The characterization of halophilic polyhydroxyalkanoate-producing bacteria from brine in Solivar near Prešov (Slovakia)

. 2025 Dec 13 ; 41 (12) : 505. [epub] 20251213

Jazyk angličtina Země Německo Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid41389182

Grantová podpora
VVGS-PF-2023-2545 Pavol Jozef Safarik University in Kosice, Slovakia
LM2023050 Ministry of Education, Youth and Sports of Czech Republic
Czech Academy of Sciences StrategyAV21/27
GA25-17459M Agency of Czech Republic
VEGA-1/0779/21 Ministry of Education, research, development and youth of the Slovak republic

Odkazy

PubMed 41389182
DOI 10.1007/s11274-025-04737-5
PII: 10.1007/s11274-025-04737-5
Knihovny.cz E-zdroje

The present study aims to isolate and investigate temporal variability of the halophilic and halotolerant microbiota present in brine from former salt mine Solivar, Prešov (Slovakia) especially with respect to with their ability to produce polyhydroxyalkanoates (PHA). Brine sampling was performed in the year 2020 and 2021 and samples were inoculated on the R2A medium with 5% NaCl for the bacterial isolation. We obtained a total of 53 halophilic isolates and one halotolerant isolate, all of which were tested for their ability to produce PHA via Nile Blue A staining, Raman spectroscopy and Gas chromatography. The low diverse halophilic microbiota was dominated by Proteobacteria members (mainly Halomonas, Halovibrio, and Chromohalobacter sp.) and some of these bacteria represent newly identified taxa. Around 80% of the isolates were able to produce PHA during growth on glucose-rich media, which highlights the importance of PHA for adaptation to high-salinity environments. Poly(3-hydroxybutyrate) (PHB) was the main type of PHA produced with the yield up to 2.76 g/L in Halovibrio sp. HP20-59. Overall, our investigation pointed out that brine from Solivar shows genetically variable community of halophilic bacteria most of which are capable of accumulation of PHA, hereby confirming the high biotechnological potential of halophilic bacteria.

Zobrazit více v PubMed

Aljohny BO (2015) Halophilic bacterium – a review of new studies. Biosci Biotechnol Res Asia 12:2061–2069. https://doi.org/10.13005/bbra/1874 DOI

Andrei AS, Banciu HL, Oren A (2012) Living with salt: metabolic and phylogenetic diversity of archaea inhabiting saline ecosystems. FEMS Microbiol Lett 330:1–9. https://doi.org/10.1111/j.1574-6968.2012.02526.x PubMed DOI

Bektas KI, Can K, Belduz AO (2023) Isolation and screening of polyhydroxybutyrate (PHB) producing bacteria from soils. Biol Bull 50:319–328. https://doi.org/10.1134/S106235902210065X DOI

Bernatová S, Samek O, Pilát Z, Šerý M, Ježek J, Jákl P, Šiler M, Krzyžánek V, Zemánek P, Holá V, Dvořáčková M (2013) Following the mechanisms of bacteriostatic versus bactericidal action using Raman spectroscopy. Molecule 18:13188–13199. https://doi.org/10.3390/molecules181113188 DOI

Brauchle E, Schenke-Layland K (2013) Raman spectroscopy in biomedicine - non‐invasive in vitro analysis of cells and extracellular matrix components in tissues. Biotechnol J 8:288–297. https://doi.org/10.1002/biot.201200163 PubMed DOI

Brestovičová S, Kisková J, Nosáľová L, Piknová M, Kolesárová M, Pristaš P (2024) Comparative genomic analysis of two putative novel Idiomarina species from hypersaline miocene deposits. BMC Genomics 25:1007. https://doi.org/10.1186/s12864-024-10900-3 PubMed DOI PMC

Carpa R, Keul A, Muntean V, Dobrotă C (2014) Characterization of halophilic bacterial communities in Turda salt mine (Romania). Orig Life Evol Biosph 44:223–230. https://doi.org/10.1007/s11084-014-9375-4 PubMed DOI PMC

