Electrically Conductive, Transparent Polymeric Nanocomposites Modified by 2D Ti3C2Tx (MXene)
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
QUHI-CENG-18/19-1
Qatar University
PubMed
31370311
PubMed Central
PMC6723293
DOI
10.3390/polym11081272
PII: polym11081272
Knihovny.cz E-zdroje
- Klíčová slova
- MXene, casting, electrical properties, polymer-matrix composites (PMCs),
- Publikační typ
- časopisecké články MeSH
The electrically conductive, transparent, and flexible self-standing thin nanocomposite films based on copolyamide matrix (coPA:Vestamelt X1010) modified with 2D Ti3C2Tx (MXene) nanosheets were prepared by casting and their electrical, mechanical and optical properties and then, were investigated. The percolation threshold of the MXene filler within the coPA matrix was found to be 0.05 vol. %, and the highest determined electrical conductivity was 1.4 × 10-2 S·cm-1 for the composite filled with 5 wt. % (1.8 vol. %) of MXene. The electrical conductivity of the as-prepared MXene was 9.1 S·cm-1, and the electrical conductivity of the MAX phase (the precursor for MXene preparation) was 172 S·cm-1. The transparency of the prepared composite films exceeded 75%, even for samples containing 5 wt. % of MXene, as confirmed by UV spectroscopy. The dynamic mechanical analysis confirmed the improved mechanical properties, such as the storage modulus, which improved with the increasing MXene content. Moreover, all the composite films were very flexible and did not break under repeated twisting. The combination of the relatively high electrical conductivity of the composites filled with low filler content, an appropriate transparency, and good mechanical properties make these materials promising for applications in flexible electronics.
Center for Advanced Materials Qatar University Doha P O Box 2713 Qatar
Polymer Institute Slovak Academy of Sciences Dubravska cesta 9 Bratislava 845 41 Slovakia
Zobrazit více v PubMed
Chen F., Wan P., Xu H., Sun X. Flexible Transparent Supercapacitors Based on Hierarchical Nanocomposite Films. ACS Appl. Mater. Interfaces. 2017;9:17865–17871. doi: 10.1021/acsami.7b02460. PubMed DOI
Huang G.-W., Xiao H.-M., Fu S.-Y. Wearable Electronics of Silver-Nanowire/Poly(dimethylsiloxane) Nanocomposite for Smart Clothing. Sci. Rep. 2015;5:13971. doi: 10.1038/srep13971. PubMed DOI PMC
Song J.-K., Son D., Kim J., Yoo Y.J., Lee G.J., Wang L., Choi M.K., Yang J., Lee M., Do K., et al. Wearable Force Touch Sensor Array Using a Flexible and Transparent Electrode. Adv. Funct. Mater. 2017;27:1605286. doi: 10.1002/adfm.201605286. DOI
Kumar A., Zhou C. The Race To Replace Tin-Doped Indium Oxide: Which Material will Win? ACS Nano. 2010;4:11–14. doi: 10.1021/nn901903b. PubMed DOI
Prakash A., Xu P., Faghaninia A., Shukla S., Ager J.W., Lo C.S., Jalan B. Wide bandgap BaSnO3 films with room temperature conductivity exceeding 104 S cm−1. Nat. Commun. 2017;8:15167. doi: 10.1038/ncomms15167. PubMed DOI PMC
Maruyama B., Journal K.A.-S. Carbon nanotubes and nanofibers in composite materials. SAMPE. 2002;38:59–70.
