MXene (Ti3C2Tx)-Embedded Nanocomposite Hydrogels for Biomedical Applications: A Review
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article, Review
PubMed
35268907
PubMed Central
PMC8911478
DOI
10.3390/ma15051666
PII: ma15051666
Knihovny.cz E-resources
- Keywords
- MXenes (Ti3C2Tx), biomedical, nanocomposites, nanomaterials, nanotechnology,
- Publication type
- Journal Article MeSH
- Review MeSH
Polymeric nanocomposites have been outstanding functional materials and have garnered immense attention as sustainable materials to address multi-disciplinary problems. MXenes have emerged as a newer class of 2D materials that produce metallic conductivity upon interaction with hydrophilic species, and their delamination affords monolayer nanoplatelets of a thickness of about one nm and a side size in the micrometer range. Delaminated MXene has a high aspect ratio, making it an alluring nanofiller for multifunctional polymer nanocomposites. Herein, we have classified and discussed the structure, properties and application of major polysaccharide-based electroactive hydrogels (hyaluronic acid (HA), alginate sodium (SA), chitosan (CS) and cellulose) in biomedical applications, starting with the brief historical account of MXene's development followed by successive discussions on the synthesis methods, structures and properties of nanocomposites encompassing polysaccharides and MXenes, including their biomedical applications, cytotoxicity and biocompatibility aspects. Finally, the MXenes and their utility in the biomedical arena is deliberated with an eye on potential opportunities and challenges anticipated for them in the future, thus promoting their multifaceted applications.
Biology Department College of Science Jouf University Sakaka 72388 Saudi Arabia
Department of Chemistry College of Science King Khalid University Abha 61413 Saudi Arabia
Pharmacology Department Faculty of Veterinary Medicine Suez Canal University Ismailia 41522 Egypt
Regional Drug Information Center Ministry of Health Jeddah 21589 Saudi Arabia
Zoology Department Faculty of Science Cairo University Giza 12613 Egypt
See more in PubMed
Gupta A., Sakthivel T., Seal S. Recent development in 2D materials beyond graphene. Prog. Mater. Sci. 2015;73:44–126. doi: 10.1016/j.pmatsci.2015.02.002. DOI
Nguyen V.-H., Nguyen B.-S., Hu C., Nguyen C.C., Nguyen D.L.T., Nguyen Dinh M.T., Vo D.-V.N., Trinh Q.T., Shokouhimehr M., Hasani A., et al. Novel Architecture Titanium Carbide (Ti3C2Tx) MXene Cocatalysts toward Photocatalytic Hydrogen Production: A Mini-Review. Nanomaterials. 2020;10:602. doi: 10.3390/nano10040602. PubMed DOI PMC
Rasool K., Helal M., Ali A., Ren C.E., Gogotsi Y., Mahmoud K.A. Antibacterial Activity of Ti3C2Tx MXene. ACS Nano. 2016;10:3674–3684. doi: 10.1021/acsnano.6b00181. PubMed DOI
Griffith K.J., Hope M.A., Reeves P.J., Anayee M., Gogotsi Y., Grey C.P. Bulk and Surface Chemistry of the Niobium MAX and MXene Phases from Multinuclear Solid-State NMR Spectroscopy. J. Am. Chem. Soc. 2020;142:18924–18935. doi: 10.1021/jacs.0c09044. PubMed DOI
Lin H., Chen Y., Shi J. Insights into 2D MXenes for Versatile Biomedical Applications: Current Advances and Challenges Ahead. Adv. Sci. 2018;5:1800518. doi: 10.1002/advs.201800518. PubMed DOI PMC
Tang Q., Zhou Z., Shen P. Are MXenes Promising Anode Materials for Li Ion Batteries? Computational Studies on Electronic Properties and Li Storage Capability of Ti3C2 and Ti3C2X2 (X = F, OH) Monolayer. J. Am. Chem. Soc. 2012;134:16909–16916. doi: 10.1021/ja308463r. PubMed DOI