Cervantes-Uc JM, Catzin J, Vargas I, Herrera-Kao W, Moguel F, Ramirez E, Rincón‐Arriaga S, Lizama‐Uc G (2014) Biosynthesis and characterization of polyhydroxyalkanoates produced by an extreme halophilic bacterium, Halomonas nitroreducens, isolated from hypersaline ponds. J Appl Microbiol 117:1056–1065. https://doi.org/10.1111/jam.12605 PubMed DOI

Chen GQ, Chen XY, Wu FQ, Chen JC (2020) Polyhydroxyalkanoates (PHA) toward cost competitiveness and functionality. Adv Ind Eng Polym Res 3:1–7. https://doi.org/10.1016/j.aiepr.2019.11.001 DOI

Choo-Smith LP, Maquelin K, Van Vreeswijk T, Bruining HA, Puppels GJ, Ngo Thi NA, Kirschner C, Naumann D, Ami D, Villa AM, Orsini F, Doglia SM, Lamfarraj H, Sockalingum GD, Manfait M, Allouch P, Endtz HP (2001) Investigating microbial (Micro)colony heterogeneity by vibrational spectroscopy. Appl Environ Microbiol 67:1461–1469. https://doi.org/10.1128/AEM.67.4.1461-1469.2001 PubMed DOI PMC

Ciobotă V, Burkhardt EM, Schumacher W, Rösch P, Küsel K, Popp J (2010) The influence of intracellular storage material on bacterial identification by means of Raman spectroscopy. Anal Bioanal Chem 397:2929–2937. https://doi.org/10.1007/s00216-010-3895-1 PubMed DOI

Cristea A, Baricz A, Leopold N, Floare CG, Borodi G, Kacso I, Tripon S, Bulzu PA, Andrei AȘ, Cadar O, Levei EA (2018) Polyhydroxybutyrate production by an extremely halotolerant Halomonas elongata strain isolated from the hypersaline meromictic Fără Fund Lake (Transylvanian Basin, Romania). J Appl Microbiol 125:1343–1357. https://doi.org/10.1111/jam.14029 PubMed DOI

de la Haba RR, Arahal DR, Sánchez-Porro C, Chuvochina M, Wittouck S, Hugenholtz P, Ventosa A (2023) A long-awaited taxogenomic investigation of the family Halomonadaceae. Front Microbiol 14:1293707. https://doi.org/10.3389/fmicb.2023.1293707 PubMed DOI PMC

Donkor ES, Dayie NT, Adiku TK (2014) Bioinformatics with basic local alignment search tool (BLAST) and fast alignment (FASTA). J Bioinform Seq Anal 6:1–6. https://doi.org/10.5897/IJBC2013.0086 DOI

Dubey S, Mishra S (2021) Efficient production of polyhydroxyalkanoate through halophilic bacteria utilizing algal biodiesel waste residue. Front Bioeng Biotechnol 9:624859. https://doi.org/10.3389/fbioe.2021.624859 PubMed DOI PMC

Dutta B, Bandopadhyay R (2022) Biotechnological potentials of halophilic microorganisms and their impact on mankind. Beni-Suef Univ J Basic Appl Sci 11:75. https://doi.org/10.1186/s43088-022-00252-w PubMed DOI PMC

Hammer Ø, Harper DA, Ryan PD (2001) Past: paleontological statistics software package for education and data analysis. Palaeontol Electron 4:1–9

Hua NP, Kanekiyo A, Fujikura K, Yasuda H, Naganuma T (2007) Halobacillus profundi sp. nov. and Halobacillus kuroshimensis sp. nov., moderately halophilic bacteria isolated from a deep-sea methane cold seep. Int J Syst Evol Microbiol 57:1243–1129. https://doi.org/10.1099/ijs.0.64817-0 PubMed DOI

