Reptile-associated Borrelia species in the goanna tick (Bothriocroton undatum) from Sydney, Australia
Language English Country Great Britain, England Media electronic
Document type Evaluation Study, Journal Article
Grant support
17-27393S
Czech Science Foundation
17-27386S
Czech Science Foundation
PubMed
29262840
PubMed Central
PMC5738880
DOI
10.1186/s13071-017-2579-5
PII: 10.1186/s13071-017-2579-5
Knihovny.cz E-resources
- Keywords
- Borrelia, Bothriocroton undatum, Coxiella burnetii, DNA extraction, Goanna tick, Illumina, Ixodidae, MiSeq, NGS,
- MeSH
- Borrelia classification genetics isolation & purification MeSH
- DNA, Bacterial chemistry genetics isolation & purification MeSH
- Entomology methods MeSH
- Phylogeny MeSH
- Ixodidae microbiology MeSH
- Microbiological Techniques methods MeSH
- DNA, Ribosomal chemistry genetics MeSH
- RNA, Ribosomal, 16S genetics MeSH
- Sequence Analysis, DNA MeSH
- Sensitivity and Specificity MeSH
- Cluster Analysis MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Evaluation Study MeSH
- Geographicals
- Australia MeSH
- Names of Substances
- DNA, Bacterial MeSH
- DNA, Ribosomal MeSH
- RNA, Ribosomal, 16S MeSH
BACKGROUND: Knowledge on the capacity of Australian ticks to carry Borrelia species is currently limited or missing. To evaluate the potential of ticks to carry bacterial pathogens and their DNA, it is imperative to have a robust workflow that maximises recovery of bacterial DNA within ticks in order to enable accurate identification. By exploiting the bilateral anatomical symmetry of ticks, we were able to directly compare two DNA extraction methods for 16S rRNA gene diversity profiling and pathogen detection. We aimed to assess which combination of DNA extraction and 16S rRNA hypervariable region enables identification of the greatest bacterial diversity, whilst minimising bias, and providing the greatest capacity for the identification of Borrelia spp. RESULTS: We collected Australian endemic ticks (Bothriocroton undatum), isolated DNA from equal tick halves using two commercial DNA extraction methods and sequenced samples using V1-V3 and V3-V4 16S rRNA gene diversity profiling assays. Two distinct Borrelia spp. operational taxonomic units (OTUs) were detected using the V1-V3 16S rRNA hypervariable region and matching Borrelia spp. sequences were obtained using a conventional nested-PCR. The tick 16S rRNA gene diversity profile was dominated by Rickettsia spp. (98-99%), while the remaining OTUs belonged to Proteobacteria (51-81%), Actinobacteria (6-30%) and Firmicutes (2-7%). Multiple comparisons tests demonstrated biases in each of the DNA extraction kits towards different bacterial taxa. CONCLUSIONS: Two distinct Borrelia species belonging to the reptile-associated Borrelia group were identified. Our results show that the method of DNA extraction can promote bias in the final microbiota identified. We determined an optimal DNA extraction method and 16S rRNA gene diversity profile assay that maximises detection of Borrelia species.