Ong B.S., Wu Y., Liu P., Gardner S. High-Performance Semiconducting Polythiophenes for Organic Thin-Film Transistors. J. Am. Chem. Soc. 2004;126:3378–3379. doi: 10.1021/ja039772w. PubMed DOI
McCulloch I., Heeney M., Bailey C., Genevicius K., MacDonald I., Shkunov M., Sparrowe D., Tierney S., Wagner R., Zhang W., et al. Liquid-crystalline semiconducting polymers with high charge-carrier mobility. Nat. Mater. 2006;5:328–333. doi: 10.1038/nmat1612. PubMed DOI
Xu Z., Liu Z., Sun H., Gao C. Highly Electrically Conductive Ag-Doped Graphene Fibers as Stretchable Conductors. Adv. Mater. 2013;25:3249–3253. doi: 10.1002/adma.201300774. PubMed DOI
Sui D., Huang Y., Huang L., Liang J., Ma Y., Chen Y. Flexible and Transparent Electrothermal Film Heaters Based on Graphene Materials. Small. 2011;7:3186–3192. doi: 10.1002/smll.201101305. PubMed DOI
Lagrève C., Feller J.F., Linossier I., Levesque G. Poly(butylene terephthalate)/poly(ethylene-co-alkyl acrylate)/carbon black conductive composites: Influence of composition and morphology on electrical properties. Polym. Eng. Sci. 2001;41:1124–1132. doi: 10.1002/pen.10813. DOI
Feller J.F. Conductive polymer composites: Influence of extrusion conditions on positive temperature coefficient effect of poly(butylene terephthalate)/poly(olefin)-carbon black blends. J. Appl. Polym. Sci. 2004;91:2151–2157. doi: 10.1002/app.13337. DOI
Weber I., Schwartz P. Monitoring bending fatigue in carbon-fibre/epoxy composite strands: A comparison between mechanical and resistance techniques. Compos. Sci. Technol. 2001;61:849–853. doi: 10.1016/S0266-3538(01)00028-8. DOI
Park J., Shin K.S. Novel method of polymer/low-melting-point metal alloy/light metal fiber composite fabrication. Express Polym. Lett. 2016;10:526–536. doi: 10.3144/expresspolymlett.2016.50. DOI
Boiteux G., Fournier J., Issotier D., Scytre G., Marichy G. Conductive thermoset composites: PTC effect. Synth. Met. 1999;102:1234–1235. doi: 10.1016/S0379-6779(98)01432-5. DOI
Sadej M., Gojzewski H., Gajewski P., Vancso G.J., Andrzejewska E. Photocurable acrylate-based composites with enhanced thermal conductivity containing boron and silicon nitrides. Express Polym. Lett. 2018;12:790–807. doi: 10.3144/expresspolymlett.2018.68. DOI
Lin C.W., Hwang B.J., Lee C.R. Characteristics and sensing behavior of electrochemically codeposited polypyrrole-poly(vinyl alcohol) thin film exposed to ethanol vapors. J. Appl. Polym. Sci. 1999;73:2079–2087. doi: 10.1002/(SICI)1097-4628(19990912)73:11<2079::AID-APP3>3.0.CO;2-1. DOI
Qiu L., Lim J.A., Wang X., Lee W.H., Hwang M., Cho K. Versatile Use of Vertical-Phase-Separation-Induced Bilayer Structures in Organic Thin-Film Transistors. Adv. Mater. 2008;20:1141–1145. doi: 10.1002/adma.200702505. DOI
Khazaei M., Arai M., Sasaki T., Chung C.-Y., Venkataramanan N.S., Estili M., Sakka Y., Kawazoe Y. Novel Electronic and Magnetic Properties of Two-Dimensional Transition Metal Carbides and Nitrides. Adv. Funct. Mater. 2013;23:2185–2192. doi: 10.1002/adfm.201202502. DOI