Izumi CMS, Temperini MLA (2010) FT-Raman investigation of biodegradable polymers: poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate). Vib Spectrosc 54:127–132. https://doi.org/10.1016/j.vibspec.2010.07.011 DOI

Jehlička J, Edwards HG, Oren A (2014) Raman spectroscopy of microbial pigments. Appl Environ Microbiol 80:3286–3295. https://doi.org/10.1128/aem.00699-14 PubMed DOI PMC

Jiang XR, Chen GQ (2016) Morphology engineering of bacteria for bio-production. Biotechnol Adv 34:435–440. https://doi.org/10.1016/j.biotechadv.2015.12.007 PubMed DOI

Khalilova EA, Kotenko ST, Islammagomedova EA, Gasanov RZ, Abakarova AA, Aliverdiyeva DA (2020) Halophilic microbial communities and their biodiversity in the arid regions of the Caspian Lowland. Arid Ecosyst 10:79–85. https://doi.org/10.1134/S2079096120010084 DOI

Khomlaem C, Aloui H, Singhvi M, Kim BS (2023) Production of polyhydroxyalkanoates and Astaxanthin from lignocellulosic biomass in high cell density membrane bioreactor. Chem Eng J 451:138641. https://doi.org/10.1016/j.cej.2022.138641 DOI

Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120. https://doi.org/10.1007/bf01731581 PubMed DOI

Koller M, Obruca S, Pernicova I, Braunegg G (2018) Physiological, kinetic, and process engineering aspects of polyhydroxyalkanoate biosynthesis by extremophiles. Biosynth Chem Struct Appl 2013:1–70

Kováč M, Márton E, Oszczypko N, Vojtko R, Hók J, Králiková S, Plašienka D, Klučiar T, Hudáčková N, Oszczypko-Clowes M (2017) Neogene palaeogeography and basin evolution of the Western Carpathians, Northern Pannonian domain and adjoining areas. Glob Planet Change 155:133–154 DOI

Kucera D, Pernicová I, Kovalcik A, Koller M, Mullerova L, Sedlacek P, Mravec F, Nebesarova J, Kalina M, Marova I, Krzyzanek V (2018) Characterization of the promising poly(3-hydroxybutyrate) producing halophilic bacterium Halomonas halophila. Bioresour Technol 256:552–556. https://doi.org/10.1016/j.biortech.2018.02.062 PubMed DOI

Legat A, Gruber C, Zangger K, Wanner G, Stan-Lotter H (2010) Identification of polyhydroxyalkanoates in Halococcus and other haloarchaeal species. Appl Microbiol Biotechnol 87:1119–1127. https://doi.org/10.1007/s00253-010-2611-6 PubMed DOI PMC

Li T, Chen X, Chen J, Wu Q, Chen GQ (2014) Open and continuous fermentation: products, conditions and bioprocess economy. Biotechnol J 9:1503–1511. https://doi.org/10.1002/biot.201400084 PubMed DOI

Ma Y, Galinski EA, Grant WD, Oren A, Ventosa A (2010) Halophiles 2010: life in saline environments. Appl Environ Microbiol 76:6971–6981. https://doi.org/10.1128/AEM.01868-10 PubMed DOI PMC

Maquelin K, Choo-Smith LP, Van Vreeswijk T (2000) Raman spectroscopic method for identification of clinically relevant microorganisms growing on solid culture medium. Anal Chem 72:12–19. https://doi.org/10.1021/ac991011h PubMed DOI

Marsh WS, Heise BW, Krzmarzick MJ, Murdoch RW, Fathepure BZ (2021) Isolation and characterization of a halophilic Modicisalibacter sp. strain Wilcox from produced water. Sci Rep 11:6943. https://doi.org/10.1038/s41598-021-86196-0 PubMed DOI PMC

Martínez GM, Pire C, Martínez-Espinosa RM (2022) Hypersaline environments as natural sources of microbes with potential applications in biotechnology: the case of solar evaporation systems to produce salt in Alicante County (Spain). Curr Res Microb Sci 3:100136. https://doi.org/10.1016/j.crmicr.2022.100136 PubMed DOI PMC