See more in PubMed
Jongejan F, Uilenberg G. The global importance of ticks. Parasitology. 2004;129(07):S3. doi: 10.1017/S0031182004005967. PubMed DOI
Cook MJ. Lyme borreliosis: a review of data on transmission time after tick attachment. Int J Gen Med. 2015;8:1–8. PubMed PMC
de la Fuente J, Antunes S, Bonnet S, Cabezas-Cruz A, Domingos AG, Estrada-Peña A, et al. Tick-pathogen interactions and vector competence: identification of molecular drivers for tick-borne diseases. Front Cell Infect Microbiol. 2017;7:114. doi: 10.3389/fcimb.2017.00114. PubMed DOI PMC
Unsworth NB, Stenos J, Graves S, Faa AG, Cox E, Dyer JR, et al. Flinders Island spotted fever Rickettsioses caused by “marmionii” strain of Rickettsi honei. Eastern Australia Emerging Infect Dis. 2007;13(4):566–573. doi: 10.3201/eid1304.050087. PubMed DOI PMC
Unsworth NB, Stenos J, McGregor AR, Dyer JR, Graves SR. Not only ‘Flinders Island’ spotted fever. Pathology. 2005;37(3):242–245. doi: 10.1080/00313020500099247. PubMed DOI
Vilcins IM, Old JM, Deane E. Molecular detection of Rickettsia, Coxiella and Rickettsiella DNA in three native Australian tick species. Exp Appl Acarol. 2009;49(3):229–242. doi: 10.1007/s10493-009-9260-4. PubMed DOI
Whiley H, Custance G, Graves S, Stenos J, Taylor M, Ross K, Gardner MG. Rickettsia detected in the reptile tick Bothriocroton hydrosauri from the lizard Tiliqua rugosa in South Australia. Pathogens. 2016;5(2):5(2). doi: 10.3390/pathogens5020041. PubMed DOI PMC
Loh SM, Gillett A, Ryan U, Irwin P, Oskam C. Molecular characterization of ‘Candidatus Borrelia tachyglossi’ (family Spirochaetaceae) in echidna ticks, Bothriocroton concolor. Int J Syst Evol Microbiol. 2017;67(4):1075–1080. doi: 10.1099/ijsem.0.001929. PubMed DOI PMC
Loh SM, Gofton AW, Lo N, Gillett A, Ryan UM, Irwin PJ, Oskam CL. Novel Borrelia species detected in echidna ticks, Bothriocroton concolor, in Australia. Parasit Vectors. 2016;9(1):339. doi: 10.1186/s13071-016-1627-x. PubMed DOI PMC
Mayne PJ. Investigation of Borrelia burgdorferi genotypes in Australia obtained from erythema migrans tissue. Clin Cosmet Investig Dermatol. 2012;5:69–78. doi: 10.2147/CCID.S31913. PubMed DOI PMC
Piesman J, Stone BF. Vector competence of the Australian paralysis tick, Ixodes holocyclus, for the lyme disease spirochete Borrelia burgdorferi. Int J Parasitol. 1991;21(1):109–111. doi: 10.1016/0020-7519(91)90127-S. PubMed DOI
Stewart A, Glass J, Patel A, Watt G, Cripps A, Clancy R. Lyme arthritis in the Hunter Valley. Med J Aust. 1982;1:139. PubMed
Graves S, Stenos J. Rickettsioses in Australia. Ann N Y Acad Sci. 2009;1166:151–155. doi: 10.1111/j.1749-6632.2009.04530.x. PubMed DOI
Graves SR, Stenos J. Tick-borne infectious diseases in Australia. Med J Aust. 2017;206(7):320–324. doi: 10.5694/mja17.00090. PubMed DOI
Mayne P, Song S, Shao R, Burke J, Wang Y, Roberts T. Evidence for Ixodes holocyclus (Acarina: Ixodidae) as a vector for human Lyme borreliosis infection in Australia. J Insect Sci. 2014;14:271. doi: 10.1093/jisesa/ieu133. PubMed DOI PMC
Chalada MJ, Stenos J, Bradbury RS. Is there a Lyme-like disease in Australia? Summary of the findings to date. One Health. 2016;2:42–54. doi: 10.1016/j.onehlt.2016.03.003. PubMed DOI PMC
Khoo JJ, Chen F, Kho KL, Ahmad Shanizza AI, Lim FS, Tan KK, et al. Bacterial community in Haemaphysalis ticks of domesticated animals from the Orang Asli communities in Malaysia. Ticks Tick Borne Dis. 2016;7(5):929–937. doi: 10.1016/j.ttbdis.2016.04.013. PubMed DOI
Sperling JL, Silva-Brandao KL, Brandao MM, Lloyd VK, Dang S, Davis CS, et al. Comparison of bacterial 16S rRNA variable regions for microbiome surveys of ticks. Ticks Tick Borne Dis. 2017;8(4):453–461. doi: 10.1016/j.ttbdis.2017.02.002. PubMed DOI
