Electrically Conductive, Transparent Polymeric Nanocomposites Modified by 2D Ti3C2Tx (MXene)

. 2019 Jul 31 ; 11 (8) : . [epub] 20190731

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31370311

Grantová podpora
QUHI-CENG-18/19-1 Qatar University

The electrically conductive, transparent, and flexible self-standing thin nanocomposite films based on copolyamide matrix (coPA:Vestamelt X1010) modified with 2D Ti3C2Tx (MXene) nanosheets were prepared by casting and their electrical, mechanical and optical properties and then, were investigated. The percolation threshold of the MXene filler within the coPA matrix was found to be 0.05 vol. %, and the highest determined electrical conductivity was 1.4 × 10-2 S·cm-1 for the composite filled with 5 wt. % (1.8 vol. %) of MXene. The electrical conductivity of the as-prepared MXene was 9.1 S·cm-1, and the electrical conductivity of the MAX phase (the precursor for MXene preparation) was 172 S·cm-1. The transparency of the prepared composite films exceeded 75%, even for samples containing 5 wt. % of MXene, as confirmed by UV spectroscopy. The dynamic mechanical analysis confirmed the improved mechanical properties, such as the storage modulus, which improved with the increasing MXene content. Moreover, all the composite films were very flexible and did not break under repeated twisting. The combination of the relatively high electrical conductivity of the composites filled with low filler content, an appropriate transparency, and good mechanical properties make these materials promising for applications in flexible electronics.

Zobrazit více v PubMed

Chen F., Wan P., Xu H., Sun X. Flexible Transparent Supercapacitors Based on Hierarchical Nanocomposite Films. ACS Appl. Mater. Interfaces. 2017;9:17865–17871. doi: 10.1021/acsami.7b02460. PubMed DOI

Huang G.-W., Xiao H.-M., Fu S.-Y. Wearable Electronics of Silver-Nanowire/Poly(dimethylsiloxane) Nanocomposite for Smart Clothing. Sci. Rep. 2015;5:13971. doi: 10.1038/srep13971. PubMed DOI PMC

Song J.-K., Son D., Kim J., Yoo Y.J., Lee G.J., Wang L., Choi M.K., Yang J., Lee M., Do K., et al. Wearable Force Touch Sensor Array Using a Flexible and Transparent Electrode. Adv. Funct. Mater. 2017;27:1605286. doi: 10.1002/adfm.201605286. DOI

Kumar A., Zhou C. The Race To Replace Tin-Doped Indium Oxide: Which Material will Win? ACS Nano. 2010;4:11–14. doi: 10.1021/nn901903b. PubMed DOI

Prakash A., Xu P., Faghaninia A., Shukla S., Ager J.W., Lo C.S., Jalan B. Wide bandgap BaSnO3 films with room temperature conductivity exceeding 104 S cm−1. Nat. Commun. 2017;8:15167. doi: 10.1038/ncomms15167. PubMed DOI PMC

Maruyama B., Journal K.A.-S. Carbon nanotubes and nanofibers in composite materials. SAMPE. 2002;38:59–70.

Ong B.S., Wu Y., Liu P., Gardner S. High-Performance Semiconducting Polythiophenes for Organic Thin-Film Transistors. J. Am. Chem. Soc. 2004;126:3378–3379. doi: 10.1021/ja039772w. PubMed DOI

McCulloch I., Heeney M., Bailey C., Genevicius K., MacDonald I., Shkunov M., Sparrowe D., Tierney S., Wagner R., Zhang W., et al. Liquid-crystalline semiconducting polymers with high charge-carrier mobility. Nat. Mater. 2006;5:328–333. doi: 10.1038/nmat1612. PubMed DOI

Xu Z., Liu Z., Sun H., Gao C. Highly Electrically Conductive Ag-Doped Graphene Fibers as Stretchable Conductors. Adv. Mater. 2013;25:3249–3253. doi: 10.1002/adma.201300774. PubMed DOI

Sui D., Huang Y., Huang L., Liang J., Ma Y., Chen Y. Flexible and Transparent Electrothermal Film Heaters Based on Graphene Materials. Small. 2011;7:3186–3192. doi: 10.1002/smll.201101305. PubMed DOI

Lagrève C., Feller J.F., Linossier I., Levesque G. Poly(butylene terephthalate)/poly(ethylene-co-alkyl acrylate)/carbon black conductive composites: Influence of composition and morphology on electrical properties. Polym. Eng. Sci. 2001;41:1124–1132. doi: 10.1002/pen.10813. DOI

