Effects of plant diversity on productivity strengthen over time due to trait-dependent shifts in species overyielding
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
32030068
National Natural Science Foundation of China (National Science Foundation of China)
PubMed
38453933
PubMed Central
PMC10920907
DOI
10.1038/s41467-024-46355-z
PII: 10.1038/s41467-024-46355-z
Knihovny.cz E-zdroje
- MeSH
- biodiverzita * MeSH
- biomasa MeSH
- ekosystém * MeSH
- lesy MeSH
- pastviny MeSH
- rostliny MeSH
- Publikační typ
- časopisecké články MeSH
Plant diversity effects on community productivity often increase over time. Whether the strengthening of diversity effects is caused by temporal shifts in species-level overyielding (i.e., higher species-level productivity in diverse communities compared with monocultures) remains unclear. Here, using data from 65 grassland and forest biodiversity experiments, we show that the temporal strength of diversity effects at the community scale is underpinned by temporal changes in the species that yield. These temporal trends of species-level overyielding are shaped by plant ecological strategies, which can be quantitatively delimited by functional traits. In grasslands, the temporal strengthening of biodiversity effects on community productivity was associated with increasing biomass overyielding of resource-conservative species increasing over time, and with overyielding of species characterized by fast resource acquisition either decreasing or increasing. In forests, temporal trends in species overyielding differ when considering above- versus belowground resource acquisition strategies. Overyielding in stem growth decreased for species with high light capture capacity but increased for those with high soil resource acquisition capacity. Our results imply that a diversity of species with different, and potentially complementary, ecological strategies is beneficial for maintaining community productivity over time in both grassland and forest ecosystems.
Biological Research Centre Czech Academy of Sciences České Budějovice Czech Republic
Bren School of Environmental Science and Management University of California Santa Barbara CA USA
Centre for Ecosystems Society and Biosecurity Forest Research Alice Holt Lodge Farnham UK
Centre of Biodiversity and Sustainable Land Use University of Göttingen Göttingen Germany
Centro de Formação em Ciências Agroflorestais Universidade Federal do Sul da Bahia Itabuna Brazil
CIRAD Forêts et Sociétés Montpellier France
CMCC Centro Euro Mediterraneo sui Cambiamenti Climatici IAFES Division Sassari Italy
Consiglio Nazionale delle Ricerche Istituto per la Bioeconomia CNR IBE Sassari Italy
CSIRO Environment GPO Box 1700 Canberra ACT Australia
Data Observatory Foundation ANID Technology Center No DO210001 Providencia Santiago Chile
Departamento de Ecología Universidade Federal do Rio Grande do Norte Natal Brazil
Département des sciences naturelles ISFORT Université du Québec en Outaouais Ripon QC Canada
Department of Biological Sciences Royal Holloway University of London Egham UK
Department of Biology McGill University Montréal QC Canada
Department of Biology University of Oxford Oxford UK
Department of Botany Faculty of Science University of South Bohemia České Budějovice Czech Republic
Department of Community Ecology Helmholtz Centre for Environmental Research UFZ Halle Germany
Department of Crop Production Ecology Swedish University of Agricultural Sciences Umeå Sweden
Department of Earth and Environmental Sciences KU Leuven Leuven Belgium
Department of Ecology Evolution and Behavior University of Minnesota Saint Paul MN USA