Anasori B., Lukatskaya M.R., Gogotsi Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2017;2:16098. doi: 10.1038/natrevmats.2016.98. DOI
Zamhuri A., Lim G.P., Ma N.L., Tee K.S., Soon C.F. MXene in the lens of biomedical engineering: Synthesis, applications and future outlook. Biomed. Eng. Online. 2021;20:33. doi: 10.1186/s12938-021-00873-9. PubMed DOI PMC
Ronchi R.M., Arantes J.T., Santos S.F. Synthesis, structure, properties and applications of MXenes: Current status and perspectives. Ceram. Int. 2019;45:18167–18188. doi: 10.1016/j.ceramint.2019.06.114. DOI
Iravani S., Varma R.S. MXenes and MXene-based materials for tissue engineering and regenerative medicine: Recent advances. Mater. Adv. 2021;2:2906–2917. doi: 10.1039/D1MA00189B. DOI
Malaki M., Varma R.S. Mechanotribological Aspects of MXene-Reinforced Nanocomposites. Adv. Mater. 2020;32:2003154. doi: 10.1002/adma.202003154. PubMed DOI
Zhong Q., Li Y., Zhang G. Two-dimensional MXene-based and MXene-derived photocatalysts: Recent developments and perspectives. Chem. Eng. J. 2021;409:128099. doi: 10.1016/j.cej.2020.128099. DOI
Li X., Huang Z., Zhi C. Environmental Stability of MXenes as Energy Storage Materials. Front. Mater. 2019;6:312. doi: 10.3389/fmats.2019.00312. DOI
Nguyen T.P., Nguyen D.M.T., Tran D.L., Le H.K., Vo D.-V.N., Lam S.S., Varma R.S., Shokouhimehr M., Nguyen C.C., Le Q. Van MXenes: Applications in electrocatalytic, photocatalytic hydrogen evolution reaction and CO2 reduction. Mol. Catal. 2020;486:110850. doi: 10.1016/j.mcat.2020.110850. DOI
Iqbal A., Kwon J., Kim M.-K., Koo C.M. MXenes for electromagnetic interference shielding: Experimental and theoretical perspectives. Mater. Today Adv. 2021;9:100124. doi: 10.1016/j.mtadv.2020.100124. DOI
Sinha A., Dhanjai, Mugo S.M., Chen J., Lokesh K.S. Handbook of Nanomaterials in Analytical Chemistry. Elsevier; Amsterdam, The Netherlands: 2020. MXene-based sensors and biosensors: Next-generation detection platforms; pp. 361–372.
Wang L., Li Y., Zhao L., Qi Z., Gou J., Zhang S., Zhang J.Z. Recent advances in ultrathin two-dimensional materials and biomedical applications for reactive oxygen species generation and scavenging. Nanoscale. 2020;12:19516–19535. doi: 10.1039/D0NR05746K. PubMed DOI
Al-Hamadani Y.A.J., Jun B.-M., Yoon M., Taheri-Qazvini N., Snyder S.A., Jang M., Heo J., Yoon Y. Applications of MXene-based membranes in water purification: A review. Chemosphere. 2020;254:126821. doi: 10.1016/j.chemosphere.2020.126821. PubMed DOI
Chen X., Zhao Y., Li L., Wang Y., Wang J., Xiong J., Du S., Zhang P., Shi X., Yu J. MXene/Polymer Nanocomposites: Preparation, Properties, and Applications. Polym. Rev. 2021;61:80–115. doi: 10.1080/15583724.2020.1729179. DOI
Szuplewska A., Kulpińska D., Dybko A., Chudy M., Jastrzębska A.M., Olszyna A., Brzózka Z. Future Applications of MXenes in Biotechnology, Nanomedicine, and Sensors. Trends Biotechnol. 2020;38:264–279. doi: 10.1016/j.tibtech.2019.09.001. PubMed DOI
Zhang Y.-Z., El-Demellawi J.K., Jiang Q., Ge G., Liang H., Lee K., Dong X., Alshareef H.N. MXene hydrogels: Fundamentals and applications. Chem. Soc. Rev. 2020;49:7229–7251. doi: 10.1039/D0CS00022A. PubMed DOI
Fouad D., Bachra Y., Ayoub G., Ouaket A., Bennamara A., Knouzi N., Berrada M. Chitin and Chitosan—Physicochemical Properties and Industrial Applications. IntechOpen; London, UK: 2020. A Novel Drug Delivery System Based on Nanoparticles of Magnetite Fe 3 O 4 Embedded in an Auto Cross-Linked Chitosan.
