• This record comes from PubMed

MXene (Ti3C2Tx)-Embedded Nanocomposite Hydrogels for Biomedical Applications: A Review

. 2022 Feb 23 ; 15 (5) : . [epub] 20220223

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article, Review

Polymeric nanocomposites have been outstanding functional materials and have garnered immense attention as sustainable materials to address multi-disciplinary problems. MXenes have emerged as a newer class of 2D materials that produce metallic conductivity upon interaction with hydrophilic species, and their delamination affords monolayer nanoplatelets of a thickness of about one nm and a side size in the micrometer range. Delaminated MXene has a high aspect ratio, making it an alluring nanofiller for multifunctional polymer nanocomposites. Herein, we have classified and discussed the structure, properties and application of major polysaccharide-based electroactive hydrogels (hyaluronic acid (HA), alginate sodium (SA), chitosan (CS) and cellulose) in biomedical applications, starting with the brief historical account of MXene's development followed by successive discussions on the synthesis methods, structures and properties of nanocomposites encompassing polysaccharides and MXenes, including their biomedical applications, cytotoxicity and biocompatibility aspects. Finally, the MXenes and their utility in the biomedical arena is deliberated with an eye on potential opportunities and challenges anticipated for them in the future, thus promoting their multifaceted applications.

Biology Department College of Science Jouf University Sakaka 72388 Saudi Arabia

Department of Biology Faculty of Science University College of Taymaa University of Tabuk Tabuk 71491 Saudi Arabia

Department of Chemistry College of Science King Khalid University Abha 61413 Saudi Arabia

Department of Clinical Pharmacy Girls Section Prince Sattam Bin Abdul Aziz University Alkharj Alkharj 11942 Saudi Arabia

Department of Global Medical Science Wonju College of Medicine Yonsei University Wonju 26426 Gangwon Korea

Department of Pharmaceutical Sciences and Technology Institute of Chemical Technology Mumbai 400019 India

Department of Pharmaceutical Sciences Pharmacy Program Batterjee Medical College Jeddah 21442 Saudi Arabia

Department of Pharmaceutics and Industrial Pharmacy Faculty of Pharmacy Ain Shams University Cairo 11566 Egypt

Department of Pharmacology and Toxicology Faculty of Pharmacy King Abdulaziz University Jeddah 21589 Saudi Arabia

Labortory of Biomolecules and Organic Synthesis Department of Chemistry Faculty of Sciences Ben M'Sick University Hassan 2 of Casablanca Casablanca 20000 Morocco

Pharmacology Department Faculty of Veterinary Medicine Suez Canal University Ismailia 41522 Egypt

Regional Centre of Advanced Technologies and Materials Czech Advanced Technology and Research Institute Palacky University Šlechtitelů 27 783 71 Olomouc Czech Republic

Regional Drug Information Center Ministry of Health Jeddah 21589 Saudi Arabia

Zoology Department Faculty of Science Cairo University Giza 12613 Egypt

See more in PubMed

Gupta A., Sakthivel T., Seal S. Recent development in 2D materials beyond graphene. Prog. Mater. Sci. 2015;73:44–126. doi: 10.1016/j.pmatsci.2015.02.002. DOI

Nguyen V.-H., Nguyen B.-S., Hu C., Nguyen C.C., Nguyen D.L.T., Nguyen Dinh M.T., Vo D.-V.N., Trinh Q.T., Shokouhimehr M., Hasani A., et al. Novel Architecture Titanium Carbide (Ti3C2Tx) MXene Cocatalysts toward Photocatalytic Hydrogen Production: A Mini-Review. Nanomaterials. 2020;10:602. doi: 10.3390/nano10040602. PubMed DOI PMC

Rasool K., Helal M., Ali A., Ren C.E., Gogotsi Y., Mahmoud K.A. Antibacterial Activity of Ti3C2Tx MXene. ACS Nano. 2016;10:3674–3684. doi: 10.1021/acsnano.6b00181. PubMed DOI

Griffith K.J., Hope M.A., Reeves P.J., Anayee M., Gogotsi Y., Grey C.P. Bulk and Surface Chemistry of the Niobium MAX and MXene Phases from Multinuclear Solid-State NMR Spectroscopy. J. Am. Chem. Soc. 2020;142:18924–18935. doi: 10.1021/jacs.0c09044. PubMed DOI