Mascarenhas J, Aruna K (2017) Screening of polyhydroxyalkonates (PHA) accumulating bacteria from diverse habitats. J Glob Biosci 6:4838–4848. https://doi.org/10.13140/RG.2.2.29966.72005 DOI

Mitra R, Xu T, Xiang H, Murdoch RW, Fathepure BZ (2020) Current developments on polyhydroxyalkanoates synthesis by using halophiles as a promising cell factory. Microb Cell Fact 19:1–30. https://doi.org/10.1038/s41598-021-86196-0 DOI

Moorkoth D, Nampoothiri KM (2016) Production and characterization of poly(3-hydroxy butyrate-co-3 hydroxyvalerate) (PHBV) by a novel halotolerant mangrove isolate. Bioresour Technol 201:253–260. https://doi.org/10.1016/j.biortech.2015.11.046 PubMed DOI

Możejko-Ciesielska J, Moraczewski K, Czaplicki S (2024) Halomonas alkaliantarctica as a platform for Poly (3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) production from biodiesel‐derived glycerol. Environ Microbiol Rep 16:13225. https://doi.org/10.1111/1758-2229.13225 DOI

Muigano MN, Anami SE, Onguso JM, Omare GM (2023) The isolation, screening, and characterization of polyhydroxyalkanoate-producing bacteria from hypersaline lakes in Kenya. Bacteria 2:81–97. https://doi.org/10.3390/bacteria2020007 DOI

Nosalova L, Piknova M, Bonova K, Pristas P (2022) Deep subsurface hypersaline environment as a source of novel species of halophilic sulfur-oxidizing bacteria. Microorganisms 10:995. https://doi.org/10.3390/microorganisms10050995 PubMed DOI PMC

Obruca S, Petrik S, Benesova P, Svoboda Z, Eremka L, Marova I (2014) Utilization of oil extracted from spent coffee grounds for sustainable production of polyhydroxyalkanoates. Appl Microbiol Biotechnol 98:5883–5890. https://doi.org/10.1007/s00253-014-5653-3 PubMed DOI

Obruca S, Sedlacek P, Mravec F, Samek O, Marova I (2016) Evaluation of 3-hydroxybutyrate as an enzyme-protective agent against heating and oxidative damage and its potential role in stress response of Poly (3-hydroxybutyrate) accumulating cells. Appl Microbiol Biotechnol 100:1365–1376. https://doi.org/10.1007/s00253-015-7162-4 PubMed DOI

Obruca S, Sedlacek P, Mravec F, Krzyzanek V, Nebesarova J, Samek O, Kucera D, Benesova P, Hrubanova K, Milerova M, Marova I (2017) The presence of PHB granules in cytoplasm protects non-halophilic bacterial cells against the harmful impact of hypertonic environments. N Biotechnol 39:68–80. https://doi.org/10.1016/j.nbt.2017.07.008 PubMed DOI

Obruca S, Sedlacek P, Koller M, Kucera D, Pernicova I (2018) Involvement of polyhydroxyalkanoates in stress resistance of microbial cells: biotechnological consequences and applications. Biotechnol Adv 36:856–870. https://doi.org/10.1016/j.biotechadv.2017.12.006 PubMed DOI

Obruca S, Sedlacek P, Slaninova E, Daffert C, Meixner K, Sedrlova Z, Koller M (2020) Novel unexpected functions of PHA granules. Appl Microbiol Biotechnol 104:4795–4810. https://doi.org/10.1007/s00253-020-10568-1 PubMed DOI

Obruča S, Dvořák P, Sedláček P, Koller M, Sedlář K, Pernicová I, Šafránek D (2022) Polyhydroxyalkanoates synthesis by halophiles and thermophiles: towards sustainable production of microbial bioplastics. Biotechnol Adv 58:107906. https://doi.org/10.1016/j.biotechadv.2022.107906 PubMed DOI

