Emerging horizons for tick-borne pathogens: from the 'one pathogen-one disease' vision to the pathobiome paradigm
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, přehledy
PubMed
26610021
PubMed Central
PMC4944395
DOI
10.2217/fmb.15.114
Knihovny.cz E-zdroje
- Klíčová slova
- Ixodes ricinus, co-infections, emerging diseases, new paradigm, next-generation sequencing, pathobiome, unknown pathogens, vector competence, zoonoses,
- MeSH
- klíšťata mikrobiologie virologie MeSH
- lidé MeSH
- mikrobiota * MeSH
- nemoci přenášené klíšťaty epidemiologie mikrobiologie přenos virologie MeSH
- zoonózy epidemiologie mikrobiologie přenos virologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Geografické názvy
- Evropa epidemiologie MeSH
Ticks, as vectors of several notorious zoonotic pathogens, represent an important and increasing threat for human and animal health in Europe. Recent applications of new technology revealed the complexity of the tick microbiome, which may affect its vectorial capacity. Appreciation of these complex systems is expanding our understanding of tick-borne pathogens, leading us to evolve a more integrated view that embraces the 'pathobiome'; the pathogenic agent integrated within its abiotic and biotic environments. In this review, we will explore how this new vision will revolutionize our understanding of tick-borne diseases. We will discuss the implications in terms of future research approaches that will enable us to efficiently prevent and control the threat posed by ticks.
Fondazione Edmund Mach Research and Innovation Centre San Michele all'Adige Trento Italy
INRA UMR 1300 BioEpAR Nantes France
INRA UMR BIPAR INRA ANSES ENVA Maisons Alfort France
INRA UR 346 Epidémiologie Animale Saint Genès Champanelle France
Institute of Vertebrate Biology Academy of Sciences of the Czech Republic v v i Brno Czech Republic
Institute of Zoology Slovak Academy of Sciences Bratislava Slovakia
University of East London School of Health Sport and Bioscience London UK
Zobrazit více v PubMed
Rizzoli A, Hauffe H, Carpi G, Vourc HG, Neteler M, Rosa R. Lyme borreliosis in Europe. Euro. Surveill. 2011;16(27):1–8. PubMed
Platonov AE, Karan LS, Kolyasnikova NM, et al. Humans infected with relapsing fever spirochete Borrelia miyamotoi, Russia. Emerg. Infect. Dis. 2011;17(10):1816–1823. PubMed PMC
Chowdri HR, Gugliotta JL, Berardi VP, et al. Borrelia miyamotoi infection presenting as human granulocytic anaplasmosis: a case report. Ann. Intern. Med. 2013;159(1):21–27. PubMed
Krause PJ, Narasimhan S, Wormser GP, et al. Human Borrelia miyamotoi infection in the United States. N. Engl. J. Med. 2013;368(3):291–293. PubMed PMC
Hovius JW, De Wever B, Sohne M, et al. A case of meningoencephalitis by the relapsing fever spirochaete Borrelia miyamotoi in Europe. Lancet. 2013;382(9892):658. PubMed PMC
Heyman P, Cochez C, Hofhuis A, et al. A clear and present danger: tick-borne diseases in Europe. Expert Rev. Anti Infect. Ther. 2010;8(1):33–50. PubMed
Welinder-Olsson C, Kjellin E, Vaht K, Jacobsson S, Wenneras C. First case of human “Candidatus Neoehrlichia mikurensis” infection in a febrile patient with chronic lymphocytic leukemia. J. Clin. Microbiol. 2010;48(5):1956–1959. PubMed PMC
Von Loewenich FD, Geissdorfer W, Disque C, et al. Detection of “Candidatus Neoehrlichia mikurensis” in two patients with severe febrile illnesses: evidence for a European sequence variant. J. Clin. Microbiol. 2010;48(7):2630–2635. PubMed PMC