Lin H., Chen Y., Shi J. Insights into 2D MXenes for Versatile Biomedical Applications: Current Advances and Challenges Ahead. Adv. Sci. 2018;5:1800518. doi: 10.1002/advs.201800518. PubMed DOI PMC

Tang Q., Zhou Z., Shen P. Are MXenes Promising Anode Materials for Li Ion Batteries? Computational Studies on Electronic Properties and Li Storage Capability of Ti3C2 and Ti3C2X2 (X = F, OH) Monolayer. J. Am. Chem. Soc. 2012;134:16909–16916. doi: 10.1021/ja308463r. PubMed DOI

Anasori B., Lukatskaya M.R., Gogotsi Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2017;2:16098. doi: 10.1038/natrevmats.2016.98. DOI

Zamhuri A., Lim G.P., Ma N.L., Tee K.S., Soon C.F. MXene in the lens of biomedical engineering: Synthesis, applications and future outlook. Biomed. Eng. Online. 2021;20:33. doi: 10.1186/s12938-021-00873-9. PubMed DOI PMC

Ronchi R.M., Arantes J.T., Santos S.F. Synthesis, structure, properties and applications of MXenes: Current status and perspectives. Ceram. Int. 2019;45:18167–18188. doi: 10.1016/j.ceramint.2019.06.114. DOI

Iravani S., Varma R.S. MXenes and MXene-based materials for tissue engineering and regenerative medicine: Recent advances. Mater. Adv. 2021;2:2906–2917. doi: 10.1039/D1MA00189B. DOI

Malaki M., Varma R.S. Mechanotribological Aspects of MXene-Reinforced Nanocomposites. Adv. Mater. 2020;32:2003154. doi: 10.1002/adma.202003154. PubMed DOI

Zhong Q., Li Y., Zhang G. Two-dimensional MXene-based and MXene-derived photocatalysts: Recent developments and perspectives. Chem. Eng. J. 2021;409:128099. doi: 10.1016/j.cej.2020.128099. DOI

Li X., Huang Z., Zhi C. Environmental Stability of MXenes as Energy Storage Materials. Front. Mater. 2019;6:312. doi: 10.3389/fmats.2019.00312. DOI

Nguyen T.P., Nguyen D.M.T., Tran D.L., Le H.K., Vo D.-V.N., Lam S.S., Varma R.S., Shokouhimehr M., Nguyen C.C., Le Q. Van MXenes: Applications in electrocatalytic, photocatalytic hydrogen evolution reaction and CO2 reduction. Mol. Catal. 2020;486:110850. doi: 10.1016/j.mcat.2020.110850. DOI

Iqbal A., Kwon J., Kim M.-K., Koo C.M. MXenes for electromagnetic interference shielding: Experimental and theoretical perspectives. Mater. Today Adv. 2021;9:100124. doi: 10.1016/j.mtadv.2020.100124. DOI

Sinha A., Dhanjai, Mugo S.M., Chen J., Lokesh K.S. Handbook of Nanomaterials in Analytical Chemistry. Elsevier; Amsterdam, The Netherlands: 2020. MXene-based sensors and biosensors: Next-generation detection platforms; pp. 361–372.

Wang L., Li Y., Zhao L., Qi Z., Gou J., Zhang S., Zhang J.Z. Recent advances in ultrathin two-dimensional materials and biomedical applications for reactive oxygen species generation and scavenging. Nanoscale. 2020;12:19516–19535. doi: 10.1039/D0NR05746K. PubMed DOI

Al-Hamadani Y.A.J., Jun B.-M., Yoon M., Taheri-Qazvini N., Snyder S.A., Jang M., Heo J., Yoon Y. Applications of MXene-based membranes in water purification: A review. Chemosphere. 2020;254:126821. doi: 10.1016/j.chemosphere.2020.126821. PubMed DOI

Chen X., Zhao Y., Li L., Wang Y., Wang J., Xiong J., Du S., Zhang P., Shi X., Yu J. MXene/Polymer Nanocomposites: Preparation, Properties, and Applications. Polym. Rev. 2021;61:80–115. doi: 10.1080/15583724.2020.1729179. DOI

Szuplewska A., Kulpińska D., Dybko A., Chudy M., Jastrzębska A.M., Olszyna A., Brzózka Z. Future Applications of MXenes in Biotechnology, Nanomedicine, and Sensors. Trends Biotechnol. 2020;38:264–279. doi: 10.1016/j.tibtech.2019.09.001. PubMed DOI

