Effects of plant diversity on productivity strengthen over time due to trait-dependent shifts in species overyielding

. 2024 Mar 07 ; 15 (1) : 2078. [epub] 20240307

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38453933

Grantová podpora
32030068 National Natural Science Foundation of China (National Science Foundation of China)

Odkazy

PubMed 38453933
PubMed Central PMC10920907
DOI 10.1038/s41467-024-46355-z
PII: 10.1038/s41467-024-46355-z
Knihovny.cz E-zdroje

Plant diversity effects on community productivity often increase over time. Whether the strengthening of diversity effects is caused by temporal shifts in species-level overyielding (i.e., higher species-level productivity in diverse communities compared with monocultures) remains unclear. Here, using data from 65 grassland and forest biodiversity experiments, we show that the temporal strength of diversity effects at the community scale is underpinned by temporal changes in the species that yield. These temporal trends of species-level overyielding are shaped by plant ecological strategies, which can be quantitatively delimited by functional traits. In grasslands, the temporal strengthening of biodiversity effects on community productivity was associated with increasing biomass overyielding of resource-conservative species increasing over time, and with overyielding of species characterized by fast resource acquisition either decreasing or increasing. In forests, temporal trends in species overyielding differ when considering above- versus belowground resource acquisition strategies. Overyielding in stem growth decreased for species with high light capture capacity but increased for those with high soil resource acquisition capacity. Our results imply that a diversity of species with different, and potentially complementary, ecological strategies is beneficial for maintaining community productivity over time in both grassland and forest ecosystems.

Biodiversity Macroecology and Biogeography Faculty of Forest Sciences and Forest Ecology University of Göttingen Göttingen Germany

Bioenergy Systems Department Resource Mobilisation German Biomass Research Center DBFZ gGmbH Leipzig Germany

Biological Research Centre Czech Academy of Sciences České Budějovice Czech Republic

Bren School of Environmental Science and Management University of California Santa Barbara CA USA

Centre for Ecosystems Society and Biosecurity Forest Research Alice Holt Lodge Farnham UK

Centre of Biodiversity and Sustainable Land Use University of Göttingen Göttingen Germany

Centro de Formação em Ciências Agroflorestais Universidade Federal do Sul da Bahia Itabuna Brazil

Chair of Silviculture Faculty of Environment and Natural Resources University of Freiburg Freiburg Germany

CIRAD Forêts et Sociétés Montpellier France

CMCC Centro Euro Mediterraneo sui Cambiamenti Climatici IAFES Division Sassari Italy

Consiglio Nazionale delle Ricerche Istituto per la Bioeconomia CNR IBE Sassari Italy

CSIRO Environment GPO Box 1700 Canberra ACT Australia

Data Observatory Foundation ANID Technology Center No DO210001 Providencia Santiago Chile

Departamento de Ecología Universidade Federal do Rio Grande do Norte Natal Brazil

Département des sciences biologiques Centre for Forest Research Université du Québec à Montréal Montreal QC Canada

Département des sciences naturelles ISFORT Université du Québec en Outaouais Ripon QC Canada

Department for Research Biotope and Wildlife Management; National Park Administration Hunsrück Hochwald Birkenfeld Germany

Department of Aquatic Ecology Eawag Swiss Federal Institute of Aquatic Science and Technology Dübendorf Switzerland

Department of Biological Sciences Royal Holloway University of London Egham UK

Department of Biology McGill University Montréal QC Canada

Department of Biology University of Oxford Oxford UK

Department of Botany Faculty of Science University of South Bohemia České Budějovice Czech Republic

Department of Community Ecology Helmholtz Centre for Environmental Research UFZ Halle Germany

Department of Crop Production Ecology Swedish University of Agricultural Sciences Umeå Sweden

Department of Earth and Environmental Sciences KU Leuven Leuven Belgium

Department of Ecology Evolution and Behavior University of Minnesota Saint Paul MN USA

Department of Ecology Evolution and Organismal Biology Iowa State University Ames IA USA

Department of Ecosystem Modelling Büsgen Institute University of Göttingen Göttingen Germany

Department of Forest Management Faculty of Forestry and Environment Institut Pertanian Bogor University Bogor Indonesia