Department of Ecology Evolution and Organismal Biology Iowa State University Ames IA USA
Department of Ecosystem Modelling Büsgen Institute University of Göttingen Göttingen Germany
Department of Forest Resources University of Minnesota Saint Paul MN USA
Department of Functional Ecology Institute of Botany CAS Třeboň Czech Republic
Department of Geography University of Zurich Zurich Switzerland
Department of Plant Ecology and Ecosystems Research University of Göttingen Göttingen Germany
Earth and Life Institute Université Catholique de Louvain Louvain la Neuve Belgium
Ecology and Biodiversity Group Department of Biology Utrecht University Utrecht The Netherlands
Forest Ecology and Management group Wageningen University Wageningen The Netherlands
Forestry Department Faculty of Agriculture University of Jambi Jambi Indonesia
Forêts et Sociétés Univ Montpellier CIRAD Montpellier France
GEMA Center for Genomics Ecology and Environment Universidad Mayor Huechuraba Santiago Chile
Geobotany Faculty of Biology University of Freiburg Freiburg Germany
German Centre for Integrative Biodiversity Research Halle Jena Leipzig Leipzig Germany
Hawkesbury Institute for the Environment Western Sydney University Penrith NSW Australia
INRAE University of Bordeaux BIOGECO Cestas France
Institute of Biology Leipzig University Leipzig Germany
Institute of Eco Chongming Shanghai China
Institute of Ecology and Evolution University Jena Jena Germany
Institute of Plant Sciences University of Bern Bern Switzerland
Land Use Transformation Systems Center of Excellence University of Jambi Jambi Indonesia
National Biodiversity Future Center Palermo Italy
Ontario Ministry of Natural Resources and Forestry Sault Ste Marie ON Canada
Plant Ecology and Nature Conservation Group Wageningen University Wageningen The Netherlands
School of Environmental and Conservation Sciences Murdoch University Murdoch WA Australia
School of Forestry and Environmental Studies Yale University New Haven CT USA
Smithsonian Environmental Research Center Edgewater MD USA
The UWA Institute of Agriculture The University of Western Australia Perth WA Australia
UKCEH Environment Centre Wales Bangor UK
USDA Agricultural Research Service Temple TX USA
USDA Forest Service Research and Development Washington DC USA
Zobrazit více v PubMed
Tilman D, et al. Diversity and productivity in a long-term grassland experiment. Science. 2001;294:843–845. doi: 10.1126/science.1060391. PubMed DOI
Grace JB, et al. Integrative modelling reveals mechanisms linking productivity and plant species richness. Nature. 2016;529:390–393. doi: 10.1038/nature16524. PubMed DOI
Liang J, et al. Positive biodiversity-productivity relationship predominant in global forests. Science. 2016;354:aaf8957. doi: 10.1126/science.aaf8957. PubMed DOI
Huang Y, et al. Impacts of species richness on productivity in a large-scale subtropical forest experiment. Science. 2018;362:80–83. doi: 10.1126/science.aat6405. PubMed DOI
Loreau M, Hector A. Partitioning selection and complementarity in biodiversity experiments. Nature. 2001;412:72–76. doi: 10.1038/35083573. PubMed DOI
Lambers JHR, Harpole WS, Tilman D, Knops J, Reich PB. Mechanisms responsible for the positive diversity-productivity relationship in Minnesota grasslands. Ecol. Lett. 2004;7:661–668. doi: 10.1111/j.1461-0248.2004.00623.x. DOI
Hector A, et al. Plant diversity and productivity experiments in European grasslands. Science. 1999;286:1123–1127. doi: 10.1126/science.286.5442.1123. PubMed DOI
Isbell F, et al. High plant diversity is needed to maintain ecosystem services. Nature. 2011;477:199–202. doi: 10.1038/nature10282. PubMed DOI
