Experimental Infection of Mice and Ticks with the Human Isolate of Anaplasma phagocytophilum NY-18
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
22-30920S
Czech Science Foundation
20-05736S
Czech Science Foundation
CZ.02.1.01/0.0/0.0/16_019/0000759
European Regional Development Fund
NU20-05-00396
Ministry of Health of the Czech Republic (Czech Health Research Council)
PubMed
35890063
PubMed Central
PMC9325317
DOI
10.3390/pathogens11070820
PII: pathogens11070820
Knihovny.cz E-zdroje
- Klíčová slova
- Anaplasma phagocytophilum, Ixodes ricinus, Ixodes scapularis, animal model, human granulocytic anaplasmosis, tick, transmission, vector competence,
- Publikační typ
- časopisecké články MeSH
Anaplasma phagocytophilum is the causative agent of tick-borne fever (TBF) and human granulocytic anaplasmosis (HGA) and is currently considered an emerging disease in the USA, Europe, and Asia. The increased prevalence of A. phagocytophilum as a human pathogen requires the detailed characterization of human isolates and the implementation of appropriate animal models. In this study, we demonstrated that the dynamics of infection with the human isolate of A. phagocytophilum NY-18 was variable in three different strains of mice (SCID, C3H/HeN, BALB/c). We further evaluated the ability of Ixodes ricinus to acquire and transmit A. phagocytophilum NY-18 and compared it with Ixodes scapularis. Larvae of both tick species effectively acquired the pathogen while feeding on infected mice. The infection rates then decreased during the development to nymphs. Interestingly, molted I. ricinus nymphs were unable to transmit the pathogen to naïve mice, which contrasted with I. scapularis. The results of our study suggest that I. ricinus is not a competent vector for the American human Anaplasma isolate. Further studies are needed to establish reliable transmission models for I. ricinus and European human isolate(s) of A. phagocytophilum.
Zobrazit více v PubMed
Dumler J.S., Barbet A.F., Bekker C.P.J., Dasch G.A., Palmer G.H., Ray S., Rikihisa Y., Rurangirwa F.R. Reorganization of genera in the families Rickettsiaceae and Anaplasmataceae in the order Rickettsiales: Unification of some species of Ehrlichia with Anaplasma, Cowdria with Ehrlichia and Ehrlichia with Neorickettsia, descriptions of six new species combinations and designation of Ehrlichia equi and ‘HGE agent’ as subjective synonyms of Ehrlichia phagocytophila. Int. J. Syst. Evol. Microbiol. 2001;51:2145–2165. doi: 10.1099/00207713-51-6-2145. PubMed DOI
Matei I.A., Estrada-Peña A., Cutler S.J., Vayssier-Taussat M., Castro L.V., Potkonjak A., Zeller H., Mihalca A.D. A review on the eco-epidemiology and clinical management of human granulocytic anaplasmosis and its agent in Europe. Parasites Vectors. 2019;12:599. doi: 10.1186/s13071-019-3852-6. PubMed DOI PMC
Dahlgren F.S., Heitman K.N., Behravesh C.B., Drexler N.A., Massung R.F. Human Granulocytic Anaplasmosis in the United States from 2008 to 2012: A Summary of National Surveillance Data. Am. J. Trop. Med. Hyg. 2015;93:66–72. doi: 10.4269/ajtmh.15-0122. PubMed DOI PMC
Ayllón N., Villar M., Galindo R.C., Kocan K.M., Šíma R., Lopez J.A., Vázquez J., Alberdi P., Cabezas-Cruz A., Kopáček P., et al. Systems Biology of Tissue-Specific Response to Anaplasma phagocytophilum Reveals Differentiated Apoptosis in the Tick Vector Ixodes scapularis. PLoS Genet. 2015;11:e1005120. doi: 10.1371/journal.pgen.1005120. PubMed DOI PMC