Department of Forest Resources University of Minnesota Saint Paul MN USA

Department of Functional Ecology Institute of Botany CAS Třeboň Czech Republic

Department of Geography University of Zurich Zurich Switzerland

Department of Plant Ecology and Ecosystems Research University of Göttingen Göttingen Germany

Department of Renewable Resources Faculty of Agriculture Life and Environmental Sciences University of Alberta Edmonton AB Canada

Earth and Life Institute Université Catholique de Louvain Louvain la Neuve Belgium

Ecology and Biodiversity Group Department of Biology Utrecht University Utrecht The Netherlands

Forest and Nature Lab Department of Environment Faculty of Bioscience Engineering Ghent University Melle Gontrode Belgium

Forest Ecology and Management group Wageningen University Wageningen The Netherlands

Forest Ecology Department of Forest and Soil Sciences University of Natural Resources and Life Sciences Vienna Austria

Forest Ecosystem Research Department of Forest Protection and Wildlife Management Faculty of Forestry and Wood Technology Mendel University in Brno Brno Czech Republic

Forestry Department Faculty of Agriculture University of Jambi Jambi Indonesia

Forêts et Sociétés Univ Montpellier CIRAD Montpellier France

GEMA Center for Genomics Ecology and Environment Universidad Mayor Huechuraba Santiago Chile

Geobotany Faculty of Biology University of Freiburg Freiburg Germany

German Centre for Integrative Biodiversity Research Halle Jena Leipzig Leipzig Germany

Hawkesbury Institute for the Environment Western Sydney University Penrith NSW Australia

INRAE University of Bordeaux BIOGECO Cestas France

Institute for Global Change Biology and School for Environment and Sustainability University of Michigan Ann Arbor MI USA

Institute of Biology Geobotany and Botanical Garden Martin Luther University Halle Wittenberg Halle Germany

Institute of Biology Leipzig University Leipzig Germany

Institute of Eco Chongming Shanghai China

Institute of Ecology and Evolution University Jena Jena Germany

Institute of Plant Sciences University of Bern Bern Switzerland

Key Laboratory of the Three Gorges Reservoir Region's Eco Environment Ministry of Education Chongqing University Chongqing China

Land Use Transformation Systems Center of Excellence University of Jambi Jambi Indonesia

National Biodiversity Future Center Palermo Italy

Ontario Ministry of Natural Resources and Forestry Sault Ste Marie ON Canada

Plant Ecology and Nature Conservation Group Wageningen University Wageningen The Netherlands

School of Environmental and Conservation Sciences Murdoch University Murdoch WA Australia

School of Forestry and Environmental Studies Yale University New Haven CT USA

Silviculture and Forest Ecology of Temperate Zones Faculty of Forest Sciences and Forest Ecology University of Goettingen Göttingen Germany

Smithsonian Environmental Research Center Edgewater MD USA

The UWA Institute of Agriculture The University of Western Australia Perth WA Australia

Tropical Silviculture and Forest Ecology Faculty of Forest Sciences and Forest Ecology University of Göttingen Göttingen Germany

UKCEH Environment Centre Wales Bangor UK

USDA Agricultural Research Service Temple TX USA

USDA Forest Service Research and Development Washington DC USA

Working Lands Conservation Multiplier Logan UT USA

Zhejiang Zhoushan Island Observation and Research Station Zhejiang Tiantong National Forest Ecosystem Observation and Research Station Shanghai Key Lab for Urban and Ecological Processes and Eco Restoration School of Ecological and Environmental Sciences East China Normal University Shanghai China

Zobrazit více v PubMed

Tilman D, et al. Diversity and productivity in a long-term grassland experiment. Science. 2001;294:843–845. doi: 10.1126/science.1060391. PubMed DOI

Grace JB, et al. Integrative modelling reveals mechanisms linking productivity and plant species richness. Nature. 2016;529:390–393. doi: 10.1038/nature16524. PubMed DOI

Liang J, et al. Positive biodiversity-productivity relationship predominant in global forests. Science. 2016;354:aaf8957. doi: 10.1126/science.aaf8957. PubMed DOI

Huang Y, et al. Impacts of species richness on productivity in a large-scale subtropical forest experiment. Science. 2018;362:80–83. doi: 10.1126/science.aat6405. PubMed DOI

Loreau M, Hector A. Partitioning selection and complementarity in biodiversity experiments. Nature. 2001;412:72–76. doi: 10.1038/35083573. PubMed DOI