Feller J.F. Conductive polymer composites: Influence of extrusion conditions on positive temperature coefficient effect of poly(butylene terephthalate)/poly(olefin)-carbon black blends. J. Appl. Polym. Sci. 2004;91:2151–2157. doi: 10.1002/app.13337. DOI

Weber I., Schwartz P. Monitoring bending fatigue in carbon-fibre/epoxy composite strands: A comparison between mechanical and resistance techniques. Compos. Sci. Technol. 2001;61:849–853. doi: 10.1016/S0266-3538(01)00028-8. DOI

Park J., Shin K.S. Novel method of polymer/low-melting-point metal alloy/light metal fiber composite fabrication. Express Polym. Lett. 2016;10:526–536. doi: 10.3144/expresspolymlett.2016.50. DOI

Boiteux G., Fournier J., Issotier D., Scytre G., Marichy G. Conductive thermoset composites: PTC effect. Synth. Met. 1999;102:1234–1235. doi: 10.1016/S0379-6779(98)01432-5. DOI

Sadej M., Gojzewski H., Gajewski P., Vancso G.J., Andrzejewska E. Photocurable acrylate-based composites with enhanced thermal conductivity containing boron and silicon nitrides. Express Polym. Lett. 2018;12:790–807. doi: 10.3144/expresspolymlett.2018.68. DOI

Lin C.W., Hwang B.J., Lee C.R. Characteristics and sensing behavior of electrochemically codeposited polypyrrole-poly(vinyl alcohol) thin film exposed to ethanol vapors. J. Appl. Polym. Sci. 1999;73:2079–2087. doi: 10.1002/(SICI)1097-4628(19990912)73:11<2079::AID-APP3>3.0.CO;2-1. DOI

Qiu L., Lim J.A., Wang X., Lee W.H., Hwang M., Cho K. Versatile Use of Vertical-Phase-Separation-Induced Bilayer Structures in Organic Thin-Film Transistors. Adv. Mater. 2008;20:1141–1145. doi: 10.1002/adma.200702505. DOI

Khazaei M., Arai M., Sasaki T., Chung C.-Y., Venkataramanan N.S., Estili M., Sakka Y., Kawazoe Y. Novel Electronic and Magnetic Properties of Two-Dimensional Transition Metal Carbides and Nitrides. Adv. Funct. Mater. 2013;23:2185–2192. doi: 10.1002/adfm.201202502. DOI

Gao Y., Wang L., Zhou A., Li Z., Chen J., Bala H., Hu Q., Cao X. Hydrothermal synthesis of TiO2/Ti3C2 nanocomposites with enhanced photocatalytic activity. Mater. Lett. 2015;150:62–64. doi: 10.1016/j.matlet.2015.02.135. DOI

Naguib M., Kurtoglu M., Presser V., Lu J., Niu J., Heon M., Hultman L., Gogotsi Y., Barsoum M.W. Two-Dimensional Nanocrystals Produced by Exfoliation of Ti3AlC2. Adv. Mater. 2011;23:4248–4253. doi: 10.1002/adma.201102306. PubMed DOI

Naguib M., Mashtalir O., Carle J., Presser V., Lu J., Hultman L., Gogotsi Y., Barsoum M.W. Two-Dimensional Transition Metal Carbides. ACS Nano. 2012;6:1322–1331. doi: 10.1021/nn204153h. PubMed DOI

Dall’Agnese Y., Lukatskaya M.R., Cook K.M., Taberna P.-L., Gogotsi Y., Simon P. High capacitance of surface-modified 2D titanium carbide in acidic electrolyte. Electrochem. Commun. 2014;48:118–122. doi: 10.1016/j.elecom.2014.09.002. DOI

Xin Y., Yu Y.-X. Possibility of bare and functionalized niobium carbide MXenes for electrode materials of supercapacitors and field emitters. Mater. Des. 2017;130:512–520. doi: 10.1016/j.matdes.2017.05.052. DOI

Lukatskaya M.R., Mashtalir O., Ren C.E., Dall’Agnese Y., Rozier P., Taberna P.L., Naguib M., Simon P., Barsoum M.W., Gogotsi Y. Cation Intercalation and High Volumetric Capacitance of Two-Dimensional Titanium Carbide. Science. 2013;341:1502–1505. doi: 10.1126/science.1241488. PubMed DOI

Xie X., Chen S., Ding W., Nie Y., Wei Z. An extraordinarily stable catalyst: Pt NPs supported on two-dimensional Ti3C2X2 (X = OH, F) nanosheets for oxygen reduction reaction. Chem. Commun. 2013;49:10112. doi: 10.1039/c3cc44428g. PubMed DOI

