elektronický časopis
- MeSH
- plicní hypertenze MeSH
- Konspekt
- Patologie. Klinická medicína
- NLK Obory
- pneumologie a ftizeologie
- NLK Publikační typ
- elektronické časopisy
Many bacteria are capable of accumulating intracellular granules of polyhydroxyalkanoates (PHA). In this work, we developed confocal microscopy analysis of bacterial cells to study changes in the diameters of cells as well as PHA granules during growth and PHA accumulation in the bacterium Cupriavidus necator H16 (formerly Ralstonia eutropha). The cell envelope was stained by DiD(®) fluorescent probe and PHA granules by Nile Red. Signals from both probes were separated based on their spectral and fluorescence life-time properties. During growth and PHA accumulation, bacterial cells increased their length but the width of the cells remained constant. The volume fraction of PHA granules in cells increased during PHA accumulation, nevertheless, its value did not exceed 40 vol. % regardless of the PHA weight content. It seems that bacterial cultures lengthen the cells in order to control the PHA volume portion. However, since similar changes in cell length were also observed in a PHA non-accumulating mutant, it seems that there is no direct control mechanism, which regulates the prolongation of the cells with respect to PHA granules volume. It is more likely that PHA biosynthesis and the length of cells are influenced by the same external stimuli such as nutrient limitation.
- MeSH
- Cupriavidus necator růst a vývoj metabolismus ultrastruktura MeSH
- cytoplazmatická granula metabolismus ultrastruktura MeSH
- fluorescenční mikroskopie MeSH
- konfokální mikroskopie MeSH
- polyhydroxyalkanoáty chemie metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The aim of this work was to investigate the thermophilic bacterium Schelegelella thermodepolymerans DSM 15344 in terms of its polyhydroxyalkanoates (PHA) biosynthesis capacity. The bacterium is capable of converting various sugars into PHA with the optimal growth temperature of 55 °C; therefore, the process of PHA biosynthesis could be robust against contamination. Surprisingly, the highest yield was gained on xylose. Results suggested that S. thermodepolymerans possess unique xylose metabolism since xylose is utilized preferentially with the highest consumption rate as compared to other sugars. In the genome of S. thermodepolymerans DSM 15344, a unique putative xyl operon consisting of genes responsible for xylose utilization and also for its transport was identified, which is a unique feature among PHA producers. The bacterium is capable of biosynthesis of copolymers containing 3-hydroxybutyrate and also 3-hydroxyvalerate subunits. Hence, S.thermodepolymerans seems to be promising candidate for PHA production from xylose rich substrates.
- MeSH
- Comamonadaceae * MeSH
- kyselina 3-hydroxymáselná MeSH
- polyhydroxyalkanoáty * MeSH
- xylosa MeSH
- Publikační typ
- časopisecké články MeSH
Polyhydroxyalkanoates (PHA) are microbial polyesters which accumulate as intracellular granules in numerous prokaryotes and mainly serve as storage materials; beyond this primary function, PHA also enhance the robustness of bacteria against various stress factors. We have observed that the presence of PHA in bacterial cells substantially enhances their ability to maintain cell integrity when suddenly exposed to osmotic imbalances. In the case of the non-halophilic bacterium Cupriavidus necator, the presence of PHA decreased plasmolysis-induced cytoplasmic membrane damage during osmotic up-shock, which subsequently enabled the cells to withstand subsequent osmotic downshock. In contrast, sudden induction of osmotic up- and subsequent down-shock resulted in massive hypotonic lysis of non-PHA containing cells as determined by Transmission Electron Microscopy and Thermogravimetrical Analysis. Furthermore, a protective effect of PHA against hypotonic lysis was also observed in the case of the halophilic bacterium Halomonas halophila; here, challenged PHA-rich cells were capable of retaining cell integrity more effectively than their PHA-poor counterparts. Hence, it appears that the fact that PHA granules, as an added value to their primary storage function, protect halophiles from the harmful effect of osmotic down-shock might explain why PHA accumulation is such a common feature among halophilic prokaryotes. The results of this study, apart from their fundamental importance, are also of practical biotechnological significance: because PHA-rich bacterial cells are resistant to osmotic imbalances, they could be utilized in in-situ bioremediation technologies or during enrichment of mixed microbial consortia in PHA producers under conditions of fluctuating salinity.
- MeSH
- Bacteria cytologie účinky léků metabolismus MeSH
- Cupriavidus necator cytologie účinky léků metabolismus ultrastruktura MeSH
- Halomonas cytologie účinky léků metabolismus ultrastruktura MeSH
- mikrobiální viabilita účinky léků MeSH
- osmóza * MeSH
- polyhydroxyalkanoáty farmakologie MeSH
- teplota MeSH
- termogravimetrie MeSH
- Publikační typ
- časopisecké články MeSH
Numerous prokaryotes accumulate polyhydroxyalkanoates (PHA) in the form of intracellular granules. The primary function of PHA is the storage of carbon and energy. Nevertheless, there are numerous reports that the presence of PHA granules in microbial cells enhances their stress resistance and fitness when exposed to various stress factors. In this work, we studied the protective mechanism of PHA granules against UV irradiation employing Cupriavidus necator as a model bacterial strain. The PHA-accumulating wild type strain showed substantially higher UV radiation resistance than the PHA non-accumulating mutant. Furthermore, the differences in UV-Vis radiation interactions with both cell types were studied using various spectroscopic approaches (turbidimetry, absorption spectroscopy, and nephelometry). Our results clearly demonstrate that intracellular PHA granules efficiently scatter UV radiation, which provides a substantial UV-protective effect for bacterial cells and, moreover, decreases the intracellular level of reactive oxygen species in UV-challenged cells. The protective properties of the PHA granules are enhanced by the fact that granules specifically bind to DNA, which in turn provides shield-like protection of DNA as the most UV-sensitive molecule. To conclude, the UV-protective action of PHA granules adds considerable value to their primary storage function, which can be beneficial in numerous environments.