Lambers JHR, Harpole WS, Tilman D, Knops J, Reich PB. Mechanisms responsible for the positive diversity-productivity relationship in Minnesota grasslands. Ecol. Lett. 2004;7:661–668. doi: 10.1111/j.1461-0248.2004.00623.x. DOI

Hector A, et al. Plant diversity and productivity experiments in European grasslands. Science. 1999;286:1123–1127. doi: 10.1126/science.286.5442.1123. PubMed DOI

Isbell F, et al. High plant diversity is needed to maintain ecosystem services. Nature. 2011;477:199–202. doi: 10.1038/nature10282. PubMed DOI

Fox JW. Interpreting the ‘selection effect’ of biodiversity on ecosystem function. Ecol. Lett. 2005;8:846–856. doi: 10.1111/j.1461-0248.2005.00795.x. DOI

Urgoiti J, Messier C, Keeton WS, Paquette A. Tree community overyielding during early stand development is explained by asymmetric species-specific responses to diversity. Funct. Ecol. 2023;37:2621–2633. doi: 10.1111/1365-2435.14414. DOI

Reich P, et al. Impacts of biodiversity loss escalate through time as redundancy fades. Science. 2012;336:589–592. doi: 10.1126/science.1217909. PubMed DOI

Eisenhauer N, et al. Biodiversity–ecosystem function experiments reveal the mechanisms underlying the consequences of biodiversity change in real world ecosystems. J. Veg. Sci. 2016;27:1061–1070. doi: 10.1111/jvs.12435. DOI

Guerrero-Ramirez NR, et al. Diversity-dependent temporal divergence of ecosystem functioning in experimental ecosystems. Nat. Ecol. Evol. 2017;1:1639–1642. doi: 10.1038/s41559-017-0325-1. PubMed DOI PMC

Kardol P, Fanin N, Wardle DA. Long-term effects of species loss on community properties across contrasting ecosystems. Nature. 2018;557:710–713. doi: 10.1038/s41586-018-0138-7. PubMed DOI

Hooper DU, et al. A global synthesis reveals biodiversity loss as a major driver of ecosystem change. Nature. 2012;486:105–129. doi: 10.1038/nature11118. PubMed DOI

Cardinale BJ, et al. Impacts of plant diversity on biomass production increase through time because of species complementarity. Proc. Natl Acad. Sci. USA. 2007;104:18123–18128. doi: 10.1073/pnas.0709069104. PubMed DOI PMC

Zuppinger-Dingley D, et al. Selection for niche differentiation in plant communities increases biodiversity effects. Nature. 2014;515:108–111. doi: 10.1038/nature13869. PubMed DOI

Urgoiti J, et al. No complementarity no gain-Net diversity effects on tree productivity occur once complementarity emerges during early stand development. Ecol. Lett. 2022;25:851–862. doi: 10.1111/ele.13959. PubMed DOI

Tilman D, Hill J, Lehman C. Carbon-negative biofuels from low-Input high-diversity grassland biomass. Science. 2006;314:1598–1600. doi: 10.1126/science.1133306. PubMed DOI

Meyer ST, et al. Effects of biodiversity strengthen over time as ecosystem functioning declines at low and increases at high biodiversity. Ecosphere. 2016;7:e01619. doi: 10.1002/ecs2.1619. DOI

Thakur MP, et al. Plant-soil feedbacks and temporal dynamics of plant diversity-productivity relationships. Trends Ecol. Evol. 2021;36:651–661. doi: 10.1016/j.tree.2021.03.011. PubMed DOI

Bongers FJ, et al. Functional diversity effects on productivity increase with age in a forest biodiversity experiment. Nat. Ecol. Evol. 2021;5:1594–1603. doi: 10.1038/s41559-021-01564-3. PubMed DOI

Furey GN, Tilman D. Plant biodiversity and the regeneration of soil fertility. Proc. Natl Acad. Sci. USA. 2021;118:e2111321118. doi: 10.1073/pnas.2111321118. PubMed DOI PMC

Furey GN, Tilman D. Plant chemical traits define functional and phylogenetic axes of plant biodiversity. Ecol. Lett. 2023;26:1394–1406. doi: 10.1111/ele.14262. PubMed DOI

Guerrero-Ramírez, N. R., Reich, P. B., Wagg, C., Ciobanu, M. & Eisenhauer, N. Diversity-dependent plant-soil feedbacks underlie long-term plant diversity effects on primary productivity. Ecosphere10, e02704 (2019).