Xing C., Chen S., Liang X., Liu Q., Qu M., Zou Q., Li J., Tan H., Liu L., Fan D., et al. Two-Dimensional MXene (Ti3C2)-Integrated Cellulose Hydrogels: Toward Smart Three-Dimensional Network Nanoplatforms Exhibiting Light-Induced Swelling and Bimodal Photothermal/Chemotherapy Anticancer Activity. ACS Appl. Mater. Interfaces. 2018;10:27631–27643. doi: 10.1021/acsami.8b08314. PubMed DOI
Vitale F., Driscoll N., Murphy B. 2D Metal Carbides and Nitrides (MXenes) Springer International Publishing; Cham, Switzerland: 2019. Biomedical Applications of MXenes; pp. 503–524.
Damiri F., Bachra Y., Bounacir C., Laaraibi A., Berrada M. Synthesis and Characterization of Lyophilized Chitosan-Based Hydrogels Cross-Linked with Benzaldehyde for Controlled Drug Release. J. Chem. 2020;2020 doi: 10.1155/2020/8747639. DOI
Papadopoulou K.A., Chroneos A., Parfitt D., Christopoulos S.-R.G. A perspective on MXenes: Their synthesis, properties, and recent applications. J. Appl. Phys. 2020;128:170902. doi: 10.1063/5.0021485. DOI
Huang J., Li Z., Mao Y., Li Z. Progress and biomedical applications of MXenes. Nano Sel. 2021;2:1480–1508. doi: 10.1002/nano.202000309. DOI
Zhang J., Chen K., Sun X., Liu M., Hu X., He L., Huang Z., Chai Z., Xiao X., Song Y., et al. MAX Phase Ceramics/Composites with Complex Shapes. ACS Appl. Mater. Interfaces. 2021;13:5645–5651. doi: 10.1021/acsami.0c22289. PubMed DOI
Zhang F., Liu W., Wang S., Liu C., Shi H., Liang L., Pi K. Surface functionalization of Ti3C2Tx and its application in aqueous polymer nanocomposites for reinforcing corrosion protection. Compos. Part B Eng. 2021;217:108900. doi: 10.1016/j.compositesb.2021.108900. DOI
Liao H., Guo X., Wan P., Yu G. Conductive MXene Nanocomposite Organohydrogel for Flexible, Healable, Low-Temperature Tolerant Strain Sensors. Adv. Funct. Mater. 2019;29:1904507. doi: 10.1002/adfm.201904507. DOI
Tao N., Zhang D., Li X., Lou D., Sun X., Wei C., Li J., Yang J., Liu Y.-N. Near-infrared light-responsive hydrogels via peroxide-decorated MXene-initiated polymerization. Chem. Sci. 2019;10:10765–10771. doi: 10.1039/C9SC03917A. PubMed DOI PMC
Zhang P., Yang X.-J., Li P., Zhao Y., Niu Q.J. Fabrication of novel MXene (Ti3C2)/polyacrylamide nanocomposite hydrogels with enhanced mechanical and drug release properties. Soft Matter. 2020;16:162–169. doi: 10.1039/C9SM01985E. PubMed DOI
Zhang Y., Chen K., Li Y., Lan J., Yan B., Shi L., Ran R. High-Strength, Self-Healable, Temperature-Sensitive, MXene-Containing Composite Hydrogel as a Smart Compression Sensor. ACS Appl. Mater. Interfaces. 2019;11:47350–47357. doi: 10.1021/acsami.9b16078. PubMed DOI
Rafieerad A., Sequiera G.L., Yan W., Kaur P., Amiri A., Dhingra S. Sweet-MXene hydrogel with mixed-dimensional components for biomedical applications. J. Mech. Behav. Biomed. Mater. 2020;101:103440. doi: 10.1016/j.jmbbm.2019.103440. PubMed DOI
Zhang Y.-Z., Lee K.H., Anjum D.H., Sougrat R., Jiang Q., Kim H., Alshareef H.N. MXenes stretch hydrogel sensor performance to new limits. Sci. Adv. 2018;4:eaat0098. doi: 10.1126/sciadv.aat0098. PubMed DOI PMC
Zhang J., Wan L., Gao Y., Fang X., Lu T., Pan L., Xuan F. Highly Stretchable and Self-Healable MXene/Polyvinyl Alcohol Hydrogel Electrode for Wearable Capacitive Electronic Skin. Adv. Electron. Mater. 2019;5:1900285. doi: 10.1002/aelm.201900285. DOI