Fox JW. Interpreting the ‘selection effect’ of biodiversity on ecosystem function. Ecol. Lett. 2005;8:846–856. doi: 10.1111/j.1461-0248.2005.00795.x. DOI
Urgoiti J, Messier C, Keeton WS, Paquette A. Tree community overyielding during early stand development is explained by asymmetric species-specific responses to diversity. Funct. Ecol. 2023;37:2621–2633. doi: 10.1111/1365-2435.14414. DOI
Reich P, et al. Impacts of biodiversity loss escalate through time as redundancy fades. Science. 2012;336:589–592. doi: 10.1126/science.1217909. PubMed DOI
Eisenhauer N, et al. Biodiversity–ecosystem function experiments reveal the mechanisms underlying the consequences of biodiversity change in real world ecosystems. J. Veg. Sci. 2016;27:1061–1070. doi: 10.1111/jvs.12435. DOI
Guerrero-Ramirez NR, et al. Diversity-dependent temporal divergence of ecosystem functioning in experimental ecosystems. Nat. Ecol. Evol. 2017;1:1639–1642. doi: 10.1038/s41559-017-0325-1. PubMed DOI PMC
Kardol P, Fanin N, Wardle DA. Long-term effects of species loss on community properties across contrasting ecosystems. Nature. 2018;557:710–713. doi: 10.1038/s41586-018-0138-7. PubMed DOI
Hooper DU, et al. A global synthesis reveals biodiversity loss as a major driver of ecosystem change. Nature. 2012;486:105–129. doi: 10.1038/nature11118. PubMed DOI
Cardinale BJ, et al. Impacts of plant diversity on biomass production increase through time because of species complementarity. Proc. Natl Acad. Sci. USA. 2007;104:18123–18128. doi: 10.1073/pnas.0709069104. PubMed DOI PMC
Zuppinger-Dingley D, et al. Selection for niche differentiation in plant communities increases biodiversity effects. Nature. 2014;515:108–111. doi: 10.1038/nature13869. PubMed DOI
Urgoiti J, et al. No complementarity no gain-Net diversity effects on tree productivity occur once complementarity emerges during early stand development. Ecol. Lett. 2022;25:851–862. doi: 10.1111/ele.13959. PubMed DOI
Tilman D, Hill J, Lehman C. Carbon-negative biofuels from low-Input high-diversity grassland biomass. Science. 2006;314:1598–1600. doi: 10.1126/science.1133306. PubMed DOI
Meyer ST, et al. Effects of biodiversity strengthen over time as ecosystem functioning declines at low and increases at high biodiversity. Ecosphere. 2016;7:e01619. doi: 10.1002/ecs2.1619. DOI
Thakur MP, et al. Plant-soil feedbacks and temporal dynamics of plant diversity-productivity relationships. Trends Ecol. Evol. 2021;36:651–661. doi: 10.1016/j.tree.2021.03.011. PubMed DOI
Bongers FJ, et al. Functional diversity effects on productivity increase with age in a forest biodiversity experiment. Nat. Ecol. Evol. 2021;5:1594–1603. doi: 10.1038/s41559-021-01564-3. PubMed DOI
Furey GN, Tilman D. Plant biodiversity and the regeneration of soil fertility. Proc. Natl Acad. Sci. USA. 2021;118:e2111321118. doi: 10.1073/pnas.2111321118. PubMed DOI PMC
Furey GN, Tilman D. Plant chemical traits define functional and phylogenetic axes of plant biodiversity. Ecol. Lett. 2023;26:1394–1406. doi: 10.1111/ele.14262. PubMed DOI
Guerrero-Ramírez, N. R., Reich, P. B., Wagg, C., Ciobanu, M. & Eisenhauer, N. Diversity-dependent plant-soil feedbacks underlie long-term plant diversity effects on primary productivity. Ecosphere10, e02704 (2019).
Bardgett, R. D. & Wardle, D. A. Aboveground-Belowground Linkages: Biotic Interactions, Ecosystem Processes, and Global Change (Oxford University Press, 2010).
Garnier, E., Navas, M.-L. & Grigulis, K. Plant Functional Diversity: Organism Traits, Community Structure, and Ecosystem Properties (Oxford University Press, 2016).