Zhang Y.-Z., El-Demellawi J.K., Jiang Q., Ge G., Liang H., Lee K., Dong X., Alshareef H.N. MXene hydrogels: Fundamentals and applications. Chem. Soc. Rev. 2020;49:7229–7251. doi: 10.1039/D0CS00022A. PubMed DOI

Fouad D., Bachra Y., Ayoub G., Ouaket A., Bennamara A., Knouzi N., Berrada M. Chitin and Chitosan—Physicochemical Properties and Industrial Applications. IntechOpen; London, UK: 2020. A Novel Drug Delivery System Based on Nanoparticles of Magnetite Fe 3 O 4 Embedded in an Auto Cross-Linked Chitosan.

Xing C., Chen S., Liang X., Liu Q., Qu M., Zou Q., Li J., Tan H., Liu L., Fan D., et al. Two-Dimensional MXene (Ti3C2)-Integrated Cellulose Hydrogels: Toward Smart Three-Dimensional Network Nanoplatforms Exhibiting Light-Induced Swelling and Bimodal Photothermal/Chemotherapy Anticancer Activity. ACS Appl. Mater. Interfaces. 2018;10:27631–27643. doi: 10.1021/acsami.8b08314. PubMed DOI

Vitale F., Driscoll N., Murphy B. 2D Metal Carbides and Nitrides (MXenes) Springer International Publishing; Cham, Switzerland: 2019. Biomedical Applications of MXenes; pp. 503–524.

Damiri F., Bachra Y., Bounacir C., Laaraibi A., Berrada M. Synthesis and Characterization of Lyophilized Chitosan-Based Hydrogels Cross-Linked with Benzaldehyde for Controlled Drug Release. J. Chem. 2020;2020 doi: 10.1155/2020/8747639. DOI

Papadopoulou K.A., Chroneos A., Parfitt D., Christopoulos S.-R.G. A perspective on MXenes: Their synthesis, properties, and recent applications. J. Appl. Phys. 2020;128:170902. doi: 10.1063/5.0021485. DOI

Huang J., Li Z., Mao Y., Li Z. Progress and biomedical applications of MXenes. Nano Sel. 2021;2:1480–1508. doi: 10.1002/nano.202000309. DOI

Zhang J., Chen K., Sun X., Liu M., Hu X., He L., Huang Z., Chai Z., Xiao X., Song Y., et al. MAX Phase Ceramics/Composites with Complex Shapes. ACS Appl. Mater. Interfaces. 2021;13:5645–5651. doi: 10.1021/acsami.0c22289. PubMed DOI

Zhang F., Liu W., Wang S., Liu C., Shi H., Liang L., Pi K. Surface functionalization of Ti3C2Tx and its application in aqueous polymer nanocomposites for reinforcing corrosion protection. Compos. Part B Eng. 2021;217:108900. doi: 10.1016/j.compositesb.2021.108900. DOI

Liao H., Guo X., Wan P., Yu G. Conductive MXene Nanocomposite Organohydrogel for Flexible, Healable, Low-Temperature Tolerant Strain Sensors. Adv. Funct. Mater. 2019;29:1904507. doi: 10.1002/adfm.201904507. DOI

Tao N., Zhang D., Li X., Lou D., Sun X., Wei C., Li J., Yang J., Liu Y.-N. Near-infrared light-responsive hydrogels via peroxide-decorated MXene-initiated polymerization. Chem. Sci. 2019;10:10765–10771. doi: 10.1039/C9SC03917A. PubMed DOI PMC

Zhang P., Yang X.-J., Li P., Zhao Y., Niu Q.J. Fabrication of novel MXene (Ti3C2)/polyacrylamide nanocomposite hydrogels with enhanced mechanical and drug release properties. Soft Matter. 2020;16:162–169. doi: 10.1039/C9SM01985E. PubMed DOI

Zhang Y., Chen K., Li Y., Lan J., Yan B., Shi L., Ran R. High-Strength, Self-Healable, Temperature-Sensitive, MXene-Containing Composite Hydrogel as a Smart Compression Sensor. ACS Appl. Mater. Interfaces. 2019;11:47350–47357. doi: 10.1021/acsami.9b16078. PubMed DOI

Rafieerad A., Sequiera G.L., Yan W., Kaur P., Amiri A., Dhingra S. Sweet-MXene hydrogel with mixed-dimensional components for biomedical applications. J. Mech. Behav. Biomed. Mater. 2020;101:103440. doi: 10.1016/j.jmbbm.2019.103440. PubMed DOI