Woldehiwet Z. The natural history of Anaplasma phagocytophilum. Vet. Parasitol. 2010;167:108–122. doi: 10.1016/j.vetpar.2009.09.013. PubMed DOI
Dumler J.S., Walker D.H. Tick-borne ehrlichioses. Lancet Infect. Dis. 2001;1:21–28. doi: 10.1016/S1473-3099(09)70296-8. PubMed DOI
Hajdušek O., Šíma R., Ayllón N., Jalovecká M., Perner J., De La Fuente J., Kopáček P. Interaction of the tick immune system with transmitted pathogens. Front. Cell. Infect. Microbiol. 2013;3:26. doi: 10.3389/fcimb.2013.00026. PubMed DOI PMC
Stuen S., Granquist E.G., Silaghi C. Anaplasma phagocytophilum—a widespread multi-host pathogen with highly adaptive strategies. Front. Cell. Infect. Microbiol. 2013;3:31. doi: 10.3389/fcimb.2013.00031. PubMed DOI PMC
Jahfari S., Coipan E.C., Fonville M., van Leeuwen A.D., Hengeveld P., Heylen D., Heyman P., van Maanen C., Butler C.M., Földvári G., et al. Circulation of four Anaplasma phagocytophilum ecotypes in Europe. Parasites Vectors. 2014;7:365. doi: 10.1186/1756-3305-7-365. PubMed DOI PMC
De La Fuente J., Massung R.F., Wong S.J., Chu F.K., Lutz H., Meli M., Von Loewenich F.D., Grzeszczuk A., Torina A., Caracappa S., et al. Sequence analysis of the msp4 gene of Anaplasma phagocytophilum strains. J. Clin. Microbiol. 2005;43:1309–1317. doi: 10.1128/JCM.43.3.1309-1317.2005. PubMed DOI PMC
Rar V., Golovljova I. Anaplasma, Ehrlichia, and “Candidatus Neoehrlichia” bacteria: Pathogenicity, biodiversity, and molecular genetic characteristics, a review. Infect. Genet. Evol. 2011;11:1842–1861. doi: 10.1016/j.meegid.2011.09.019. PubMed DOI
Trost C.N., Lindsay L.R., Dibernardo A., Chilton N.B. Three genetically distinct clades of Anaplasma phagocytophilum in Ixodes scapularis. Ticks Tick-Borne Dis. 2018;9:1518–1527. doi: 10.1016/j.ttbdis.2018.07.002. PubMed DOI
Philipp M.T., Johnson B.J. Animal models of Lyme disease: Pathogenesis and immunoprophylaxis. Trends Microbiol. 1994;2:431–437. doi: 10.1016/0966-842X(94)90800-1. PubMed DOI
Pospisilova T., Urbanova V., Hes O., Kopacek P., Hajdusek O., Sima R. Tracking of Borrelia afzelii Transmission from Infected Ixodes ricinus Nymphs to Mice. Infect. Immun. 2019;87:e00896-18. doi: 10.1128/IAI.00896-18. PubMed DOI PMC
Kocan K.M., Busby A.T., Allison R.W., Breshears M.A., Coburn L., Galindo R.C., Ayllón N., Blouin E.F., de la Fuente J. Sheep experimentally infected with a human isolate of Anaplasma phagocytophilum serve as a host for infection of Ixodes scapularis ticks. Ticks Tick Borne Dis. 2012;3:147–153. doi: 10.1016/j.ttbdis.2012.01.004. PubMed DOI
Reppert E., Galindo R.C., Ayllón N., Breshears M.A., Kocan K.M., Blouin E.F., De La Fuente J. Studies of Anaplasma phagocytophilum in sheep experimentally infected with the human NY-18 isolate: Characterization of tick feeding sites. Ticks Tick-borne Dis. 2014;5:744–752. doi: 10.1016/j.ttbdis.2014.05.014. PubMed DOI
Blas-Machado U., De La Fuente J., Blouin E.F., Almazan C., Kocan K.M., Mysore J.V. Experimental Infection of C3H/HeJ Mice with the NY18 Isolate of Anaplasma phagocytophilum. Vet. Pathol. 2007;44:64–73. doi: 10.1354/vp.44-1-64. PubMed DOI