Fichtner A, et al. From competition to facilitation: how tree species respond to neighbourhood diversity. Ecol. Lett. 2017;20:892–900. doi: 10.1111/ele.12786. PubMed DOI
van Ruijven J, Berendse F. Diversity-productivity relationships: Initial effects, long-term patterns, and underlying mechanisms. Proc. Natl Acad. Sci. USA. 2005;102:695–700. doi: 10.1073/pnas.0407524102. PubMed DOI PMC
Weigelt A, et al. An integrated framework of plant form and function: the belowground perspective. N. Phytol. 2021;232:42–59. doi: 10.1111/nph.17590. PubMed DOI
Reich PB. The world-wide ‘fast-slow’ plant economics spectrum: a traits manifesto. J. Ecol. 2014;102:275–301. doi: 10.1111/1365-2745.12211. DOI
Wright IJ, et al. The worldwide leaf economics spectrum. Nature. 2004;428:821–827. doi: 10.1038/nature02403. PubMed DOI
Kunstler G, et al. Plant functional traits have globally consistent effects on competition. Nature. 2016;529:204–207. doi: 10.1038/nature16476. PubMed DOI
Williams LJ, et al. Enhanced light interception and light use efficiency explain overyielding in young tree communities. Ecol. Lett. 2021;24:996–1006. doi: 10.1111/ele.13717. PubMed DOI
Grossman JJ, Cavender-Bares J, Hobbie SE, Reich PB, Montgomery RA. Species richness and traits predict overyielding in stem growth in an early-successional tree diversity experiment. Ecology. 2017;98:2601–2614. doi: 10.1002/ecy.1958. PubMed DOI
Lange, M. et al. How plant diversity impacts the coupled water, nutrient and carbon cycles. in Advances in Ecological Research, Vol. 61 (eds. Eisenhauer, N., Bohan, D. A. & Dumbrell, A. J.) 185–219 (Academic Press, 2019).
Chen X, Chen HYH, Searle EB, Chen C, Reich PB. Negative to positive shifts in diversity effects on soil nitrogen over time. Nat. Sustain. 2020;4:225–232. doi: 10.1038/s41893-020-00641-y. DOI
Urgoiti J, Messier C, Keeton WS, Belluau M, Paquette A. Functional diversity and identity influence the self-thinning process in young forest communities. J. Ecol. 2023;111:2010–2022. doi: 10.1111/1365-2745.14158. DOI
Roscher C, Schumacher J, Weisser WW, Schmid B, Schulze ED. Detecting the role of individual species for overyielding in experimental grassland communities composed of potentially dominant species. Oecologia. 2007;154:535–549. doi: 10.1007/s00442-007-0846-4. PubMed DOI
Weidlich EWA, et al. The importance of being first: exploring priority and diversity effects in a grassland field experiment. Front. Plant Sci. 2017;7:2008. doi: 10.3389/fpls.2016.02008. PubMed DOI PMC
Tobner CM, et al. Functional identity is the main driver of diversity effects in young tree communities. Ecol. Lett. 2016;19:638–647. doi: 10.1111/ele.12600. PubMed DOI
Williams LJ, Paquette A, Cavender-Bares J, Messier C, Reich PB. Spatial complementarity in tree crowns explains overyielding in species mixtures. Nat. Ecol. Evol. 2017;1:63. doi: 10.1038/s41559-016-0063. PubMed DOI
Matsuo T, Martínez-Ramos M, Bongers F, van der Sande MT, Poorter L. Forest structure drives changes in light heterogeneity during tropical secondary forest succession. J. Ecol. 2021;109:2871–2884. doi: 10.1111/1365-2745.13680. PubMed DOI PMC
Mueller KE, Tilman D, Fornara DA, Hobbie SE. Root depth distribution and the diversity–productivity relationship in a long-term grassland experiment. Ecology. 2013;94:787–793. doi: 10.1890/12-1399.1. DOI