Zhang Y.-Z., Lee K.H., Anjum D.H., Sougrat R., Jiang Q., Kim H., Alshareef H.N. MXenes stretch hydrogel sensor performance to new limits. Sci. Adv. 2018;4:eaat0098. doi: 10.1126/sciadv.aat0098. PubMed DOI PMC

Zhang J., Wan L., Gao Y., Fang X., Lu T., Pan L., Xuan F. Highly Stretchable and Self-Healable MXene/Polyvinyl Alcohol Hydrogel Electrode for Wearable Capacitive Electronic Skin. Adv. Electron. Mater. 2019;5:1900285. doi: 10.1002/aelm.201900285. DOI

Yang C., Xu D., Peng W., Li Y., Zhang G., Zhang F., Fan X. Ti2C3Tx nanosheets as photothermal agents for near-infrared responsive hydrogels. Nanoscale. 2018;10:15387–15392. doi: 10.1039/C8NR05301D. PubMed DOI

Prakash N.J., Kandasubramanian B. Nanocomposites of MXene for industrial applications. J. Alloys Compd. 2021;862:158547. doi: 10.1016/j.jallcom.2020.158547. DOI

Gonzalez-Julian J. Processing of MAX phases: From synthesis to applications. J. Am. Ceram. Soc. 2021;104:659–690. doi: 10.1111/jace.17544. DOI

Carey M., Barsoum M.W. MXene polymer nanocomposites: A review. Mater. Today Adv. 2021;9:100120. doi: 10.1016/j.mtadv.2020.100120. DOI

Zhang C.J., Anasori B., Seral-Ascaso A., Park S.H., McEvoy N., Shmeliov A., Duesberg G.S., Coleman J.N., Gogotsi Y., Nicolosi V. Transparent, Flexible, and Conductive 2D Titanium Carbide (MXene) Films with High Volumetric Capacitance. Adv. Mater. 2017;29:1702678. doi: 10.1002/adma.201702678. PubMed DOI

Lipatov A., Goad A., Loes M.J., Vorobeva N.S., Abourahma J., Gogotsi Y., Sinitskii A. High electrical conductivity and breakdown current density of individual monolayer Ti3C2T MXene flakes. Matter. 2021;4:1413–1427. doi: 10.1016/j.matt.2021.01.021. DOI

Jiang X., Kuklin A.V., Baev A., Ge Y., Ågren H., Zhang H., Prasad P.N. Two-dimensional MXenes: From morphological to optical, electric, and magnetic properties and applications. Phys. Rep. 2020;848:1–58. doi: 10.1016/j.physrep.2019.12.006. DOI

Zhang Z., Liu X., Yu J., Hang Y., Li Y., Guo Y., Xu Y., Sun X., Zhou J., Guo W. Tunable electronic and magnetic properties of two-dimensional materials and their one-dimensional derivatives. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2016;6:324–350. doi: 10.1002/wcms.1251. PubMed DOI PMC

Yoon Y., Le T.A., Tiwari A.P., Kim I., Barsoum M.W., Lee H. Low temperature solution synthesis of reduced two dimensional Ti3C2 MXenes with paramagnetic behaviour. Nanoscale. 2018;10:22429–22438. doi: 10.1039/C8NR06854B. PubMed DOI

Scheibe B., Tadyszak K., Jarek M., Michalak N., Kempiński M., Lewandowski M., Peplińska B., Chybczyńska K. Study on the magnetic properties of differently functionalized multilayered Ti3C2Tx MXenes and Ti-Al-C carbides. Appl. Surf. Sci. 2019;479:216–224. doi: 10.1016/j.apsusc.2019.02.055. DOI

Naguib M., Saito T., Lai S., Rager M.S., Aytug T., Parans Paranthaman M., Zhao M.-Q., Gogotsi Y. Ti3C2Tx (MXene)–polyacrylamide nanocomposite films. RSC Adv. 2016;6:72069–72073. doi: 10.1039/C6RA10384G. DOI

Sun R., Zhang H.-B., Liu J., Xie X., Yang R., Li Y., Hong S., Yu Z.-Z. Highly Conductive Transition Metal Carbide/Carbonitride(MXene)@polystyrene Nanocomposites Fabricated by Electrostatic Assembly for Highly Efficient Electromagnetic Interference Shielding. Adv. Funct. Mater. 2017;27:1702807. doi: 10.1002/adfm.201702807. DOI