Oren A (2002) Molecular ecology of extremely halophilic archaea and bacteria. FEMS Microbiol Ecol 39:1–7. https://doi.org/10.1111/j.1574-6941.2002.tb00900.x PubMed DOI

Ostle AG, Holt JG (1982) Nile blue A as a fluorescent stain for poly-beta-hydroxybutyrate. Appl Environ Microbiol 44:238–241. https://doi.org/10.1128/aem.44.1.238-241.1982 PubMed DOI PMC

Pernicova I, Kucera D, Nebesarova J, Kalina M, Novackova I, Koller M, Obruca S (2019) Production of polyhydroxyalkanoates on waste frying oil employing selected Halomonas strains. Bioresour Technol 292:122028. https://doi.org/10.1016/j.biortech.2019.122028 PubMed DOI

Quillaguamán J, Delgado O, Mattiasson B, Hatti-Kaul R (2006) Poly(β-hydroxybutyrate) production by a moderate halophile, <Emphasis Type="Italic">Halomonas boliviensis</Emphasis>LC1. Enzyme Microb Technol 38:148–154. https://doi.org/10.1016/j.enzmictec.2005.05.013 DOI

Quillaguamán J, Guzmán H, Van-Thuoc D, Hatti-Kaul R (2010) Synthesis and production of polyhydroxyalkanoates by halophiles: current potential and future prospects. Appl Microbiol Biotechnol 85:1687–1696. https://doi.org/10.1007/s00253-009-2397-6 PubMed DOI

Roohi A, Ahmed I, Iqbal M, Jamil M (2012) Preliminary isolation and characterization of halotolerant and halophilic bacteria from salt mines of Karak, Pakistan. Pak J Bot 44:365–370

Salgaonkar BB, Mani K, Bragança JM (2013) Accumulation of polyhydroxyalkanoates by halophilic archaea isolated from traditional solar salterns of India. Extremophiles 17:787–795. https://doi.org/10.1007/s00792-013-0561-5 PubMed DOI

Samek O, Obruča S, Šiler M, Sedláček P, Benešová P, Kučera D, Márova I, Ježek J, Bernatová S, Zemánek P (2016) Quantitative raman spectroscopy analysis of polyhydroxyalkanoates produced by Cupriavidus necator H16. Sensors 16:1808. https://doi.org/10.3390/s16111808 PubMed DOI PMC

Schie IW, Huser T (2013) Methods and applications of raman microspectroscopy to single-cell analysis. Appl Spectrosc 67:813–28. https://doi.org/10.1366/12-06971 PubMed DOI

Schwibbert K, Marin-Sanguino A, Bagyan I, Heidrich G, Lentzen G, Seitz H, Rampp M, Schuster SC, Klenk HP, Pfeiffer F, Oesterhelt D (2010) A blueprint of ectoine metabolism from the genome of the industrial producer Halomonas elongata DSM 2581T. Environ Microbiol 13:1973–1994. https://doi.org/10.1111/j.1462-2920.2010.02336.x PubMed DOI

Soto G, Setten L, Lisi C, Maurelis C, Mozzicafreddo M, Cuccioloni M, Angeletti M, Ayub ND (2012) Hydroxybutyrate prevents protein aggregation in the halotolerant bacterium Pseudomonas sp. CT13 under abiotic stress. Extremophiles 16:455–462. https://doi.org/10.1007/s00792-012-0445-0 PubMed DOI

Stanley A, Punil Kumar HN, Mutturi S, Vijayendra SV (2018) Fed-batch strategies for production of PHA using a native isolate of Halomonas venusta KT832796 strain. Appl Biochem Biotechnol 184:935–952. https://doi.org/10.1007/s12010-017-2601-6 PubMed DOI

Szacherska K, Oleskowicz-Popiel P, Ciesielski S, Mozejko-Ciesielska J (2021) Volatile fatty acids as carbon sources for polyhydroxyalkanoates production. Polymers 13:321. https://doi.org/10.3390/polym13030321 PubMed DOI PMC