Gao Y., Wang L., Zhou A., Li Z., Chen J., Bala H., Hu Q., Cao X. Hydrothermal synthesis of TiO2/Ti3C2 nanocomposites with enhanced photocatalytic activity. Mater. Lett. 2015;150:62–64. doi: 10.1016/j.matlet.2015.02.135. DOI
Naguib M., Kurtoglu M., Presser V., Lu J., Niu J., Heon M., Hultman L., Gogotsi Y., Barsoum M.W. Two-Dimensional Nanocrystals Produced by Exfoliation of Ti3AlC2. Adv. Mater. 2011;23:4248–4253. doi: 10.1002/adma.201102306. PubMed DOI
Naguib M., Mashtalir O., Carle J., Presser V., Lu J., Hultman L., Gogotsi Y., Barsoum M.W. Two-Dimensional Transition Metal Carbides. ACS Nano. 2012;6:1322–1331. doi: 10.1021/nn204153h. PubMed DOI
Dall’Agnese Y., Lukatskaya M.R., Cook K.M., Taberna P.-L., Gogotsi Y., Simon P. High capacitance of surface-modified 2D titanium carbide in acidic electrolyte. Electrochem. Commun. 2014;48:118–122. doi: 10.1016/j.elecom.2014.09.002. DOI
Xin Y., Yu Y.-X. Possibility of bare and functionalized niobium carbide MXenes for electrode materials of supercapacitors and field emitters. Mater. Des. 2017;130:512–520. doi: 10.1016/j.matdes.2017.05.052. DOI
Lukatskaya M.R., Mashtalir O., Ren C.E., Dall’Agnese Y., Rozier P., Taberna P.L., Naguib M., Simon P., Barsoum M.W., Gogotsi Y. Cation Intercalation and High Volumetric Capacitance of Two-Dimensional Titanium Carbide. Science. 2013;341:1502–1505. doi: 10.1126/science.1241488. PubMed DOI
Xie X., Chen S., Ding W., Nie Y., Wei Z. An extraordinarily stable catalyst: Pt NPs supported on two-dimensional Ti3C2X2 (X = OH, F) nanosheets for oxygen reduction reaction. Chem. Commun. 2013;49:10112. doi: 10.1039/c3cc44428g. PubMed DOI
Gao Y., Wang L., Li Z., Zhou A., Hu Q., Cao X. Preparation of MXene-Cu2O nanocomposite and effect on thermal decomposition of ammonium perchlorate. Solid State Sci. 2014;35:62–65. doi: 10.1016/j.solidstatesciences.2014.06.014. DOI
Peng Q., Guo J., Zhang Q., Xiang J., Liu B., Zhou A., Liu R., Tian Y. Unique Lead Adsorption Behavior of Activated Hydroxyl Group in Two-Dimensional Titanium Carbide. J. Am. Chem. Soc. 2014;136:4113–4116. doi: 10.1021/ja500506k. PubMed DOI
Mashtalir O., Cook K.M., Mochalin V.N., Crowe M., Barsoum M.W., Gogotsi Y. Dye adsorption and decomposition on two-dimensional titanium carbide in aqueous media. J. Mater. Chem. A. 2014;2:14334–14338. doi: 10.1039/C4TA02638A. DOI
Lorencova L., Gajdosova V., Hroncekova S., Bertok T., Blahutova J., Vikartovska A., Parrakova L., Gemeiner P., Kasak P., Tkac J. 2D MXenes as Perspective Immobilization Platforms for Design of Electrochemical Nanobiosensors. Electroanalysis. 2019 doi: 10.1002/elan.201900288. DOI
Lorencova L., Bertok T., Dosekova E., Holazova A., Paprckova D., Vikartovska A., Sasinkova V., Filip J., Kasak P., Jerigova M., et al. Electrochemical performance of Ti3C2Tx MXene in aqueous media: Towards ultrasensitive H2O2 sensing. Electrochim. Acta. 2017;235:471–479. doi: 10.1016/j.electacta.2017.03.073. PubMed DOI PMC