Yang C., Xu D., Peng W., Li Y., Zhang G., Zhang F., Fan X. Ti2C3Tx nanosheets as photothermal agents for near-infrared responsive hydrogels. Nanoscale. 2018;10:15387–15392. doi: 10.1039/C8NR05301D. PubMed DOI
Prakash N.J., Kandasubramanian B. Nanocomposites of MXene for industrial applications. J. Alloys Compd. 2021;862:158547. doi: 10.1016/j.jallcom.2020.158547. DOI
Gonzalez-Julian J. Processing of MAX phases: From synthesis to applications. J. Am. Ceram. Soc. 2021;104:659–690. doi: 10.1111/jace.17544. DOI
Carey M., Barsoum M.W. MXene polymer nanocomposites: A review. Mater. Today Adv. 2021;9:100120. doi: 10.1016/j.mtadv.2020.100120. DOI
Zhang C.J., Anasori B., Seral-Ascaso A., Park S.H., McEvoy N., Shmeliov A., Duesberg G.S., Coleman J.N., Gogotsi Y., Nicolosi V. Transparent, Flexible, and Conductive 2D Titanium Carbide (MXene) Films with High Volumetric Capacitance. Adv. Mater. 2017;29:1702678. doi: 10.1002/adma.201702678. PubMed DOI
Lipatov A., Goad A., Loes M.J., Vorobeva N.S., Abourahma J., Gogotsi Y., Sinitskii A. High electrical conductivity and breakdown current density of individual monolayer Ti3C2T MXene flakes. Matter. 2021;4:1413–1427. doi: 10.1016/j.matt.2021.01.021. DOI
Jiang X., Kuklin A.V., Baev A., Ge Y., Ågren H., Zhang H., Prasad P.N. Two-dimensional MXenes: From morphological to optical, electric, and magnetic properties and applications. Phys. Rep. 2020;848:1–58. doi: 10.1016/j.physrep.2019.12.006. DOI
Zhang Z., Liu X., Yu J., Hang Y., Li Y., Guo Y., Xu Y., Sun X., Zhou J., Guo W. Tunable electronic and magnetic properties of two-dimensional materials and their one-dimensional derivatives. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2016;6:324–350. doi: 10.1002/wcms.1251. PubMed DOI PMC
Yoon Y., Le T.A., Tiwari A.P., Kim I., Barsoum M.W., Lee H. Low temperature solution synthesis of reduced two dimensional Ti3C2 MXenes with paramagnetic behaviour. Nanoscale. 2018;10:22429–22438. doi: 10.1039/C8NR06854B. PubMed DOI
Scheibe B., Tadyszak K., Jarek M., Michalak N., Kempiński M., Lewandowski M., Peplińska B., Chybczyńska K. Study on the magnetic properties of differently functionalized multilayered Ti3C2Tx MXenes and Ti-Al-C carbides. Appl. Surf. Sci. 2019;479:216–224. doi: 10.1016/j.apsusc.2019.02.055. DOI
Naguib M., Saito T., Lai S., Rager M.S., Aytug T., Parans Paranthaman M., Zhao M.-Q., Gogotsi Y. Ti3C2Tx (MXene)–polyacrylamide nanocomposite films. RSC Adv. 2016;6:72069–72073. doi: 10.1039/C6RA10384G. DOI
Sun R., Zhang H.-B., Liu J., Xie X., Yang R., Li Y., Hong S., Yu Z.-Z. Highly Conductive Transition Metal Carbide/Carbonitride(MXene)@polystyrene Nanocomposites Fabricated by Electrostatic Assembly for Highly Efficient Electromagnetic Interference Shielding. Adv. Funct. Mater. 2017;27:1702807. doi: 10.1002/adfm.201702807. DOI
Tu S., Jiang Q., Zhang X., Alshareef H.N. Large Dielectric Constant Enhancement in MXene Percolative Polymer Composites. ACS Nano. 2018;12:3369–3377. doi: 10.1021/acsnano.7b08895. PubMed DOI
Tanvir A., Sobolčiak P., Popelka A., Mrlik M., Spitalsky Z., Micusik M., Prokes J., Krupa I. Electrically Conductive, Transparent Polymeric Nanocomposites Modified by 2D Ti3C2Tx (MXene) Polymers. 2019;11:1272. doi: 10.3390/polym11081272. PubMed DOI PMC