Tu S., Jiang Q., Zhang X., Alshareef H.N. Large Dielectric Constant Enhancement in MXene Percolative Polymer Composites. ACS Nano. 2018;12:3369–3377. doi: 10.1021/acsnano.7b08895. PubMed DOI

Tanvir A., Sobolčiak P., Popelka A., Mrlik M., Spitalsky Z., Micusik M., Prokes J., Krupa I. Electrically Conductive, Transparent Polymeric Nanocomposites Modified by 2D Ti3C2Tx (MXene) Polymers. 2019;11:1272. doi: 10.3390/polym11081272. PubMed DOI PMC

Liu Z., Zhang Y., Zhang H.-B., Dai Y., Liu J., Li X., Yu Z.-Z. Electrically conductive aluminum ion-reinforced MXene films for efficient electromagnetic interference shielding. J. Mater. Chem. C. 2020;8:1673–1678. doi: 10.1039/C9TC06304H. DOI

Shao J., Wang J.-W., Liu D.-N., Wei L., Wu S.-Q., Ren H. A novel high permittivity percolative composite with modified MXene. Polymer. 2019;174:86–95. doi: 10.1016/j.polymer.2019.04.057. DOI

Wang D., Lin Y., Hu D., Jiang P., Huang X. Multifunctional 3D-MXene/PDMS nanocomposites for electrical, thermal and triboelectric applications. Compos. Part A Appl. Sci. Manuf. 2020;130:105754. doi: 10.1016/j.compositesa.2019.105754. DOI

Wei L., Wang J.-W., Gao X.-H., Wang H.-Q., Wang X.-Z., Ren H. Enhanced Dielectric Properties of a Poly(dimethyl siloxane) Bimodal Network Percolative Composite with MXene. ACS Appl. Mater. Interfaces. 2020;12:16805–16814. doi: 10.1021/acsami.0c01409. PubMed DOI

Rajavel K., Luo S., Wan Y., Yu X., Hu Y., Zhu P., Sun R., Wong C. 2D Ti3C2Tx MXene/polyvinylidene fluoride (PVDF) nanocomposites for attenuation of electromagnetic radiation with excellent heat dissipation. Compos. Part A Appl. Sci. Manuf. 2020;129:105693. doi: 10.1016/j.compositesa.2019.105693. DOI

Seyedin S., Uzun S., Levitt A., Anasori B., Dion G., Gogotsi Y., Razal J.M. MXene Composite and Coaxial Fibers with High Stretchability and Conductivity for Wearable Strain Sensing Textiles. Adv. Funct. Mater. 2020;30:1910504. doi: 10.1002/adfm.201910504. DOI

Bachra Y., Grouli A., Damiri F., Bennamara A., Berrada M. A new approach for assessing the absorption of disposable baby diapers and superabsorbent polymers: A comparative study. Results Mater. 2020;8:100156. doi: 10.1016/j.rinma.2020.100156. DOI

Damiri F., Kommineni N., Ebhodaghe S.O., Bulusu R., Sainaga Jyothi V.G.S., Sayed A.A., Awaji A.A., Germoush M.O., Al-malky H.S., Nasrullah M.Z., et al. Microneedle-Based Natural Polysaccharide for Drug Delivery Systems (DDS): Progress and Challenges. Pharmaceuticals. 2022;15:190. doi: 10.3390/ph15020190. PubMed DOI PMC

Laaraibi A., Moughaoui F., Damiri F., Ouakit A., Charhouf I., Hamdouch S., Jaafari A., Abourriche A., Knouzi N., Bennamara A., et al. Chitin-Chitosan—Myriad Functionalities in Science and Technology. Intech Open; London, UK: 2018. Chitosan-Clay Based (CS-NaBNT) Biodegradable Nanocomposite Films for Potential Utility in Food and Environment.

Qu B., Luo Y. A review on the preparation and characterization of chitosan-clay nanocomposite films and coatings for food packaging applications. Carbohydr. Polym. Technol. Appl. 2021;2:100102. doi: 10.1016/j.carpta.2021.100102. DOI

Bachra Y., Grouli A., Damiri F., Talbi M., Berrada M. A Novel Superabsorbent Polymer from Crosslinked Carboxymethyl Tragacanth Gum with Glutaraldehyde: Synthesis, Characterization, and Swelling Properties. Int. J. Biomater. 2021;2021:5008833. doi: 10.1155/2021/5008833. PubMed DOI PMC

AaliaTamo, Bachra Y., Grouli A., Damiri F., Benhar S., Bennamara A., Berrada M., Talbi M. A Novel Quantitative Method For The Validation Of The Dosage Of Amnesic Shellfish Poisoning Toxins In Bivalve Mollusks. NVEO—Nat. Volatiles Essent. Oils. 2021;8:2858–2869.