Bardgett, R. D. & Wardle, D. A. Aboveground-Belowground Linkages: Biotic Interactions, Ecosystem Processes, and Global Change (Oxford University Press, 2010).

Garnier, E., Navas, M.-L. & Grigulis, K. Plant Functional Diversity: Organism Traits, Community Structure, and Ecosystem Properties (Oxford University Press, 2016).

Fichtner A, et al. From competition to facilitation: how tree species respond to neighbourhood diversity. Ecol. Lett. 2017;20:892–900. doi: 10.1111/ele.12786. PubMed DOI

van Ruijven J, Berendse F. Diversity-productivity relationships: Initial effects, long-term patterns, and underlying mechanisms. Proc. Natl Acad. Sci. USA. 2005;102:695–700. doi: 10.1073/pnas.0407524102. PubMed DOI PMC

Weigelt A, et al. An integrated framework of plant form and function: the belowground perspective. N. Phytol. 2021;232:42–59. doi: 10.1111/nph.17590. PubMed DOI

Reich PB. The world-wide ‘fast-slow’ plant economics spectrum: a traits manifesto. J. Ecol. 2014;102:275–301. doi: 10.1111/1365-2745.12211. DOI

Wright IJ, et al. The worldwide leaf economics spectrum. Nature. 2004;428:821–827. doi: 10.1038/nature02403. PubMed DOI

Kunstler G, et al. Plant functional traits have globally consistent effects on competition. Nature. 2016;529:204–207. doi: 10.1038/nature16476. PubMed DOI

Williams LJ, et al. Enhanced light interception and light use efficiency explain overyielding in young tree communities. Ecol. Lett. 2021;24:996–1006. doi: 10.1111/ele.13717. PubMed DOI

Grossman JJ, Cavender-Bares J, Hobbie SE, Reich PB, Montgomery RA. Species richness and traits predict overyielding in stem growth in an early-successional tree diversity experiment. Ecology. 2017;98:2601–2614. doi: 10.1002/ecy.1958. PubMed DOI

Lange, M. et al. How plant diversity impacts the coupled water, nutrient and carbon cycles. in Advances in Ecological Research, Vol. 61 (eds. Eisenhauer, N., Bohan, D. A. & Dumbrell, A. J.) 185–219 (Academic Press, 2019).

Chen X, Chen HYH, Searle EB, Chen C, Reich PB. Negative to positive shifts in diversity effects on soil nitrogen over time. Nat. Sustain. 2020;4:225–232. doi: 10.1038/s41893-020-00641-y. DOI

Urgoiti J, Messier C, Keeton WS, Belluau M, Paquette A. Functional diversity and identity influence the self-thinning process in young forest communities. J. Ecol. 2023;111:2010–2022. doi: 10.1111/1365-2745.14158. DOI

Roscher C, Schumacher J, Weisser WW, Schmid B, Schulze ED. Detecting the role of individual species for overyielding in experimental grassland communities composed of potentially dominant species. Oecologia. 2007;154:535–549. doi: 10.1007/s00442-007-0846-4. PubMed DOI

Weidlich EWA, et al. The importance of being first: exploring priority and diversity effects in a grassland field experiment. Front. Plant Sci. 2017;7:2008. doi: 10.3389/fpls.2016.02008. PubMed DOI PMC

Tobner CM, et al. Functional identity is the main driver of diversity effects in young tree communities. Ecol. Lett. 2016;19:638–647. doi: 10.1111/ele.12600. PubMed DOI

Williams LJ, Paquette A, Cavender-Bares J, Messier C, Reich PB. Spatial complementarity in tree crowns explains overyielding in species mixtures. Nat. Ecol. Evol. 2017;1:63. doi: 10.1038/s41559-016-0063. PubMed DOI

Matsuo T, Martínez-Ramos M, Bongers F, van der Sande MT, Poorter L. Forest structure drives changes in light heterogeneity during tropical secondary forest succession. J. Ecol. 2021;109:2871–2884. doi: 10.1111/1365-2745.13680. PubMed DOI PMC