Parola P, Raoult D. Tick-borne bacterial diseases emerging in Europe. Clin. Microbiol. Infect. 2001;7(2):80–83. PubMed
Parola P, Raoult D. Ticks and tickborne bacterial diseases in humans: an emerging infectious threat. Clin. Infect. Dis. 2001;32(6):897–928. PubMed
Duron O, Jourdain E, McCoy KD. Diversity and global distribution of the Coxiella intracellular bacterium in seabird ticks. Ticks Tick Borne Dis. 2014;5(5):557–563. PubMed
Angelakis E, Raoult D. Q Fever. Vet. Microbiol. 2010;140(3–4):297–309. PubMed
Hildebrandt A, Hunfeld KP. [Human babesiosis – a rare but potentially dangerous zoonosis] Dtsch Med. Wochenschr. 2014;139(18):957–962. PubMed
Hildebrandt A, Hunfeld KP, Baier M, et al. First confirmed autochthonous case of human Babesia microti infection in Europe. Eur J. Clin. Microbiol. Infect Dis. 2007;26(8):595–601. PubMed
Charrel RN, Attoui H, Butenko AM, et al. Tick-borne virus diseases of human interest in Europe. Clin. Microbiol. Infect. 2004;10(12):1040–1055. PubMed
Hubalek Z, Rudolf I. Tick-borne viruses in Europe. Parasitol. Res. 2012;111(1):9–36. PubMed
Mertens M, Schmidt K, Ozkul A, Groschup MH. The impact of Crimean-Congo hemorrhagic fever virus on public health. Antiviral Res. 2013;98(2):248–260. PubMed
Liu XY, Bonnet SI. Hard tick factors implicated in pathogen transmission. PLoS Negl. Trop. Dis. 2014;8(1):e2566. PubMed PMC
Burgdorfer W. Discovery of the Lyme disease spirochete and its relation to tick vectors. Yale J. Biol. Med. 1984;57(4):515–520. PubMed PMC
Massung RF, Mather TN, Priestley RA, Levin ML. Transmission efficiency of the AP-variant 1 strain of Anaplasma phagocytophila . Ann. NY Acad. Sci. 2003;990:75–79. PubMed
Bonnet S, Brisseau N, Hermouet A, Jouglin M, Chauvin A. Experimental in vitro transmission of Babesia sp. (EU1) by Ixodes ricinus . Vet. Res. 2009;40(3):21. PubMed PMC
Cotte V, Bonnet S, Le Rhun D, et al. Transmission of Bartonella henselae by Ixodes ricinus . Emerg. Infect. Dis. 2008;14(7):1074–1080. PubMed PMC
Reis C, Cote M, Le Rhun D, et al. Vector competence of the tick Ixodes ricinus for transmission of Bartonella birtlesii . PLoS Negl. Trop. Dis. 2011;5(5):e1186. PubMed PMC
Alekseev AN, Chunikhin SP. [The experimental transmission of the tick-borne encephalitis virus by ixodid ticks (the mechanisms, time periods, species and sex differences)] Parazitologiia. 1990;24(3):177–185. PubMed
Alekseev AN, Chunikhin SP. [The exchange of the tick-borne encephalitis virus between ixodid ticks feeding jointly on animals with a subthreshold level of viremia] Meditsinskaia parazitologiia i parazitarnye bolezni. 1990;2:48–50. PubMed
Perronne C. Lyme and associated tick-borne diseases: global challenges in the context of a public health threat. Front. Cell. Infect. Microbiol. 2014;4:74. PubMed PMC
Kaiser R. Tick-borne encephalitis: clinical findings and prognosis in adults. Wien. Med. Wochenschr. 2012;162(11–12):239–243. PubMed
Gugliotta JL, Goethert HK, Berardi VP, Telford SR., 3rd Meningoencephalitis from Borrelia miyamotoi in an immunocompromised patient. N. Engl. J. Med. 2013;368(3):240–245. PubMed PMC
Vayssier-Taussat M, Moutailler S, Michelet L, et al. Next generation sequencing uncovers unexpected bacterial pathogens in ticks in western Europe. PLoS ONE. 2013;8(11):e81439. PubMed PMC