Rasool K., Mahmoud K.A., Johnson D.J., Helal M., Berdiyorov G.R., Gogotsi Y. Efficient Antibacterial Membrane based on Two-Dimensional Ti3C2Tx (MXene) Nanosheets. Sci. Rep. 2017;7:1598. doi: 10.1038/s41598-017-01714-3. PubMed DOI PMC
Rasool K., Helal M., Ali A., Ren C.E., Gogotsi Y., Mahmoud K.A. Antibacterial Activity of Ti3C2Tx MXene. ACS Nano. 2016;10:3674–3684. doi: 10.1021/acsnano.6b00181. PubMed DOI
Naguib M., Come J., Dyatkin B., Presser V., Taberna P.-L., Simon P., Barsoum M.W., Gogotsi Y. MXene: A promising transition metal carbide anode for lithium-ion batteries. Electrochem. Commun. 2012;16:61–64. doi: 10.1016/j.elecom.2012.01.002. DOI
Feng A., Yu Y., Wang Y., Jiang F., Yu Y., Mi L., Song L. Two-dimensional MXene Ti3C2 produced by exfoliation of Ti3AlC2. Mater. Des. 2017;114:161–166. doi: 10.1016/j.matdes.2016.10.053. DOI
An H., Habib T., Shah S., Gao H., Radovic M., Green M.J., Lutkenhaus J.L. Surface-agnostic highly stretchable and bendable conductive MXene multilayers. Sci. Adv. 2018;4:eaaq0118. doi: 10.1126/sciadv.aaq0118. PubMed DOI PMC
Feng Y., Deng Q., Peng C., Hu J., Li Y., Wu Q., Xu Z. An ultrahigh discharged energy density achieved in an inhomogeneous PVDF dielectric composite filled with 2D MXene nanosheets via interface engineering. J. Mater. Chem. C. 2018;6:13283–13292. doi: 10.1039/C8TC05180A. DOI
Sun R., Zhang H.-B., Liu J., Xie X., Yang R., Li Y., Hong S., Yu Z.-Z. Highly Conductive Transition Metal Carbide/Carbonitride(MXene)@polystyrene Nanocomposites Fabricated by Electrostatic Assembly for Highly Efficient Electromagnetic Interference Shielding. Adv. Funct. Mater. 2017;27:1702807. doi: 10.1002/adfm.201702807. DOI
Zhang J., Seyedin S., Qin S., Wang Z., Moradi S., Yang F., Lynch P.A., Yang W., Liu J., Wang X., et al. Highly Conductive Ti3C2Tx MXene Hybrid Fibers for Flexible and Elastic Fiber-Shaped Supercapacitors. Small. 2019;15:1804732. doi: 10.1002/smll.201804732. PubMed DOI
Liu R., Miao M., Li Y., Zhang J., Cao S., Feng X. Ultrathin Biomimetic Polymeric Ti3C2Tx MXene Composite Films for Electromagnetic Interference Shielding. ACS Appl. Mater. Interfaces. 2018;10:44787–44795. doi: 10.1021/acsami.8b18347. PubMed DOI
Ling Z., Ren C.E., Zhao M.-Q., Yang J., Giammarco J.M., Qiu J., Barsoum M.W., Gogotsi Y. Flexible and conductive MXene films and nanocomposites with high capacitance. Proc. Natl. Acad. Sci. USA. 2014;111:16676–16681. doi: 10.1073/pnas.1414215111. PubMed DOI PMC
Zhang H., Wang L., Chen Q., Li P., Zhou A., Cao X., Hu Q. Preparation, mechanical and anti-friction performance of MXene/polymer composites. Mater. Des. 2016;92:682–689. doi: 10.1016/j.matdes.2015.12.084. DOI
Sobolčiak P., Ali A., Hassan M.K., Helal M.I., Tanvir A., Popelka A., Al-Maadeed M.A., Krupa I., Mahmoud K.A. 2D Ti3C2Tx (MXene)-reinforced polyvinyl alcohol (PVA) nanofibers with enhanced mechanical and electrical properties. PLoS ONE. 2017;12:e0183705. doi: 10.1371/journal.pone.0183705. PubMed DOI PMC