Gofton AW, Doggett S, Ratchford A, Oskam CL, Paparini A, Ryan U, Irwin P. Bacterial profiling reveals novel “Ca. Neoehrlichia”, Ehrlichia, and Anaplasma species in Australian human-biting ticks. PLoS One. 2015;10(12):e0145449. doi: 10.1371/journal.pone.0145449. PubMed DOI PMC
Ammazzalorso AD, Zolnik CP, Daniels TJ, Kolokotronis SO. To beat or not to beat a tick: comparison of DNA extraction methods for ticks (Ixodes scapularis) PeerJ. 2015;3:e1147. doi: 10.7717/peerj.1147. PubMed DOI PMC
Hill CA, Gutierrez JA. A method for extraction and analysis of high quality genomic DNA from ixodid ticks. Med Vet Entomol. 2003;17:224–7. PubMed
Rubin BE, Sanders JG, Hampton-Marcell J, Owens SM, Gilbert JA, Moreau CS. DNA extraction protocols cause differences in 16S rRNA amplicon sequencing efficiency but not in community profile composition or structure. Microbiol Open. 2014;3(6):910–921. doi: 10.1002/mbo3.216. PubMed DOI PMC
Willner D, Daly J, Whiley D, Grimwood K, Wainwright CE, Hugenholtz P. Comparison of DNA extraction methods for microbial community profiling with an application to pediatric bronchoalveolar lavage samples. PLoS One. 2012;7(4):e34605. doi: 10.1371/journal.pone.0034605. PubMed DOI PMC
Rynkiewicz EC, Hemmerich C, Rusch DB, Fuqua C, Clay K. Concordance of bacterial communities of two tick species and blood of their shared rodent host. Mol Ecol. 2015;24(10):2566–2579. doi: 10.1111/mec.13187. PubMed DOI
Van Treuren W, Ponnusamy L, Brinkerhoff RJ, Gonzalez A, Parobek CM, Juliano JJ, et al. Variation in the microbiota of Ixodes ticks with regard to geography, species, and sex. Appl Environ Microbiol. 2015;81(18):6200–6209. doi: 10.1128/AEM.01562-15. PubMed DOI PMC
Barker SC, Walker AR. Ticks of Australia. The species that infest domestic animals and humans. Zootaxa. 2014;3816:1–144. PubMed
Roberts FHS. Australian ticks. Commonwealth Scientific and Industrial Research Organization: Canberra; 1970.
Swei A, Kwan JY. Tick microbiome and pathogen acquisition altered by host blood meal. ISME J. 2017;11(3):813–816. doi: 10.1038/ismej.2016.152. PubMed DOI PMC
Šlapeta Š, Šlapeta J. Molecular identity of cat fleas (Ctenocephalides felis) from cats in Georgia, USA carrying Bartonella clarridgeiae, Bartonella henselae and Rickettsia sp. RF2125. Vet Parasitol (Amst) 2016;3(4):36–40. PubMed
Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016;33(7):1870–1874. doi: 10.1093/molbev/msw054. PubMed DOI PMC
Clarke K, Gorley R. PRIMER v7: user manual/tutorial: PRIMER-E. 2015.
Clarke K. Non-parametric multivariate analyses of changes in community structure. Aust J Ecol. 1993;18:117–143. doi: 10.1111/j.1442-9993.1993.tb00438.x. DOI
Kruskal J, Wish M. Quantitative applications in the social science: multidimensional scaling. Thousand Oaks: SAGE Publications Ltd; 1978.
Chen H. VennDiagram: Generate high-resolution venn and euler plots. R package version 1.0.1432016.
Boudova L, Kazakov D, Šíma R, Vanecek T, Torlakovic E, Lamovec J, et al. Cutaneous lymphoid hyperplasia and other lymphoid infiltrates in the breast nipple. Am J Dermatopathol. 2005;27:375–386. doi: 10.1097/01.dad.0000179463.55129.8a. PubMed DOI
Hii SF, Lawrence AL, Cuttell L, Tynas R, Abd Rani PA, Slapeta J, Traub RJ. Evidence for a specific host-endosymbiont relationship between ‘Rickettsia sp. genotype RF2125’ and Ctenocephalides felis orientis infesting dogs in India. Parasit Vectors. 2015;8:169. doi: 10.1186/s13071-015-0781-x. PubMed DOI PMC
Frangoulidis D, Meyer H, Kahlhofer C, Splettstoesser WD. ‘Real-time’ PCR-based detection of Coxiella burnetii using conventional techniques. FEMS Immunol Med Microbiol. 2012;64(1):134–136. doi: 10.1111/j.1574-695X.2011.00900.x. PubMed DOI