Tamura K, Stecher G, Kumar S (2021) MEGA11: molecular evolutionary genetics analysis version 11. Mol Biol Evol 38:3022–3027. https://doi.org/10.1093/molbev/msab120 PubMed DOI PMC

Tan D, Xue YS, Aibaidula Get, Chen GuoQiang CG (2011) Unsterile and continuous production of polyhydroxybutyrate by Halomonas TD01. Bioresour Technol 102:8130–8136. https://doi.org/10.1016/j.biortech.2011.05.068 PubMed DOI

Thirumala M, Krishna ES, Priya PS, Reddy SV (2022) Isolation and characterization of two PHA producing strains isolated from soil sample of Nalgonda district. J Pure Appl Microbiol 16:2738–2746. https://doi.org/10.22207/JPAM.16.4.44 DOI

Thomas T, Sudesh K, Bazire A, Elain A, Tan HT, Lim H, Bruzaud S (2020) PHA production and PHA synthases of the halophilic bacterium Halomonas sp. SF2003. Bioengineering 7:29. https://doi.org/10.3390/bioengineering7010029 PubMed DOI PMC

Thompson TP, Gilmore BF (2024) Exploring halophilic environments as a source of new antibiotics. Crit Rev Microbiol 50:341–370. https://doi.org/10.1080/1040841X.2023.2197491 PubMed DOI

Ventosa A, Márquez MC, Sánchez-Porro C, de la Haba RR (2012) Taxonomy of halophilic archaea and bacteria. In: Vreeland RH (ed) Advances in Understanding the biology of halophilic microorganisms. Springer, Dordrecht, pp 59–80. https://doi.org/10.1007/978-94-007-5539-0_3 . DOI

Wang Y, Yin J, Chen GQ (2014) Polyhydroxyalkanoates, challenges and opportunities. Curr Opin Biotechnol 30:59–65. https://doi.org/10.1016/j.copbio.2014.06.001 PubMed DOI

Wang K, Chen C, Zhang R (2022) Process development of polyhydroxyalkanoates production by halophiles valorising food waste. Bioengineering 9:630. https://doi.org/10.3390/bioengineering9110630 PubMed DOI PMC

Wang J, Liu Y, Ma Y, Wang X, Zhang B, Zhang G, Bahadur A, Chen T, Liu G, Zhang W, Zhao Y (2023) Research progress regarding the role of halophilic and halotolerant microorganisms in the eco-environmental sustainability and conservation. J Clean Prod 418:138054. https://doi.org/10.1016/j.jclepro.2023.138054 DOI

Wei T, Fang Q (2022) Regulating the monomer of polyhydroxyalkanoate from mixed microbial culture: with particular emphasis on substrate composition: A review. Environ Eng Res 27:210333. https://doi.org/10.4491/eer.2021.333 DOI

Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703. https://doi.org/10.1128/jb.173.2.697-703.1991 PubMed DOI PMC

Xiang W, Guo J, Feng W, Huang M, Chen H, Zhao J, Zhang J, Yang Z, Sun Q (2008) Community of extremely halophilic bacteria in historic Dagong Brine well in Southwestern China. World J Microbiol Biotechnol 24:2297–2305 DOI

Yin J, Chen JC, Wu Q, Chen GQ (2015) Halophiles, coming stars for industrial biotechnology. Biotechnol Adv 33:1433–1442. https://doi.org/10.1016/j.biotechadv.2014.10.008 PubMed DOI

Yue H, Ling C, Yang T, Chen X, Chen Y, Deng H, Wu Q, Chen J, Chen GQ (2014) A seawater-based open and continuous process for polyhydroxyalkanoates production by recombinant Halomonas campaniensis LS21 grown in mixed substrates. Biotechnol Biofuels 7:1–12. https://doi.org/10.1186/1754-6834-7-108 DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...