Forrester DI, Bauhus J. A review of processes behind diversity-productivity relationships in forests. Curr. Rep. 2016;2:45–61. doi: 10.1007/s40725-016-0031-2. DOI
Rees M, Condit R, Crawley M, Pacala S, Tilman D. Long-term studies of vegetation dynamics. Science. 2001;293:650–655. doi: 10.1126/science.1062586. PubMed DOI
Marquard E, et al. Plant species richness and functional composition drive overyielding in a six-year grassland experiment. Ecology. 2009;90:3290–3302. doi: 10.1890/09-0069.1. PubMed DOI
Kattge J, et al. TRY plant trait database—enhanced coverage and open access. Glob. Change Biol. 2020;26:119–188. doi: 10.1111/gcb.14904. PubMed DOI
Guerrero-Ramírez NR, et al. Global root traits (GRooT) database. Glob. Ecol. Biogeogr. 2021;30:25–37. doi: 10.1111/geb.13179. DOI
Bauhus J, van Winden AP, Nicotra AB. Aboveground interactions and productivity in mixed-species plantations of Acacia mearnsii and Eucalyptus globulus. Can. J. Res. 2004;34:686–694. doi: 10.1139/x03-243. DOI
Jumpponen A, Mulder CPH, Huss-Danell K, HÖGberg P. Winners and losers in herbaceous plant communities: insights from foliar carbon isotope composition in monocultures and mixtures. J. Ecol. 2005;93:1136–1147. doi: 10.1111/j.1365-2745.2005.01045.x. DOI
Werger MJA, et al. Light partitioning among species and species replacement in early successional grasslands. J. Veg. Sci. 2002;13:615–626. doi: 10.1111/j.1654-1103.2002.tb02089.x. DOI
Eisenhauer, N. et al. Biotic interactions, community assembly, and ecoevolutionary dynamics as drivers of long-term biodiversity–ecosystem functioning relationships. Res. Ideas Outcomes5, e47042 (2019).
Yachi S, Loreau M. Biodiversity and ecosystem productivity in a fluctuating environment: The insurance hypothesis. Proc. Natl Acad. Sci. USA. 1999;96:1463–1468. doi: 10.1073/pnas.96.4.1463. PubMed DOI PMC
Wagg C, et al. Biodiversity–stability relationships strengthen over time in a long-term grassland experiment. Nat. Commun. 2022;13:7752. doi: 10.1038/s41467-022-35189-2. PubMed DOI PMC
Scherer-Lorenzen M, Palmborg C, Prinz A, Schulze E. The role of plant diversity and composition for nitrate leaching in grasslands. Ecology. 2003;84:1539–1552. doi: 10.1890/0012-9658(2003)084[1539:TROPDA]2.0.CO;2. DOI
Dietrich P, et al. Tree diversity effects on productivity depend on mycorrhizae and life strategies in a temperate forest experiment. Ecology. 2023;104:e3896. doi: 10.1002/ecy.3896. PubMed DOI
Ledo A, et al. Species coexistence in a mixed Mediterranean pine forest: Spatio-temporal variability in trade-offs between facilitation and competition. Ecol. Manag. 2014;322:89–97. doi: 10.1016/j.foreco.2014.02.038. DOI
Wambsganss J, et al. Tree species mixing causes a shift in fine-root soil exploitation strategies across European forests. Funct. Ecol. 2021;35:1886–1902. doi: 10.1111/1365-2435.13856. DOI
Jucker T, et al. Good things take time-Diversity effects on tree growth shift from negative to positive during stand development in boreal forests. J. Ecol. 2020;108:2198–2211. doi: 10.1111/1365-2745.13464. DOI
Lipowsky A, et al. Plasticity of functional traits of forb species in response to biodiversity. Perspect. Plant Ecol. Evol. Syst. 2015;17:66–77. doi: 10.1016/j.ppees.2014.11.003. DOI
Healy C, Gotelli NJ, Potvin C. Partitioning the effects of biodiversity and environmental heterogeneity for productivity and mortality in a tropical tree plantation. J. Ecol. 2008;96:903–913. doi: 10.1111/j.1365-2745.2008.01419.x. DOI
