chir F, Rekik M, Darghouth MA, Gharbi M. In vitro evidence that the pastoral Artemisia campestris species exerts an anthelmintic effect on Haemonchus contortus from sheep. Vet Res Commun. 2014;38:249–255. doi: 10.1007/s11259-014-9609-y. PubMed DOI

Eguale T, Tilahun G, Debella A, Fleke A, Makonnen E. Haemonchus contortus: in vitro and in vivo anthelmintic activity of aqueous and hydro-alcoholic extracts of Hedera helix. Exp Parasitol. 2007;116:340–345. doi: 10.1016/j.exppara.2007.01.019. PubMed DOI

Tariq KA, Chishti MZ, Ahmad F, Shawl AS. Anthelmintic activity of extracts of Artemisia absinthium against ovine nematodes. Vet Parasitol. 2009;160:83–88. doi: 10.1016/j.vetpar.2008.10.084. PubMed DOI

Borgsteede HM, Couwenberg T. Changes in LC50 in an in vitro egg development assay during the patent period of Haemonchus contortus in sheep. Res Vet Sci. 1987;42:413–414. doi: 10.1016/S0034-5288(18)30728-8. PubMed DOI

Váradyová Z, Mravčáková D, Holodová M, Grešáková Ľ, Pisarčíková J, Barszcz M, Taciak M, Tuśnio A, Kišidayová S, Čobanová K. Modulation of ruminal and intestinal fermentation by medicinal plants and zinc from different sources. J Anim Physiol Anim Nutr (Berl) 2018;102:1131–1145. doi: 10.1111/jpn.12940. PubMed DOI

Mavrot F, Hertzberg H, Torgerson P. Effect of gastro-intestinal nematode infection on sheep performance: a systematic review and meta-analysis. Parasit Vectors. 2015;8:557. doi: 10.1186/s13071-015-1164-z. PubMed DOI PMC

Muñoz-Guzmán MA, Cuéllar-Ordaz JA, Valdivia-Anda AG, Buendía-Jiménez JA, Alba-Hurtado F. Correlation of parasitological and immunological parameters in sheep with high and low resistance to haemonchosis. Can J Anim Sci. 2006;86:363–371. doi: 10.4141/A06-010. DOI

Cardia DF, Rocha-Oliveira RA, Tsunemi MH, Amarante AF. Immune response and performance of growing Santa Ines lambs to artificial Trichostrongylus colubriformis infections. Vet Parasitol. 2011;182:248–258. doi: 10.1016/j.vetpar.2011.05.017. PubMed DOI

Curry DB, Mizsputen SJ, Versolato C, Miiji LO, Pereira E, Delboni MA, Schor N, Moss AC. Serum calprotectin levels correlate with biochemical and histological markers of disease activity in TNBS colitis. Cell Immunol. 2013;282:66–70. doi: 10.1016/j.cellimm.2013.04.004. PubMed DOI PMC

Herrera OR, Christensen ML, Helms RA. Calprotectin: clinical applications in pediatrics. J Pediatr Pharmacol Ther. 2016;21:308–321. PubMed PMC

Jonsson N, Nilsen T, Gille-Johnson P, Bell M, Martling CR, Larsson A, Mårtensson J. Calprotectin as an early biomarker of bacterial infections in critically ill patients: an exploratory cohort assessment. Crit Care Resusc. 2017;19:205–213. PubMed

Casanova VP, Aires AR, Collet SG, Krause A, Moresco RN, Bochi GV, Silva AS, Leal MLR. Iron supplementation for lambs experimentally infected by Haemonchus contortus: response to anemia and iron store in the bone marrow. Pesqui Vet Bras. 2018;38:1543–1548. doi: 10.1590/1678-5150-pvb-5490. DOI

Tupec M, Hýsková V, Bělonožníková K, Hraníček J, Červený V, Ryšlavá H. Characterization of some potential medicinal plants from Central Europe by their antioxidant capacity and the presence of metal elements. Food Biosci. 2017;20:43–50. doi: 10.1016/j.fbio.2017.08.001. DOI

El-Ashram S, Al Nasr I, Abouhajer F, El-Kemary M, Huang G, Dinçel G, Mehmood R, Hu M, Suo X. Microbial community and ovine host response varies with early and late stages of Haemonchus contortus infection. Vet Res Commun. 2017;41:263–277. doi: 10.1007/s11259-017-9698-5. PubMed DOI

Sinnathamby G, Henderson G, Umair S, Janssen P, Bland R, Simpson H. The bacterial community associated with the sheep gastrointestinal nematode parasite Haemonchus contortus. PLoS One. 2018;13(2):e0192164. doi: 10.1371/journal.pone.0192164. PubMed DOI PMC

Coles GC, Bauer C, Borgsteede FHM, Geerts S, Klei TR, Taylor MA, Waller PJ. World Association for the Advancement of Veterinary Parasitology (W.A.A.V.P) methods for the detection of anthelmintic resistance in nematodes of veterinary importance. Vet Parasitol. 1992;44:35–44. doi: 10.1016/0304-4017(92)90141-U. PubMed DOI

Association of Official Analytical Chemists . Official methods of analysis. 17. Arlington: AOAC; 2000.

Van Soest PJ, Robertson JB, Lewis BA. Methods for dietary fiber neutral detergent fiber, and non-starch polysaccharides in relation to animal nutrition. J Dairy Sci. 1991;74:3583–3597. doi: 10.3168/jds.S0022-0302(91)78551-2. PubMed DOI

Williams AG, Coleman GS. The rumen protozoa. New York: Springer-Verlag; 1992.

Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol. 1991;173:697–703. doi: 10.1128/jb.173.2.697-703.1991. PubMed DOI PMC

Nübel U, Engelen B, Felske A, Snaidr J, Wieshuber A, Amann RI. Sequence heterogeneities of genes encoding 16S rRNAs in Paenibacillus polymyxa detected by temperature gradient gel electrophoresis. J Bacteriol. 1996;178:5636–5643. doi: 10.1128/jb.178.19.5636-5643.1996. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...