Mayerberger E.A., Street R.M., McDaniel R.M., Barsoum M.W., Schauer C.L. Antibacterial properties of electrospun Ti3C2Tz (MXene)/chitosan nanofibers. RSC Adv. 2018;8:35386–35394. doi: 10.1039/C8RA06274A. PubMed DOI PMC

Zheng H., Wang S., Cheng F., He X., Liu Z., Wang W., Zhou L., Zhang Q. Bioactive anti-inflammatory, antibacterial, conductive multifunctional scaffold based on MXene@CeO2 nanocomposites for infection-impaired skin multimodal therapy. Chem. Eng. J. 2021;424:130148. doi: 10.1016/j.cej.2021.130148. DOI

Mallakpour S., Behranvand V., Hussain C.M. MXenes-based materials: Structure, synthesis, and various applications. Ceram. Int. 2021;47:26585–26597. doi: 10.1016/j.ceramint.2021.06.107. DOI

Dong Y., Sang D., He C., Sheng X., Lei L. Mxene/alginate composites for lead and copper ion removal from aqueous solutions. RSC Adv. 2019;9:29015–29022. doi: 10.1039/C9RA05251H. PubMed DOI PMC

Hroncekova S., Bertok T., Hires M., Jane E., Lorencova L., Vikartovska A., Tanvir A., Kasak P., Tkac J. Ultrasensitive Ti3C2TX MXene/Chitosan Nanocomposite-Based Amperometric Biosensor for Detection of Potential Prostate Cancer Marker in Urine Samples. Processes. 2020;8:580. doi: 10.3390/pr8050580. PubMed DOI PMC

Zhang Z.-H., Xu J.-Y., Yang X.-L. MXene/sodium alginate gel beads for adsorption of methylene blue. Mater. Chem. Phys. 2021;260:124123. doi: 10.1016/j.matchemphys.2020.124123. DOI

Rozmysłowska-Wojciechowska A., Karwowska E., Gloc M., Woźniak J., Petrus M., Przybyszewski B., Wojciechowski T., Jastrzębska A.M. Controlling the Porosity and Biocidal Properties of the Chitosan-Hyaluronate Matrix Hydrogel Nanocomposites by the Addition of 2D Ti3C2Tx MXene. Materials. 2020;13:4587. doi: 10.3390/ma13204587. PubMed DOI PMC

Li H., Ding G., Yang Z. A High Sensitive Flexible Pressure Sensor Designed by Silver Nanowires Embedded in Polyimide (AgNW-PI) Micromachines. 2019;10:206. doi: 10.3390/mi10030206. PubMed DOI PMC

Hu D., Huang X., Li S., Jiang P. Flexible and durable cellulose/MXene nanocomposite paper for efficient electromagnetic interference shielding. Compos. Sci. Technol. 2020;188:107995. doi: 10.1016/j.compscitech.2020.107995. DOI

Dicker K.T., Gurski L.A., Pradhan-Bhatt S., Witt R.L., Farach-Carson M.C., Jia X. Hyaluronan: A simple polysaccharide with diverse biological functions. Acta Biomater. 2014;10:1558–1570. doi: 10.1016/j.actbio.2013.12.019. PubMed DOI PMC

Zhou L., Zheng H., Liu Z., Wang S., Liu Z., Chen F., Zhang H., Kong J., Zhou F., Zhang Q. Conductive Antibacterial Hemostatic Multifunctional Scaffolds Based on Ti3C2Tx MXene Nanosheets for Promoting Multidrug-Resistant Bacteria-Infected Wound Healing. ACS Nano. 2021;15:2468–2480. doi: 10.1021/acsnano.0c06287. PubMed DOI

Ren J., Zhu Z., Qiu Y., Yu F., Zhou T., Ma J., Zhao J. Enhanced adsorption performance of alginate/MXene/CoFe2O4 for antibiotic and heavy metal under rotating magnetic field. Chemosphere. 2021;284:131284. doi: 10.1016/j.chemosphere.2021.131284. PubMed DOI