De la Fuente J., Antunes S., Bonnet S., Cabezas-Cruz A., Domingos A.G., Estrada-Peña A., Johnson N., Kocan K.M., Mansfield K.L., Nijhof A.M., et al. Tick-Pathogen Interactions and Vector Competence: Identification of Molecular Drivers for Tick-Borne Diseases. Front. Cell Infect. Microbiol. 2017;7:114. doi: 10.3389/fcimb.2017.00114. PubMed DOI PMC
Bakken J.S., Dumler J.S. Human Granulocytic Anaplasmosis. Infect Dis. Clin. N. Am. 2015;29:341–355. doi: 10.1016/j.idc.2015.02.007. PubMed DOI PMC
Asanovich K.M., Bakken J.S., Madigan J.E., Aguero-Rosenfeld M., Wormser G.P., Dumler J.S. Antigenic Diversity of Granulocytic Ehrlichia Isolates from Humans in Wisconsin and New York and a Horse in California. J. Infect. Dis. 1997;176:1029–1034. doi: 10.1086/516529. PubMed DOI
Hodzic E., Ijdo J.W.I., Feng S., Katavolos P., Sun W., Maretzki C.H., Fish D., Fikrig E., Iii S.R.T., Barthold S.W., et al. Granulocytic ehrlichiosis in the laboratory mouse. J. Infect. Dis. 1998;177:737–745. doi: 10.1086/514236. PubMed DOI
Telford S.R., 3rd, Dawson J.E., Katavolos P., Warner C.K., Kolbert C.P., Persing D.H. Perpetuation of the agent of human granulocytic ehrlichiosis in a deer tick-rodent cycle. Proc. Natl. Acad. Sci. USA. 1996;93:6209–6214. doi: 10.1073/pnas.93.12.6209. PubMed DOI PMC
Borjesson D.L., Barthold S.W. The mouse as a model for investigation of human granulocytic ehrlichiosis: Current knowledge and future directions. Comp. Med. 2002;52:403–413. PubMed
Fourie J.J., Evans A., Labuschagne M., Crafford D., Madder M., Pollmeier M., Schunack B. Transmission of Anaplasma phagocytophilum (Foggie, 1949) by Ixodes ricinus (Linnaeus, 1758) ticks feeding on dogs and artificial membranes. Parasites Vectors. 2019;12:136. doi: 10.1186/s13071-019-3396-9. PubMed DOI PMC
Almazán C., Fourniol L., Rouxel C., Alberdi P., Gandoin C., Lagrée A.-C., Boulouis H.-J., De La Fuente J., Bonnet S. Experimental Ixodes ricinus-Sheep Cycle of Anaplasma phagocytophilum NV2Os Propagated in Tick Cell Cultures. Front. Vet. Sci. 2020;7:40. doi: 10.3389/fvets.2020.00040. PubMed DOI PMC
Kazimírová M., Silaghi C., Hamšíková Z., Bonnet S., Zweygarth E., Alberdi P. IV Labudove DNI. Institute of Virology, Slovak Academy of Sciences; Bratislava, Slovakia: 2015. Experimental infections of laboratory mice and ixodes ricinus ticks with different geographic isolates of anaplasma phagocytophilum. Abstract Book. in press.
Ogden N.H., Casey A.N.J., Woldehiwet Z., French N.P. Transmission of Anaplasma phagocytophilum to Ixodes ricinus Ticks from Sheep in the Acute and Post-Acute Phases of Infection. Infect. Immun. 2003;71:2071–2078. doi: 10.1128/IAI.71.4.2071-2078.2003. PubMed DOI PMC
Levin M.L., Stanley H.M., Hartzer K., Snellgrove A.N. Incompetence of the Asian Longhorned Tick (Acari: Ixodidae) in Transmitting the Agent of Human Granulocytic Anaplasmosis in the United States. J. Med. Èntomol. 2021;58:1419–1423. doi: 10.1093/jme/tjab015. PubMed DOI PMC
Goodman J.L., Nelson C., Vitale B., Madigan J.E., Dumler J.S., Kurtti T.J., Munderloh U.G. Direct Cultivation of the Causative Agent of Human Granulocytic Ehrlichiosis. N. Engl. J. Med. 1996;334:209–215. doi: 10.1056/NEJM199601253340401. PubMed DOI
Pfaffl M.W. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001;29:e45. doi: 10.1093/nar/29.9.e45. PubMed DOI PMC