Mueller KE, Tilman D, Fornara DA, Hobbie SE. Root depth distribution and the diversity–productivity relationship in a long-term grassland experiment. Ecology. 2013;94:787–793. doi: 10.1890/12-1399.1. DOI

Forrester DI, Bauhus J. A review of processes behind diversity-productivity relationships in forests. Curr. Rep. 2016;2:45–61. doi: 10.1007/s40725-016-0031-2. DOI

Rees M, Condit R, Crawley M, Pacala S, Tilman D. Long-term studies of vegetation dynamics. Science. 2001;293:650–655. doi: 10.1126/science.1062586. PubMed DOI

Marquard E, et al. Plant species richness and functional composition drive overyielding in a six-year grassland experiment. Ecology. 2009;90:3290–3302. doi: 10.1890/09-0069.1. PubMed DOI

Kattge J, et al. TRY plant trait database—enhanced coverage and open access. Glob. Change Biol. 2020;26:119–188. doi: 10.1111/gcb.14904. PubMed DOI

Guerrero-Ramírez NR, et al. Global root traits (GRooT) database. Glob. Ecol. Biogeogr. 2021;30:25–37. doi: 10.1111/geb.13179. DOI

Bauhus J, van Winden AP, Nicotra AB. Aboveground interactions and productivity in mixed-species plantations of Acacia mearnsii and Eucalyptus globulus. Can. J. Res. 2004;34:686–694. doi: 10.1139/x03-243. DOI

Jumpponen A, Mulder CPH, Huss-Danell K, HÖGberg P. Winners and losers in herbaceous plant communities: insights from foliar carbon isotope composition in monocultures and mixtures. J. Ecol. 2005;93:1136–1147. doi: 10.1111/j.1365-2745.2005.01045.x. DOI

Werger MJA, et al. Light partitioning among species and species replacement in early successional grasslands. J. Veg. Sci. 2002;13:615–626. doi: 10.1111/j.1654-1103.2002.tb02089.x. DOI

Eisenhauer, N. et al. Biotic interactions, community assembly, and ecoevolutionary dynamics as drivers of long-term biodiversity–ecosystem functioning relationships. Res. Ideas Outcomes5, e47042 (2019).

Yachi S, Loreau M. Biodiversity and ecosystem productivity in a fluctuating environment: The insurance hypothesis. Proc. Natl Acad. Sci. USA. 1999;96:1463–1468. doi: 10.1073/pnas.96.4.1463. PubMed DOI PMC

Wagg C, et al. Biodiversity–stability relationships strengthen over time in a long-term grassland experiment. Nat. Commun. 2022;13:7752. doi: 10.1038/s41467-022-35189-2. PubMed DOI PMC

Scherer-Lorenzen M, Palmborg C, Prinz A, Schulze E. The role of plant diversity and composition for nitrate leaching in grasslands. Ecology. 2003;84:1539–1552. doi: 10.1890/0012-9658(2003)084[1539:TROPDA]2.0.CO;2. DOI

Dietrich P, et al. Tree diversity effects on productivity depend on mycorrhizae and life strategies in a temperate forest experiment. Ecology. 2023;104:e3896. doi: 10.1002/ecy.3896. PubMed DOI

Ledo A, et al. Species coexistence in a mixed Mediterranean pine forest: Spatio-temporal variability in trade-offs between facilitation and competition. Ecol. Manag. 2014;322:89–97. doi: 10.1016/j.foreco.2014.02.038. DOI

Wambsganss J, et al. Tree species mixing causes a shift in fine-root soil exploitation strategies across European forests. Funct. Ecol. 2021;35:1886–1902. doi: 10.1111/1365-2435.13856. DOI

Jucker T, et al. Good things take time-Diversity effects on tree growth shift from negative to positive during stand development in boreal forests. J. Ecol. 2020;108:2198–2211. doi: 10.1111/1365-2745.13464. DOI

Lipowsky A, et al. Plasticity of functional traits of forb species in response to biodiversity. Perspect. Plant Ecol. Evol. Syst. 2015;17:66–77. doi: 10.1016/j.ppees.2014.11.003. DOI

Healy C, Gotelli NJ, Potvin C. Partitioning the effects of biodiversity and environmental heterogeneity for productivity and mortality in a tropical tree plantation. J. Ecol. 2008;96:903–913. doi: 10.1111/j.1365-2745.2008.01419.x. DOI