Kloster G.A., Muraca D., Londoño O.M., Pirota K.R., Mosiewicki M.A., Marcovich N.E. Alginate based nanocomposites with magnetic properties. Compos. Part A Appl. Sci. Manuf. 2020;135:105936. doi: 10.1016/j.compositesa.2020.105936. DOI

Boucelkha A., Petit E., Elboutachfaiti R., Molinié R., Amari S., Zaidi-Yahaoui R. Production of guluronate oligosaccharide of alginate from brown algae Stypocaulon scoparium using an alginate lyase. J. Appl. Phycol. 2017;29:509–519. doi: 10.1007/s10811-016-0928-y. DOI

Wan S., Li X., Wang Y., Chen Y., Xie X., Yang R., Tomsia A.P., Jiang L., Cheng Q. Strong sequentially bridged MXene sheets. Proc. Natl. Acad. Sci. USA. 2020;117:27154–27161. doi: 10.1073/pnas.2009432117. PubMed DOI PMC

Xu B., Zhi C., Shi P. Latest advances in MXene biosensors. J. Phys. Mater. 2020;3:031001. doi: 10.1088/2515-7639/ab8f78. DOI

Huang M., Gu Z., Zhang J., Zhang D., Zhang H., Yang Z., Qu J. MXene and black phosphorus based 2D nanomaterials in bioimaging and biosensing: Progress and perspectives. J. Mater. Chem. B. 2021;9:5195–5220. doi: 10.1039/D1TB00410G. PubMed DOI

Huang Z., Cui X., Li S., Wei J., Li P., Wang Y., Lee C.S. Two-dimensional MXene-based materials for photothermal therapy. Nanophotonics. 2020;9:2233–2249. doi: 10.1515/nanoph-2019-0571. DOI

Aghajanzadeh M., Zamani M., Rajabi Kouchi F., Eixenberger J., Shirini D., Estrada D., Shirini F. Synergic Antitumor Effect of Photodynamic Therapy and Chemotherapy Mediated by Nano Drug Delivery Systems. Pharmaceutics. 2022;14:322. doi: 10.3390/pharmaceutics14020322. PubMed DOI PMC

Iravani S., Varma R.S. MXenes for Cancer Therapy and Diagnosis: Recent Advances and Current Challenges. ACS Biomater. Sci. Eng. 2021;7:1900–1913. doi: 10.1021/acsbiomaterials.0c01763. PubMed DOI

George S.M., Kandasubramanian B. Advancements in MXene-Polymer composites for various biomedical applications. Ceram. Int. 2020;46:8522–8535. doi: 10.1016/j.ceramint.2019.12.257. DOI

Ashrafizadeh M., Mirzaei S., Gholami M.H., Hashemi F., Zabolian A., Raei M., Hushmandi K., Zarrabi A., Voelcker N.H., Aref A.R., et al. Hyaluronic acid-based nanoplatforms for Doxorubicin: A review of stimuli-responsive carriers, co-delivery and resistance suppression. Carbohydr. Polym. 2021;272:118491. doi: 10.1016/j.carbpol.2021.118491. PubMed DOI

Lin H., Gao S., Dai C., Chen Y., Shi J. A Two-Dimensional Biodegradable Niobium Carbide (MXene) for Photothermal Tumor Eradication in NIR-I and NIR-II Biowindows. J. Am. Chem. Soc. 2017;139:16235–16247. doi: 10.1021/jacs.7b07818. PubMed DOI

Ambekar R.S., Kandasubramanian B. A polydopamine-based platform for anti-cancer drug delivery. Biomater. Sci. 2019;7:1776–1793. doi: 10.1039/C8BM01642A. PubMed DOI

Han X., Huang J., Lin H., Wang Z., Li P., Chen Y. 2D Ultrathin MXene-Based Drug-Delivery Nanoplatform for Synergistic Photothermal Ablation and Chemotherapy of Cancer. Adv. Healthc. Mater. 2018;7:1701394. doi: 10.1002/adhm.201701394. PubMed DOI

Liu G., Zou J., Tang Q., Yang X., Zhang Y., Zhang Q., Huang W., Chen P., Shao J., Dong X. Surface Modified Ti3C2 MXene Nanosheets for Tumor Targeting Photothermal/Photodynamic/Chemo Synergistic Therapy. ACS Appl. Mater. Interfaces. 2017;9:40077–40086. doi: 10.1021/acsami.7b13421. PubMed DOI