Gao Y., Wang L., Li Z., Zhou A., Hu Q., Cao X. Preparation of MXene-Cu2O nanocomposite and effect on thermal decomposition of ammonium perchlorate. Solid State Sci. 2014;35:62–65. doi: 10.1016/j.solidstatesciences.2014.06.014. DOI

Peng Q., Guo J., Zhang Q., Xiang J., Liu B., Zhou A., Liu R., Tian Y. Unique Lead Adsorption Behavior of Activated Hydroxyl Group in Two-Dimensional Titanium Carbide. J. Am. Chem. Soc. 2014;136:4113–4116. doi: 10.1021/ja500506k. PubMed DOI

Mashtalir O., Cook K.M., Mochalin V.N., Crowe M., Barsoum M.W., Gogotsi Y. Dye adsorption and decomposition on two-dimensional titanium carbide in aqueous media. J. Mater. Chem. A. 2014;2:14334–14338. doi: 10.1039/C4TA02638A. DOI

Lorencova L., Gajdosova V., Hroncekova S., Bertok T., Blahutova J., Vikartovska A., Parrakova L., Gemeiner P., Kasak P., Tkac J. 2D MXenes as Perspective Immobilization Platforms for Design of Electrochemical Nanobiosensors. Electroanalysis. 2019 doi: 10.1002/elan.201900288. DOI

Lorencova L., Bertok T., Dosekova E., Holazova A., Paprckova D., Vikartovska A., Sasinkova V., Filip J., Kasak P., Jerigova M., et al. Electrochemical performance of Ti3C2Tx MXene in aqueous media: Towards ultrasensitive H2O2 sensing. Electrochim. Acta. 2017;235:471–479. doi: 10.1016/j.electacta.2017.03.073. PubMed DOI PMC

Rasool K., Mahmoud K.A., Johnson D.J., Helal M., Berdiyorov G.R., Gogotsi Y. Efficient Antibacterial Membrane based on Two-Dimensional Ti3C2Tx (MXene) Nanosheets. Sci. Rep. 2017;7:1598. doi: 10.1038/s41598-017-01714-3. PubMed DOI PMC

Rasool K., Helal M., Ali A., Ren C.E., Gogotsi Y., Mahmoud K.A. Antibacterial Activity of Ti3C2Tx MXene. ACS Nano. 2016;10:3674–3684. doi: 10.1021/acsnano.6b00181. PubMed DOI

Naguib M., Come J., Dyatkin B., Presser V., Taberna P.-L., Simon P., Barsoum M.W., Gogotsi Y. MXene: A promising transition metal carbide anode for lithium-ion batteries. Electrochem. Commun. 2012;16:61–64. doi: 10.1016/j.elecom.2012.01.002. DOI

Feng A., Yu Y., Wang Y., Jiang F., Yu Y., Mi L., Song L. Two-dimensional MXene Ti3C2 produced by exfoliation of Ti3AlC2. Mater. Des. 2017;114:161–166. doi: 10.1016/j.matdes.2016.10.053. DOI

An H., Habib T., Shah S., Gao H., Radovic M., Green M.J., Lutkenhaus J.L. Surface-agnostic highly stretchable and bendable conductive MXene multilayers. Sci. Adv. 2018;4:eaaq0118. doi: 10.1126/sciadv.aaq0118. PubMed DOI PMC

Feng Y., Deng Q., Peng C., Hu J., Li Y., Wu Q., Xu Z. An ultrahigh discharged energy density achieved in an inhomogeneous PVDF dielectric composite filled with 2D MXene nanosheets via interface engineering. J. Mater. Chem. C. 2018;6:13283–13292. doi: 10.1039/C8TC05180A. DOI

Sun R., Zhang H.-B., Liu J., Xie X., Yang R., Li Y., Hong S., Yu Z.-Z. Highly Conductive Transition Metal Carbide/Carbonitride(MXene)@polystyrene Nanocomposites Fabricated by Electrostatic Assembly for Highly Efficient Electromagnetic Interference Shielding. Adv. Funct. Mater. 2017;27:1702807. doi: 10.1002/adfm.201702807. DOI

Zhang J., Seyedin S., Qin S., Wang Z., Moradi S., Yang F., Lynch P.A., Yang W., Liu J., Wang X., et al. Highly Conductive Ti3C2Tx MXene Hybrid Fibers for Flexible and Elastic Fiber-Shaped Supercapacitors. Small. 2019;15:1804732. doi: 10.1002/smll.201804732. PubMed DOI