Cosson Jf ML, Chotte J, Le Naour E, et al. Genetic characterization of the human relapsing fever spirochete Borrelia miyamotoi in vectors and animal reservoirs of Lyme disease spirochetes in France. Vectors Parasites. 2015 In press. PubMed PMC
Horowitz HW, Aguero-Rosenfeld ME, Holmgren D, et al. Lyme disease and human granulocytic anaplasmosis coinfection: impact of case definition on coinfection rates and illness severity. Clin. Infect. Dis. 2013;56(1):93–99. PubMed
Tijsse-Klasen E, Sprong H, Pandak N. Co-infection of Borrelia burgdorferi sensu lato and Rickettsia species in ticks and in an erythema migrans patient. Parasit. Vectors. 2013;6:347. PubMed PMC
Halos L, Bord S, Cotte V, et al. Ecological factors characterizing the prevalence of bacterial tick-borne pathogens in Ixodes ricinus ticks in pastures and woodlands. Appl. Environ. Microbiol. 2010;76(13):4413–4420. PubMed PMC
Reis C, Cote M, Paul RE, Bonnet S. Questing ticks in suburban forest are infected by at least six tick-borne pathogens. Vector Borne Zoonotic Dis. 2011;11(7):907–916. PubMed
Carpi G, Cagnacci F, Wittekindt NE, et al. Metagenomic profile of the bacterial communities associated with Ixodes ricinus ticks. PLoS ONE. 2011;6(10):e25604. PubMed PMC
Nakao R, Abe T, Nijhof AM, et al. A novel approach, based on BLSOMs (Batch Learning Self-Organizing Maps), to the microbiome analysis of ticks. ISME J. 2013;7(5):1003–1015. PubMed PMC
Hawlena H, Rynkiewicz E, Toh E, et al. The arthropod, but not the vertebrate host or its environment, dictates bacterial community composition of fleas and ticks. ISME J. 2013;7(1):221–223. PubMed PMC
Williams-Newkirk AJ, Rowe LA, Mixson-Hayden TR, Dasch GA. Characterization of the bacterial communities of life stages of free living lone star ticks (Amblyomma americanum) PLoS ONE. 2014;9(7):e102130. PubMed PMC
Gillespie JJ, Joardar V, Williams KP, et al. A Rickettsia genome overrun by mobile genetic elements provides insight into the acquisition of genes characteristic of an obligate intracellular lifestyle. J. Bacteriol. 2012;194(2):376–394. PubMed PMC
Perlman SJ, Hunter MS, Zchori-Fein E. The emerging diversity of Rickettsia. Proc. Biol. Sci. 2006;273(1598):2097–2106. PubMed PMC
Duron O, Noel V, McCoy KD, et al. The recent evolution of a maternally-inherited endosymbiont of ticks led to the emergence of the Q fever pathogen, Coxiella burnetii . PLoS Pathog. 2015;11(5):e1004892. PubMed PMC
Almeida AP, Marcili A, Leite RC, et al. Coxiella symbiont in the tick Ornithodoros rostratus (Acari: Argasidae) Ticks Tick Borne Dis. 2012;3(4):203–206. PubMed
Machado-Ferreira E, Dietrich G, Hojgaard A, et al. Coxiella symbionts in the Cayenne tick Amblyomma cajennense . Microb. Ecol. 2011;62(1):134–142. PubMed
Kreizinger Z, Hornok S, Dan A, et al. Prevalence of Francisella tularensis and Francisella-like endosymbionts in the tick population of Hungary and the genetic variability of Francisella-like agents. Vector Borne Zoonotic Dis. 2013;13(3):160–163. PubMed PMC
Rudolf I, Mendel J, Sikutova S, et al. 16S rRNA gene-based identification of cultured bacterial flora from host-seeking Ixodes ricinus, Dermacentor reticulatus and Haemaphysalis concinna ticks, vectors of vertebrate pathogens. Folia Microbiol. (Praha) 2009;54(5):419–428. PubMed
Werren JH, Baldo L, Clark ME. Wolbachia: master manipulators of invertebrate biology. Nat. Rev. Microbiol. 2008;6(10):741–751. PubMed