Cao Y., Deng Q., Liu Z., Shen D., Wang T., Huang Q., Du S., Jiang N., Lin C.-T., Yu J. Enhanced thermal properties of poly(vinylidene fluoride) composites with ultrathin nanosheets of MXene. RSC Adv. 2017;7:20494–20501. doi: 10.1039/C7RA00184C. DOI
Tu S., Jiang Q., Zhang X., Alshareef H.N. Large Dielectric Constant Enhancement in MXene Percolative Polymer Composites. ACS Nano. 2018;12:3369–3377. doi: 10.1021/acsnano.7b08895. PubMed DOI
Naguib M., Saito T., Lai S., Rager M.S., Aytug T., Parans Paranthaman M., Zhao M.-Q., Gogotsi Y. Ti3C2Tx (MXene)–polyacrylamide nanocomposite films. RSC Adv. 2016;6:72069–72073. doi: 10.1039/C6RA10384G. DOI
Lipatov A., Alhabeb M., Lukatskaya M.R., Boson A., Gogotsi Y., Sinitskii A. Effect of Synthesis on Quality, Electronic Properties and Environmental Stability of Individual Monolayer Ti3C2 MXene Flakes. Adv. Electron. Mater. 2016;2:1600255. doi: 10.1002/aelm.201600255. DOI
Alhabeb M., Maleski K., Anasori B., Lelyukh P., Clark L., Sin S., Gogotsi Y. Guidelines for Synthesis and Processing of Two-Dimensional Titanium Carbide (Ti3C2Tx MXene) Chem. Mater. 2017;29:7633–7644. doi: 10.1021/acs.chemmater.7b02847. DOI
Thermo Scientific XPS: Knowledge Base. [(accessed on 28 June 2019)]; Available online: https://xpssimplified.com/periodictable.php.
Boča M., Barborík P., Mičušík M., Omastová M. X-ray photoelectron spectroscopy as detection tool for coordinated or uncoordinated fluorine atoms demonstrated on fluoride systems NaF, K2TaF7, K3TaF8, K2ZrF6, Na7Zr6F31 and K3ZrF7. Solid State Sci. 2012;14:828–832. doi: 10.1016/j.solidstatesciences.2012.04.018. DOI
Ramesh C. New Crystalline Transitions in Nylons 4,6, 6,10, and 6,12 Using High Temperature X-ray Diffraction Studies. Macromolecules. 1999;32:3721–3726. doi: 10.1021/ma981284z. DOI
Stauffer D., Aharony A. Introduction to Percolation Theory. Taylor & Francis; Abingdon, UK: 1985.
Hoseini A.H.A., Arjmand M., Sundararaj U., Trifkovic M. Significance of interfacial interaction and agglomerates on electrical properties of polymer-carbon nanotube nanocomposites. Mater. Des. 2017;125:126–134. doi: 10.1016/j.matdes.2017.04.004. DOI
Logakis E., Pandis C., Peoglos V., Pissis P., Pionteck J., Pötschke P., Mičušík M., Omastová M. Electrical/dielectric properties and conduction mechanism in melt processed polyamide/multi-walled carbon nanotubes composites. Polymer. 2009;50:5103–5111. doi: 10.1016/j.polymer.2009.08.038. DOI
Kirkpatrick S. Percolation and Conduction. Rev. Mod. Phys. 1973;45:574–588. doi: 10.1103/RevModPhys.45.574. DOI
Tchmutin I.A., Ponomarenko A.T., Shevchenko V.G., Godovski D.Y. Analysis of peculiarities in percolation behavior of some conducting polymer composites. Synth. Met. 1994;66:19–23. doi: 10.1016/0379-6779(94)90156-2. DOI
Moucka R., Mrlik M., Ilcikova M., Spitalsky Z., Kazantseva N., Bober P., Stejskal J. Electrical transport properties of poly(aniline-co-p-phenylenediamine) and its composites with incorporated silver particles. Chem. Pap. 2013;67:1012–1019. doi: 10.2478/s11696-013-0351-7. DOI
