Mechanical force-induced manipulation of electronic conductance in a spin-crossover complex: a simple approach to molecular electronics

. 2020 Jul 14 ; 2 (7) : 2907-2913. [epub] 20200514

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36132398

The atomic-scale technological sophistication from the last half-decade provides new avenues for the atom-by-atom fabrication of nanostructures with extraordinary precision. This urges the appraisal of the fabrication scheme layout for a modular nanoelectronic device based on an individual molecular complex. The mechanical force-induced distortion to the metal coordination sphere triggers a low-spin (LS) to high-spin (HS) electronic transition in the complex. The controlled structural distortions (relative to a specific bond-angle) are deemed to be the switching parameter for the observed spin-transitions. Mechanical stretching is the key to engineering a spin-state switch in the proposed molecular device. The spin-dependent reversible variation in the electronic conductance concurrent to the unique spin-states can be understood from the state-of-the-art Nonequilibrium Green's Function (NEGF) calculations. Combined with NEGF calculations, the DFT study further provides a qualitative perception of the electronic conductance in the two-terminal device architecture. From the transport calculations, there is also evidence of considerable fluctuation in the spin-dependent electronic conductance at the molecular junction with relative variations in the scattering limit. Subsequently, the present study shows significant advances in the transmission probabilities for the high-spin state of the Fe(ii) complex. The results empower the progress of nanoelectronics at the single molecule level.

Zobrazit více v PubMed

Yazdani A. Eigler D. Lang N. Science. 1996;272:1921–1924. doi: 10.1126/science.272.5270.1921. PubMed DOI

Collier C. P. Wong E. W. Belohradský M. Raymo F. M. Stoddart J. F. Kuekes P. J. Williams R. S. Heath J. R. Science. 1999;285:391–394. doi: 10.1126/science.285.5426.391. PubMed DOI

Chen J. Reed M. R. Rawlett A. Tour J. M. Science. 1999;286:1550–1552. doi: 10.1126/science.286.5444.1550. PubMed DOI

Reed M. A. Zhou C. Muller C. Burgin T. Tour J. Science. 1997;278:252–254. doi: 10.1126/science.278.5336.252. DOI

Zhou C. Deshpande M. R. Reed M. A. Jones L. Tour J. M. Appl. Phys. Lett. 1997;71:2857. doi: 10.1063/1.120566. DOI

Xu B. Tao N. J. Science. 2003;301:1221–1223. doi: 10.1126/science.1087481. PubMed DOI

Feringa B. L., Molecular switches, Wiley, New York, 2001

Weibel N. Grunder S. Mayor M. Org. Biomol. Chem. 2007;5:2343–2353. PubMed

van der Molen S. J. Liljeroth P. J. Phys.: Condens. Matter. 2010;22:133001. doi: 10.1088/0953-8984/22/13/133001. PubMed DOI

Sun L. Diaz-Fernandez Y. A. Gschneidtner T. A. Westerlund F. Lara-Avila S. Moth-Poulsen K. Chem. Soc. Rev. 2014;43:7378–7411. doi: 10.1039/C4CS00143E. PubMed DOI

Qiu X. Nazin G. Ho W. Phys. Rev. Lett. 2004;93:196806. doi: 10.1103/PhysRevLett.93.196806. PubMed DOI

König E. Madeja K. Chem. Commun. 1966:61–62. doi: 10.1039/C19660000061. DOI

Schmaus S. Bagrets A. Nahas Y. Yamada T. K. Bork A. Bowen M. Beaurepaire E. Evers F. Wulfhekel W. Nat. Nanotechnol. 2011;6:185–189. doi: 10.1038/nnano.2011.11. PubMed DOI

Gutlich P. Gaspar A. B. Garcia Y. Beilstein J. Org. Chem. 2013;9:342–391. doi: 10.3762/bjoc.9.39. PubMed DOI PMC

de la Torre B. et al. . Nat. Commun. 2018;9:2831. doi: 10.1038/s41467-018-05163-y. PubMed DOI PMC

Reiher M. Inorg. Chem. 2002;41:6928–6935. doi: 10.1021/ic025891l. PubMed DOI

Gallois B. Real J. A. Hauw C. Zarembowitch J. Inorg. Chem. 1990;29:1152–1158. doi: 10.1021/ic00331a009. DOI

Crain J. N. Kirakosian A. Altmann K. N. Bromberger C. Erwin S. C. McChesney J. L. Lin J. L. Himpsel F. J. Phys. Rev. Lett. 2003;90:176805. doi: 10.1103/PhysRevLett.90.176805. PubMed DOI

Nilius N. Wallis T. M. Ho W. Science. 2002;297:1853–1856. doi: 10.1126/science.1075242. PubMed DOI

Nazin G. V. Qiu X. H. Ho W. Science. 2003;302:77–81. doi: 10.1126/science.1088971. PubMed DOI

Miyamachi T. et al. . Nat. Commun. 2012;938:1–6. PubMed

Riccardo F. Gero D. Harzmann J. A. Celis G. Joseph M. Thijssen M. Mayor M. van der Zant H. S. J. Nano Lett. 2016;16:4733–4737. doi: 10.1021/acs.nanolett.5b04899. PubMed DOI

Damo C. Barone V. J. Chem. Phys. 1999;110:6158–6170. doi: 10.1063/1.478522. DOI

Hamprecht F. A. Cohen A. J. Tozer D. J. Handy N. C. J. Chem. Phys. 1998;109:6264–6271. doi: 10.1063/1.477267. DOI

Perdew J. P. Phys. Rev. B: Condens. Matter Mater. Phys. 1986;33:8822. doi: 10.1103/PhysRevB.33.8822. PubMed DOI

Becke A. D. J. Chem. Phys. 1993;98:1372–1377. doi: 10.1063/1.464304. DOI

Zhao Y. Truhlar D. G. Theor. Chem. Acc. 2008;120:215–241.

Van Lenthe E. Baerends E. J. J. Comput. Chem. 2003;24:1142–1156. doi: 10.1002/jcc.10255. PubMed DOI

Fonseca Guerra C. Snijders J. G. te Velde G. Baerends E. J. Theor. Chem. Acc. 1998;99:391–403.

te Velde G. Bickelhaupt F. M. Baerends E. J. Fonseca Guerra C. van Gisbergen S. J. Snijders J. G. Ziegler T. J. Comput. Chem. 2001;22:931–967. doi: 10.1002/jcc.1056. DOI

Grimme S. Antony J. Ehrlich S. Krieg S. A. J. Chem. Phys. 2010;132:154104. doi: 10.1063/1.3382344. PubMed DOI

Perdew J. P. Burke K. Ernzerhof M. Phys. Rev. Lett. 1996;77:3865–3868. doi: 10.1103/PhysRevLett.77.3865. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...