Liu R., Miao M., Li Y., Zhang J., Cao S., Feng X. Ultrathin Biomimetic Polymeric Ti3C2Tx MXene Composite Films for Electromagnetic Interference Shielding. ACS Appl. Mater. Interfaces. 2018;10:44787–44795. doi: 10.1021/acsami.8b18347. PubMed DOI

Ling Z., Ren C.E., Zhao M.-Q., Yang J., Giammarco J.M., Qiu J., Barsoum M.W., Gogotsi Y. Flexible and conductive MXene films and nanocomposites with high capacitance. Proc. Natl. Acad. Sci. USA. 2014;111:16676–16681. doi: 10.1073/pnas.1414215111. PubMed DOI PMC

Zhang H., Wang L., Chen Q., Li P., Zhou A., Cao X., Hu Q. Preparation, mechanical and anti-friction performance of MXene/polymer composites. Mater. Des. 2016;92:682–689. doi: 10.1016/j.matdes.2015.12.084. DOI

Sobolčiak P., Ali A., Hassan M.K., Helal M.I., Tanvir A., Popelka A., Al-Maadeed M.A., Krupa I., Mahmoud K.A. 2D Ti3C2Tx (MXene)-reinforced polyvinyl alcohol (PVA) nanofibers with enhanced mechanical and electrical properties. PLoS ONE. 2017;12:e0183705. doi: 10.1371/journal.pone.0183705. PubMed DOI PMC

Cao Y., Deng Q., Liu Z., Shen D., Wang T., Huang Q., Du S., Jiang N., Lin C.-T., Yu J. Enhanced thermal properties of poly(vinylidene fluoride) composites with ultrathin nanosheets of MXene. RSC Adv. 2017;7:20494–20501. doi: 10.1039/C7RA00184C. DOI

Tu S., Jiang Q., Zhang X., Alshareef H.N. Large Dielectric Constant Enhancement in MXene Percolative Polymer Composites. ACS Nano. 2018;12:3369–3377. doi: 10.1021/acsnano.7b08895. PubMed DOI

Naguib M., Saito T., Lai S., Rager M.S., Aytug T., Parans Paranthaman M., Zhao M.-Q., Gogotsi Y. Ti3C2Tx (MXene)–polyacrylamide nanocomposite films. RSC Adv. 2016;6:72069–72073. doi: 10.1039/C6RA10384G. DOI

Lipatov A., Alhabeb M., Lukatskaya M.R., Boson A., Gogotsi Y., Sinitskii A. Effect of Synthesis on Quality, Electronic Properties and Environmental Stability of Individual Monolayer Ti3C2 MXene Flakes. Adv. Electron. Mater. 2016;2:1600255. doi: 10.1002/aelm.201600255. DOI

Alhabeb M., Maleski K., Anasori B., Lelyukh P., Clark L., Sin S., Gogotsi Y. Guidelines for Synthesis and Processing of Two-Dimensional Titanium Carbide (Ti3C2Tx MXene) Chem. Mater. 2017;29:7633–7644. doi: 10.1021/acs.chemmater.7b02847. DOI

Thermo Scientific XPS: Knowledge Base. [(accessed on 28 June 2019)]; Available online: https://xpssimplified.com/periodictable.php.

Boča M., Barborík P., Mičušík M., Omastová M. X-ray photoelectron spectroscopy as detection tool for coordinated or uncoordinated fluorine atoms demonstrated on fluoride systems NaF, K2TaF7, K3TaF8, K2ZrF6, Na7Zr6F31 and K3ZrF7. Solid State Sci. 2012;14:828–832. doi: 10.1016/j.solidstatesciences.2012.04.018. DOI

Ramesh C. New Crystalline Transitions in Nylons 4,6, 6,10, and 6,12 Using High Temperature X-ray Diffraction Studies. Macromolecules. 1999;32:3721–3726. doi: 10.1021/ma981284z. DOI

Stauffer D., Aharony A. Introduction to Percolation Theory. Taylor & Francis; Abingdon, UK: 1985.