Preda F.-M., Alegría A., Bocahut A., Fillot L.-A., Long D.R., Sotta P. Investigation of Water Diffusion Mechanisms in Relation to Polymer Relaxations in Polyamides. Macromolecules. 2015;48:5730–5741. doi: 10.1021/acs.macromol.5b01295. DOI
Füllbrandt M., Wellert S., von Klitzing R., Schönhals A. Thermal and corrosion (in)stability of polyamide 6 studied by broadband dielectric spectroscopy. Polymer. 2015;75:34–43. doi: 10.1016/j.polymer.2015.08.016. DOI
Zhang J., Mine M., Zhu D., Matsuo M. Electrical and dielectric behaviors and their origins in the three-dimensional polyvinyl alcohol/MWCNT composites with low percolation threshold. Carbon. 2009;47:1311–1320. doi: 10.1016/j.carbon.2009.01.014. DOI
Zhang Y., Yu W., Qin W., Yang Z., Yang D., Xing Y., Liu S.F., Li C. Perovskite as an effective Voc switcher for high efficiency polymer solar cells. Nano Energy. 2016;20:126–133. doi: 10.1016/j.nanoen.2015.08.016. DOI
Mrlík M., Moučka R., Ilčíková M., Bober P., Kazantseva N., Špitálský Z., Trchová M., Stejskal J. Charge transport and dielectric relaxation processes in aniline-based oligomers. Synth. Met. 2014;192:37–42. doi: 10.1016/j.synthmet.2014.02.022. DOI
Petzelt J., Nuzhnyy D., Bovtun V., Savinov M., Kempa M., Rychetsky I. Broadband dielectric and conductivity spectroscopy of inhomogeneous and composite conductors. Phys. Status Solidi. 2013;210:2259–2271. doi: 10.1002/pssa.201329288. DOI
Varga M., Kopecká J., Morávková Z., Křivka I., Trchová M., Stejskal J., Prokeš J. Effect of oxidant on electronic transport in polypyrrole nanotubes synthesized in the presence of methyl orange. J. Polym. Sci. Part B Polym. Phys. 2015;53:1147–1159. doi: 10.1002/polb.23755. DOI
Sobolciak P., Mrlík M., AlMaadeed M.A., Krupa I. Calorimetric and dynamic mechanical behavior of phase change materials based on paraffin wax supported by expanded graphite. Thermochim. Acta. 2015;617:111–119. doi: 10.1016/j.tca.2015.08.026. DOI
Chen D., Tang C., Chan K., Tsui C., Yu P., Leung M., Uskokovic P. Dynamic mechanical properties and in vitro bioactivity of PHBHV/HA nanocomposite. Compos. Sci. Technol. 2007;67:1617–1626. doi: 10.1016/j.compscitech.2006.07.034. DOI
Pagacz J., Raftopoulos K.N., Leszczyńska A., Pielichowski K. Bio-polyamides based on renewable raw materials. J. Therm. Anal. Calorim. 2016;123:1225–1237. doi: 10.1007/s10973-015-4929-x. DOI
Ilčíková M., Mrlík M., Sedláček T., Šlouf M., Zhigunov A., Koynov K., Mosnáček J. Synthesis of Photoactuating Acrylic Thermoplastic Elastomers Containing Diblock Copolymer-Grafted Carbon Nanotubes. ACS Macro Lett. 2014;3:999–1003. doi: 10.1021/mz500444m. PubMed DOI
Cvek M., Mrlík M., Ilčíková M., Mosnáček J., Münster L., Pavlínek V. Synthesis of Silicone Elastomers Containing Silyl-Based Polymer-Grafted Carbonyl Iron Particles: An Efficient Way To Improve Magnetorheological, Damping, and Sensing Performances. Macromolecules. 2017;50:2189–2200. doi: 10.1021/acs.macromol.6b02041. DOI
MXene (Ti3C2Tx)-Embedded Nanocomposite Hydrogels for Biomedical Applications: A Review