Ahantarig A, Trinachartvanit W, Baimai V, Grubhoffer L. Hard ticks and their bacterial endosymbionts (or would be pathogens) Folia Microbiol. (Praha) 2013;58(5):419–428. PubMed
Plantard O, Bouju-Albert A, Malard MA, Hermouet A, Capron G, Verheyden H. Detection of Wolbachia in the tick Ixodes ricinus is due to the presence of the hymenoptera endoparasitoid Ixodiphagus hookeri . PLoS ONE. 2012;7(1):e30692. PubMed PMC
Lewis D. The detection of Rickettsia-like micro-organisms within the ovaries of female Ixodes ricinus ticks. Z. Parasitenkd. 1979;59(3):295–298. PubMed
Sassera D, Beninati T, Bandi C, et al. ‘Candidatus Midichloria mitochondrii’ an endosymbiont of the tick Ixodes ricinus with a unique intramitochondrial lifestyle. Int. J. Syst. Evol. Microbiol. 2006;56(Pt 11):2535–2540. PubMed
Epis S, Sassera D, Beninati T, et al. Midichloria mitochondrii is widespread in hard ticks (Ixodidae) and resides in the mitochondria of phylogenetically diverse species. Parasitology. 2008;135(4):485–494. PubMed
Bazzocchi C, Mariconti M, Sassera D, et al. Molecular and serological evidence for the circulation of the tick symbiont Midichloria (Rickettsiales: Midichloriaceae) in different mammalian species. Parasit. Vectors. 2013;6:350. PubMed PMC
Tokarz R, Williams SH, Sameroff S, Sanchez Leon M, Jain K, Lipkin WI. Virome ana-lysis of Amblyomma americanum, Dermacentor variabilis and Ixodes scapularis ticks reveals novel highly divergent vertebrate and invertebrate viruses. J. Virol. 2014;88(19):11480–11492. PubMed PMC
Vayssier-Taussat M, Albina E, Citti C, et al. Shifting the paradigm from pathogens to pathobiome: new concepts in the light of meta-omics. Front. Cell. Infect. Microbiol. 2014;4:29. PubMed PMC
Rigaud T, Perrot-Minnot MJ, Brown MJ. Parasite and host assemblages: embracing the reality will improve our knowledge of parasite transmission and virulence. J. Royal Stat. Soc. B. 2010;277(1701):3693–3702. PubMed PMC
Bordes F, Morand S. The impact of multiple infections on wild animal hosts: a review. Infect. Ecol. Epidemiol. 2011;1:1–10. PubMed PMC
Telfer S, Lambin X, Birtles R, et al. Species interactions in a parasite community drive infection risk in a wildlife population. Science. 2010;330(6001):243–246. PubMed PMC
Gauch HG. Multivariate Analysis in Community Ecology. Cambridge University Press; UK: 1982.
Tollenaere C, Bryja J, Galan M, et al. Multiple parasites mediate balancing selection at two MHC class II genes in the fossorial water vole: insights from multivariate analyses and population genetics. J. Evolut. Biol. 2008;21(5):1307–1320. PubMed
Salvador AR, Guivier E, Xuereb A, et al. Concomitant influence of helminth infection and landscape on the distribution of Puumala hantavirus in its reservoir, Myodes glareolus . BMC Microbiol. 2011;11(1):30. PubMed PMC
Vaumourin E, Vourc'h G, Telfer S, et al. To be or not to be associated: power study of four statistical modeling approaches to identify parasite associations in cross-sectional studies. Front. Cell. Infect. Microbiol. 2014;4:62. PubMed PMC
Bascompte J. Networks in ecology. Basic Appl. Ecol. 2007;8(6):485–490.
Ravasz E, Somera AL, Mongru DA, Oltvai ZN, Barabasi AL. Hierarchical organization of modularity in metabolic networks. Science. 2002;297(5586):1551–1555. PubMed
Qin J, Li Y, Cai Z, et al. A metagenome-wide association study of gut microbiota in Type 2 diabetes. Nature. 2012;490(7418):55–60. PubMed
Fox G. Peer to peer networks. Comput. Sci. Eng. 2001;3(3):75–77.