Searle EB, Chen HYH, Paquette A. Higher tree diversity is linked to higher tree mortality. Proc. Natl Acad. Sci. USA. 2022;119:e2013171119. doi: 10.1073/pnas.2013171119. PubMed DOI PMC

Roscher C, Schmid B, Buchmann N, Weigelt A, Schulze ED. Legume species differ in the responses of their functional traits to plant diversity. Oecologia. 2011;165:437–452. doi: 10.1007/s00442-010-1735-9. PubMed DOI

Sapijanskas J, Paquette A, Potvin C, Kunert N, Loreau M. Tropical tree diversity enhances light capture through crown plasticity and spatial and temporal niche differences. Ecology. 2014;95:2479–2492. doi: 10.1890/13-1366.1. DOI

Guerrero-Ramírez NR. Functional forest restoration. Nat. Ecol. Evol. 2021;5:1572–1573. doi: 10.1038/s41559-021-01575-0. PubMed DOI

Maitner BS, et al. The bien r package: A tool to access the Botanical Information and Ecology Network (BIEN) database. Methods Ecol. Evol. 2018;9:373–379. doi: 10.1111/2041-210X.12861. DOI

Falster D, et al. AusTraits, a curated plant trait database for the Australian flora. Sci. Data. 2021;8:254. doi: 10.1038/s41597-021-01006-6. PubMed DOI PMC

Roscher C, et al. Functional groups differ in trait means, but not in trait plasticity to species richness in local grassland communities. Ecology. 2018;99:2295–2307. doi: 10.1002/ecy.2447. PubMed DOI

Carmona CP, et al. Fine-root traits in the global spectrum of plant form and function. Nature. 2021;597:683–687. doi: 10.1038/s41586-021-03871-y. PubMed DOI

Stekhoven DJ, Bühlmann P. MissForest—non-parametric missing value imputation for mixed-type data. Bioinformatics. 2012;28:112–118. doi: 10.1093/bioinformatics/btr597. PubMed DOI

Jin Y, Qian HV. PhyloMaker: an R package that can generate very large phylogenies for vascular plants. Ecography. 2019;42:1353–1359. doi: 10.1111/ecog.04434. DOI

Smith SA, Brown JW. Constructing a broadly inclusive seed plant phylogeny. Am. J. Bot. 2018;105:302–314. doi: 10.1002/ajb2.1019. PubMed DOI

Penone C, et al. Imputation of missing data in life-history trait datasets: which approach performs the best? Methods Ecol. Evol. 2014;5:961–970. doi: 10.1111/2041-210X.12232. DOI

Barry, K. E. et al. Above- and belowground overyielding are related at the community and species level in a grassland biodiversity experiment. in Advances in Ecological Research, 61 (eds. Eisenhauer, N., Bohan, D. A. & Dumbrell, A. J.) 55–89 (Academic Press, 2019).

Loreau M. Separating sampling and other effects in biodiversity experiments. Oikos. 1998;82:600–602. doi: 10.2307/3546381. DOI

De Wit, C. T. On competition. Versl. Landbouwkd. Onderz.66, 1–82 (1960).

Harper, J. L. Population biology of plants. (Academic Press, 1977).

Muñoz-Sabater J, et al. ERA5-Land: a state-of-the-art global reanalysis dataset for land applications. Earth Syst. Sci. Data. 2021;13:4349–4383. doi: 10.5194/essd-13-4349-2021. DOI

Beguería S, Vicente-Serrano SM, Angulo-Martinez M. A multiscalar global drought dataset: the SPEIbase: a new gridded product for the analysis of drought variability and impacts. Bull. Am. Meteorol. Soc. 2010;91:1351–1356. doi: 10.1175/2010BAMS2988.1. DOI

Pinheiro J, Bates D, DebRoy S, Sarkar D, R Core Team. nlme: linear and nonlinear mixed effects models. R. package version. 2012;3:1–151.

R Core Team. R: A Language and Environment for Statistical Computing R (R Foundation for Statistical Computing, 2022).

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Functional traits mediate the effect of land use on drivers of community stability within and across trophic levels

. 2025 Jan 24 ; 11 (4) : eadp6445. [epub] 20250124

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...