Nadkarni MA, Martin FE, Jacques NA, Hunter N. Determination of bacterial load by real-time PCR using a broad-range (universal) probe and primers set. Microbiology. 2002;148:257–266. doi: 10.1099/00221287-148-1-257. PubMed DOI
Chakravorty S, Helb D, Burday M, Connell N, Alland D. A detailed analysis of 16S ribosomal RNA gene segments for the diagnosis of pathogenic bacteria. J Microbiol Methods. 2007;69:330–339. doi: 10.1016/j.mimet.2007.02.005. PubMed DOI PMC
Schloss PD, Gevers D, Westcott SL. Reducing the effects of PCR amplification and sequencing artifacts on 16S rRNA-based studies. PLoS One. 2011;6(12):e27310. doi: 10.1371/journal.pone.0027310. PubMed DOI PMC
Van De Peer Y, Chapelle S, De Wachter R. A quantitative map of nucleotide substitution rates in bacterial rRNA. Nucleic Acids Res. 1996;24(17):3381–3391. doi: 10.1093/nar/24.17.3381. PubMed DOI PMC
Claesson MJ, Wang Q, O'Sullivan O, Greene-Diniz R, Cole JR, Ross RP, O'Toole PW. Comparison of two next-generation sequencing technologies for resolving highly complex microbiota composition using tandem variable 16S rRNA gene regions. Nucleic Acids Res. 2010;38(22):e200. doi: 10.1093/nar/gkq873. PubMed DOI PMC
Siegwald L, Touzet H, Lemoine Y, Hot D, Audebert C, Caboche S. Assessment of common and emerging bioinformatics pipelines for targeted metagenomics. PLoS One. 2017;12(1):e0169563. doi: 10.1371/journal.pone.0169563. PubMed DOI PMC
Kumar PS, Brooker MR, Dowd SE, Camerlengo T. Target region selection is a critical determinant of community fingerprints generated by 16S pyrosequencing. PLoS One. 2011;6(6):1–8. PubMed PMC
Vishnivetskaya TA, Layton AC, Lau MC, Chauhan A, Cheng KR, Meyers AJ, et al. Commercial DNA extraction kits impact observed microbial community composition in permafrost samples. FEMS Microbiol Ecol. 2014;87(1):217–230. doi: 10.1111/1574-6941.12219. PubMed DOI
Halos L, Bord S, Cotte V, Gasqui P, Abrial D, Barnouin J, et al. Ecological factors characterizing the prevalence of bacterial tick-borne pathogens in Ixodes ricinus ticks in pastures and woodlands. Appl Environ Microbiol. 2010;76(13):4413–4420. doi: 10.1128/AEM.00610-10. PubMed DOI PMC
Cruaud P, Vigneron A, Lucchetti-Miganeh C, Ciron PE, Godfroy S, Cambon-Bonavita MA. Influence of DNA extraction method, 16S rRNA targeted hypervariable regions, and sample origin on microbial diversity detected by 454 pyrosequencing in marine chemosynthetic ecosystems. Appl Environ Microbiol. 2014;80(15):4626–4639. doi: 10.1128/AEM.00592-14. PubMed DOI PMC
Murrell A, Dobson SJ, Yang X, Lacey E, Barker SC. A survey of bacterial diversity in ticks, lice and fleas from Australia. Parasitol Res. 2003;89(4):326–334. PubMed
Takano A, Fujita H, Kadosaka T, Konnai S, Tajima T, Watanabe H, et al. Characterization of reptile-associated Borrelia sp. in the vector tick, Amblyomma geoemydae, and its association with Lyme disease and relapsing fever Borrelia spp. Environ Microbiol Rep. 2011;3(5):632–637. doi: 10.1111/j.1758-2229.2011.00280.x. PubMed DOI
Sentausa E, El Karkouri K, Michelle C, Caputo A, Raoult D, Fournier PE. Genome sequence of Rickettsia tamurae, a recently detected human pathogen in Japan. Genome Announc. 2014;2(5):e00838–e00814. doi: 10.1128/genomeA.00838-14. PubMed DOI PMC
Imaoka K, Kaneko S, Tabara K, Kusatake K, Morita E. The first human case of Rickettsia tamurae infection in Japan. Case Rep Dermatol. 2011;3(1):68–73. doi: 10.1159/000326941. PubMed DOI PMC
Kho KL, Koh FX, Tay ST. Molecular evidence of potential novel spotted fever group rickettsiae, Anaplasma and Ehrlichia species in Amblyomma ticks parasitizing wild snakes. Parasit Vectors. 2015;8:112. doi: 10.1186/s13071-015-0719-3. PubMed DOI PMC