Newman ME. Coauthorship networks and patterns of scientific collaboration. Proc. Natl Acad. Sci. USA. 2004;101(Suppl. 1):5200–5205. PubMed PMC
Yodzis P. The connectance of real ecosystems. Nature. 1980;284(5756):544–545.
Bascompte J, Jordano P, Melian CJ, Olesen JM. The nested assembly of plant-animal mutualistic networks. Proc. Natl Acad. Sci. USA. 2003;100(16):9383–9387. PubMed PMC
Freeman LC. A set of measures of centrality based on betweenness. Sociometry. 1977;40(1):35–41.
Childs JE, Paddock CD. Passive surveillance as an instrument to identify risk factors for fatal Rocky Mountain spotted fever: is there more to learn? Am. J. Trop. Med. Hyg. 2002;66(5):450–457. PubMed
Klyachko O, Stein BD, Grindle N, Clay K, Fuqua C. Localization and visualization of a coxiella-type symbiont within the lone star tick, Amblyomma americanum . Appl. Environ. Microbiol. 2007;73(20):6584–6594. PubMed PMC
Narasimhan S, Rajeevan N, Liu L, et al. Gut microbiota of the tick vector Ixodes scapularis modulate colonization of the Lyme disease spirochete. Cell Host Microbe. 2014;15(1):58–71. PubMed PMC
Cirimotich CM, Dong Y, Clayton AM, et al. Natural microbe-mediated refractoriness to Plasmodium infection in Anopheles gambiae . Science. 2011;332(6031):855–858. PubMed PMC
Michelet L, Delannoy S, Devillers E, et al. High-throughput screening of tick-borne pathogens in Europe. Front. Cell. Infect. Microbiol. 2014;4:103. PubMed PMC
Liu XY, Bonnet SI. Hard tick factors implicated in pathogen transmission. PLoS Negl. Trop. Dis. 2014;8(1):e2566. PubMed PMC
De La Fuente J, Merino O. Vaccinomics, the new road to tick vaccines. Vaccine. 2013;31(50):5923–5929. PubMed
De La Fuente J, Almazan C, Canales M, Perez De La Lastra JM, Kocan KM, Willadsen P. A ten-year review of commercial vaccine performance for control of tick infestations on cattle. Animal Health Res. Rev. 2007;8(1):23–28. PubMed
Decrem Y, Mariller M, Lahaye K, et al. The impact of gene knock-down and vaccination against salivary metalloproteases on blood feeding and egg laying by Ixodes ricinus. Int. J. Parasitol. 2008;38(5):549–560. PubMed
Liu XY, De La Fuente J, Cote M, et al. IrSPI, a tick serine protease inhibitor involved in tick feeding and Bartonella henselae infection. PLoS Negl. Trop. Dis. 2014;8(7):e2993. PubMed PMC
Dai J, Wang P, Adusumilli S, et al. Antibodies against a tick protein, Salp15, protect mice from the Lyme disease agent. Cell Host Microbe. 2009;6(5):482–492. PubMed PMC
Merino O, Antunes S, Mosqueda J, et al. Vaccination with proteins involved in tick-pathogen interactions reduces vector infestations and pathogen infection. Vaccine. 2013;31(49):5889–5896. PubMed
Labuda M, Trimnell AR, Lickova M, et al. An antivector vaccine protects against a lethal vector-borne pathogen. PLoS Pathog. 2006;2(4):e27. PubMed PMC
De La Fuente J, Almazan C, Blouin EF, Naranjo V, Kocan KM. Reduction of tick infections with Anaplasma marginale and A. phagocytophilum by targeting the tick protective antigen subolesin. Parasitol. Res. 2006;100(1):85–91. PubMed
Mcmullan LK, Folk SM, Kelly AJ, et al. A new phlebovirus associated with severe febrile illness in Missouri. N. Engl. J. Med. 2012;367(9):834–841. PubMed
Matsuno K, Weisend C, Kajihara M, et al. Comprehensive molecular detection of tick-borne phleboviruses leads to the retrospective identification of taxonomically unassigned bunyaviruses and the discovery of a novel member of the genus phlebovirus. J. Virol. 2015;89(1):594–604. PubMed PMC