Searle EB, Chen HYH, Paquette A. Higher tree diversity is linked to higher tree mortality. Proc. Natl Acad. Sci. USA. 2022;119:e2013171119. doi: 10.1073/pnas.2013171119. PubMed DOI PMC
Roscher C, Schmid B, Buchmann N, Weigelt A, Schulze ED. Legume species differ in the responses of their functional traits to plant diversity. Oecologia. 2011;165:437–452. doi: 10.1007/s00442-010-1735-9. PubMed DOI
Sapijanskas J, Paquette A, Potvin C, Kunert N, Loreau M. Tropical tree diversity enhances light capture through crown plasticity and spatial and temporal niche differences. Ecology. 2014;95:2479–2492. doi: 10.1890/13-1366.1. DOI
Guerrero-Ramírez NR. Functional forest restoration. Nat. Ecol. Evol. 2021;5:1572–1573. doi: 10.1038/s41559-021-01575-0. PubMed DOI
Maitner BS, et al. The bien r package: A tool to access the Botanical Information and Ecology Network (BIEN) database. Methods Ecol. Evol. 2018;9:373–379. doi: 10.1111/2041-210X.12861. DOI
Falster D, et al. AusTraits, a curated plant trait database for the Australian flora. Sci. Data. 2021;8:254. doi: 10.1038/s41597-021-01006-6. PubMed DOI PMC
Roscher C, et al. Functional groups differ in trait means, but not in trait plasticity to species richness in local grassland communities. Ecology. 2018;99:2295–2307. doi: 10.1002/ecy.2447. PubMed DOI
Carmona CP, et al. Fine-root traits in the global spectrum of plant form and function. Nature. 2021;597:683–687. doi: 10.1038/s41586-021-03871-y. PubMed DOI
Stekhoven DJ, Bühlmann P. MissForest—non-parametric missing value imputation for mixed-type data. Bioinformatics. 2012;28:112–118. doi: 10.1093/bioinformatics/btr597. PubMed DOI
Jin Y, Qian HV. PhyloMaker: an R package that can generate very large phylogenies for vascular plants. Ecography. 2019;42:1353–1359. doi: 10.1111/ecog.04434. DOI
Smith SA, Brown JW. Constructing a broadly inclusive seed plant phylogeny. Am. J. Bot. 2018;105:302–314. doi: 10.1002/ajb2.1019. PubMed DOI
Penone C, et al. Imputation of missing data in life-history trait datasets: which approach performs the best? Methods Ecol. Evol. 2014;5:961–970. doi: 10.1111/2041-210X.12232. DOI
Barry, K. E. et al. Above- and belowground overyielding are related at the community and species level in a grassland biodiversity experiment. in Advances in Ecological Research, 61 (eds. Eisenhauer, N., Bohan, D. A. & Dumbrell, A. J.) 55–89 (Academic Press, 2019).
Loreau M. Separating sampling and other effects in biodiversity experiments. Oikos. 1998;82:600–602. doi: 10.2307/3546381. DOI
De Wit, C. T. On competition. Versl. Landbouwkd. Onderz.66, 1–82 (1960).
Harper, J. L. Population biology of plants. (Academic Press, 1977).
Muñoz-Sabater J, et al. ERA5-Land: a state-of-the-art global reanalysis dataset for land applications. Earth Syst. Sci. Data. 2021;13:4349–4383. doi: 10.5194/essd-13-4349-2021. DOI
Beguería S, Vicente-Serrano SM, Angulo-Martinez M. A multiscalar global drought dataset: the SPEIbase: a new gridded product for the analysis of drought variability and impacts. Bull. Am. Meteorol. Soc. 2010;91:1351–1356. doi: 10.1175/2010BAMS2988.1. DOI
Pinheiro J, Bates D, DebRoy S, Sarkar D, R Core Team. nlme: linear and nonlinear mixed effects models. R. package version. 2012;3:1–151.
R Core Team. R: A Language and Environment for Statistical Computing R (R Foundation for Statistical Computing, 2022).