Hoseini A.H.A., Arjmand M., Sundararaj U., Trifkovic M. Significance of interfacial interaction and agglomerates on electrical properties of polymer-carbon nanotube nanocomposites. Mater. Des. 2017;125:126–134. doi: 10.1016/j.matdes.2017.04.004. DOI

Logakis E., Pandis C., Peoglos V., Pissis P., Pionteck J., Pötschke P., Mičušík M., Omastová M. Electrical/dielectric properties and conduction mechanism in melt processed polyamide/multi-walled carbon nanotubes composites. Polymer. 2009;50:5103–5111. doi: 10.1016/j.polymer.2009.08.038. DOI

Kirkpatrick S. Percolation and Conduction. Rev. Mod. Phys. 1973;45:574–588. doi: 10.1103/RevModPhys.45.574. DOI

Tchmutin I.A., Ponomarenko A.T., Shevchenko V.G., Godovski D.Y. Analysis of peculiarities in percolation behavior of some conducting polymer composites. Synth. Met. 1994;66:19–23. doi: 10.1016/0379-6779(94)90156-2. DOI

Moucka R., Mrlik M., Ilcikova M., Spitalsky Z., Kazantseva N., Bober P., Stejskal J. Electrical transport properties of poly(aniline-co-p-phenylenediamine) and its composites with incorporated silver particles. Chem. Pap. 2013;67:1012–1019. doi: 10.2478/s11696-013-0351-7. DOI

Preda F.-M., Alegría A., Bocahut A., Fillot L.-A., Long D.R., Sotta P. Investigation of Water Diffusion Mechanisms in Relation to Polymer Relaxations in Polyamides. Macromolecules. 2015;48:5730–5741. doi: 10.1021/acs.macromol.5b01295. DOI

Füllbrandt M., Wellert S., von Klitzing R., Schönhals A. Thermal and corrosion (in)stability of polyamide 6 studied by broadband dielectric spectroscopy. Polymer. 2015;75:34–43. doi: 10.1016/j.polymer.2015.08.016. DOI

Zhang J., Mine M., Zhu D., Matsuo M. Electrical and dielectric behaviors and their origins in the three-dimensional polyvinyl alcohol/MWCNT composites with low percolation threshold. Carbon. 2009;47:1311–1320. doi: 10.1016/j.carbon.2009.01.014. DOI

Zhang Y., Yu W., Qin W., Yang Z., Yang D., Xing Y., Liu S.F., Li C. Perovskite as an effective Voc switcher for high efficiency polymer solar cells. Nano Energy. 2016;20:126–133. doi: 10.1016/j.nanoen.2015.08.016. DOI

Mrlík M., Moučka R., Ilčíková M., Bober P., Kazantseva N., Špitálský Z., Trchová M., Stejskal J. Charge transport and dielectric relaxation processes in aniline-based oligomers. Synth. Met. 2014;192:37–42. doi: 10.1016/j.synthmet.2014.02.022. DOI

Petzelt J., Nuzhnyy D., Bovtun V., Savinov M., Kempa M., Rychetsky I. Broadband dielectric and conductivity spectroscopy of inhomogeneous and composite conductors. Phys. Status Solidi. 2013;210:2259–2271. doi: 10.1002/pssa.201329288. DOI

Varga M., Kopecká J., Morávková Z., Křivka I., Trchová M., Stejskal J., Prokeš J. Effect of oxidant on electronic transport in polypyrrole nanotubes synthesized in the presence of methyl orange. J. Polym. Sci. Part B Polym. Phys. 2015;53:1147–1159. doi: 10.1002/polb.23755. DOI

Sobolciak P., Mrlík M., AlMaadeed M.A., Krupa I. Calorimetric and dynamic mechanical behavior of phase change materials based on paraffin wax supported by expanded graphite. Thermochim. Acta. 2015;617:111–119. doi: 10.1016/j.tca.2015.08.026. DOI

Chen D., Tang C., Chan K., Tsui C., Yu P., Leung M., Uskokovic P. Dynamic mechanical properties and in vitro bioactivity of PHBHV/HA nanocomposite. Compos. Sci. Technol. 2007;67:1617–1626. doi: 10.1016/j.compscitech.2006.07.034. DOI

Pagacz J., Raftopoulos K.N., Leszczyńska A., Pielichowski K. Bio-polyamides based on renewable raw materials. J. Therm. Anal. Calorim. 2016;123:1225–1237. doi: 10.1007/s10973-015-4929-x. DOI

Ilčíková M., Mrlík M., Sedláček T., Šlouf M., Zhigunov A., Koynov K., Mosnáček J. Synthesis of Photoactuating Acrylic Thermoplastic Elastomers Containing Diblock Copolymer-Grafted Carbon Nanotubes. ACS Macro Lett. 2014;3:999–1003. doi: 10.1021/mz500444m. PubMed DOI

Cvek M., Mrlík M., Ilčíková M., Mosnáček J., Münster L., Pavlínek V. Synthesis of Silicone Elastomers Containing Silyl-Based Polymer-Grafted Carbonyl Iron Particles: An Efficient Way To Improve Magnetorheological, Damping, and Sensing Performances. Macromolecules. 2017;50:2189–2200. doi: 10.1021/acs.macromol.6b02041. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...