Sharma S., Chhetry A., Sharifuzzaman M., Yoon H., Park J.Y. Wearable Capacitive Pressure Sensor Based on MXene Composite Nanofibrous Scaffolds for Reliable Human Physiological Signal Acquisition. ACS Appl. Mater. Interfaces. 2020;12:22212–22224. doi: 10.1021/acsami.0c05819. PubMed DOI

Rakhi R.B., Nayuk P., Xia C., Alshareef H.N. Novel amperometric glucose biosensor based on MXene nanocomposite. Sci. Rep. 2016;6:36422. doi: 10.1038/srep36422. PubMed DOI PMC

Hussein E.A., Zagho M.M., Rizeq B.R., Younes N.N., Pintus G., Mahmoud K.A., Nasrallah G.K., Elzatahry A.A. Plasmonic MXene-based nanocomposites exhibiting photothermal therapeutic effects with lower acute toxicity than pure MXene. Int. J. Nanomed. 2019;14:4529–4539. doi: 10.2147/IJN.S202208. PubMed DOI PMC

Szuplewska A., Kulpińska D., Dybko A., Jastrzębska A.M., Wojciechowski T., Rozmysłowska A., Chudy M., Grabowska-Jadach I., Ziemkowska W., Brzózka Z., et al. 2D Ti2C (MXene) as a novel highly efficient and selective agent for photothermal therapy. Mater. Sci. Eng. C. 2019;98:874–886. doi: 10.1016/j.msec.2019.01.021. PubMed DOI

Syamsai R., Grace A.N. Ta4C3 MXene as supercapacitor electrodes. J. Alloys Compd. 2019;792:1230–1238. doi: 10.1016/j.jallcom.2019.04.096. DOI

Chen K., Chen Y., Deng Q., Jeong S.-H., Jang T.-S., Du S., Kim H.-E., Huang Q., Han C.-M. Strong and biocompatible poly(lactic acid) membrane enhanced by Ti3C2Tz (MXene) nanosheets for Guided bone regeneration. Mater. Lett. 2018;229:114–117. doi: 10.1016/j.matlet.2018.06.063. DOI

Zhang J., Fu Y., Mo A. Multilayered Titanium Carbide MXene Film for Guided Bone Regeneration. Int. J. Nanomed. 2019;14:10091–10103. doi: 10.2147/IJN.S227830. PubMed DOI PMC

Yadav R., Balasubramanian K. Engineering of Nanobiomaterials. Elsevier; Amsterdam, The Netherlands: 2016. Bioabsorbable engineered nanobiomaterials for antibacterial therapy; pp. 77–117.

Yadav R., Balasubramanian K. Polyacrylonitrile/Syzygium aromaticum hierarchical hydrophilic nanocomposite as a carrier for antibacterial drug delivery systems. RSC Adv. 2015;5:3291–3298. doi: 10.1039/C4RA12755B. DOI

Shamsabadi A.A., Sharifian Gh. M., Anasori B., Soroush M. Antimicrobial Mode-of-Action of Colloidal Ti3C2Tx MXene Nanosheets. ACS Sustain. Chem. Eng. 2018;6:16586–16596. doi: 10.1021/acssuschemeng.8b03823. DOI

Rasool K., Mahmoud K.A., Johnson D.J., Helal M., Berdiyorov G.R., Gogotsi Y. Efficient Antibacterial Membrane based on Two-Dimensional Ti3C2Tx (MXene) Nanosheets. Sci. Rep. 2017;7:1598. doi: 10.1038/s41598-017-01714-3. PubMed DOI PMC

Rozmysłowska-Wojciechowska A., Szuplewska A., Wojciechowski T., Poźniak S., Mitrzak J., Chudy M., Ziemkowska W., Chlubny L., Olszyna A., Jastrzębska A.M. A simple, low-cost and green method for controlling the cytotoxicity of MXenes. Mater. Sci. Eng. C. 2020;111:110790. doi: 10.1016/j.msec.2020.110790. PubMed DOI

Alhussain H., Augustine R., Hussein E.A., Gupta I., Hasan A., Al Moustafa A.-E., Elzatahry A. MXene Nanosheets May Induce Toxic Effect on the Early Stage of Embryogenesis. J. Biomed. Nanotechnol. 2020;16:364–372. doi: 10.1166/jbn.2020.2894. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...