Liu Z., Zhang Y., Zhang H.-B., Dai Y., Liu J., Li X., Yu Z.-Z. Electrically conductive aluminum ion-reinforced MXene films for efficient electromagnetic interference shielding. J. Mater. Chem. C. 2020;8:1673–1678. doi: 10.1039/C9TC06304H. DOI
Shao J., Wang J.-W., Liu D.-N., Wei L., Wu S.-Q., Ren H. A novel high permittivity percolative composite with modified MXene. Polymer. 2019;174:86–95. doi: 10.1016/j.polymer.2019.04.057. DOI
Wang D., Lin Y., Hu D., Jiang P., Huang X. Multifunctional 3D-MXene/PDMS nanocomposites for electrical, thermal and triboelectric applications. Compos. Part A Appl. Sci. Manuf. 2020;130:105754. doi: 10.1016/j.compositesa.2019.105754. DOI
Wei L., Wang J.-W., Gao X.-H., Wang H.-Q., Wang X.-Z., Ren H. Enhanced Dielectric Properties of a Poly(dimethyl siloxane) Bimodal Network Percolative Composite with MXene. ACS Appl. Mater. Interfaces. 2020;12:16805–16814. doi: 10.1021/acsami.0c01409. PubMed DOI
Rajavel K., Luo S., Wan Y., Yu X., Hu Y., Zhu P., Sun R., Wong C. 2D Ti3C2Tx MXene/polyvinylidene fluoride (PVDF) nanocomposites for attenuation of electromagnetic radiation with excellent heat dissipation. Compos. Part A Appl. Sci. Manuf. 2020;129:105693. doi: 10.1016/j.compositesa.2019.105693. DOI
Seyedin S., Uzun S., Levitt A., Anasori B., Dion G., Gogotsi Y., Razal J.M. MXene Composite and Coaxial Fibers with High Stretchability and Conductivity for Wearable Strain Sensing Textiles. Adv. Funct. Mater. 2020;30:1910504. doi: 10.1002/adfm.201910504. DOI
Bachra Y., Grouli A., Damiri F., Bennamara A., Berrada M. A new approach for assessing the absorption of disposable baby diapers and superabsorbent polymers: A comparative study. Results Mater. 2020;8:100156. doi: 10.1016/j.rinma.2020.100156. DOI
Damiri F., Kommineni N., Ebhodaghe S.O., Bulusu R., Sainaga Jyothi V.G.S., Sayed A.A., Awaji A.A., Germoush M.O., Al-malky H.S., Nasrullah M.Z., et al. Microneedle-Based Natural Polysaccharide for Drug Delivery Systems (DDS): Progress and Challenges. Pharmaceuticals. 2022;15:190. doi: 10.3390/ph15020190. PubMed DOI PMC
Laaraibi A., Moughaoui F., Damiri F., Ouakit A., Charhouf I., Hamdouch S., Jaafari A., Abourriche A., Knouzi N., Bennamara A., et al. Chitin-Chitosan—Myriad Functionalities in Science and Technology. Intech Open; London, UK: 2018. Chitosan-Clay Based (CS-NaBNT) Biodegradable Nanocomposite Films for Potential Utility in Food and Environment.
Qu B., Luo Y. A review on the preparation and characterization of chitosan-clay nanocomposite films and coatings for food packaging applications. Carbohydr. Polym. Technol. Appl. 2021;2:100102. doi: 10.1016/j.carpta.2021.100102. DOI
Bachra Y., Grouli A., Damiri F., Talbi M., Berrada M. A Novel Superabsorbent Polymer from Crosslinked Carboxymethyl Tragacanth Gum with Glutaraldehyde: Synthesis, Characterization, and Swelling Properties. Int. J. Biomater. 2021;2021:5008833. doi: 10.1155/2021/5008833. PubMed DOI PMC
AaliaTamo, Bachra Y., Grouli A., Damiri F., Benhar S., Bennamara A., Berrada M., Talbi M. A Novel Quantitative Method For The Validation Of The Dosage Of Amnesic Shellfish Poisoning Toxins In Bivalve Mollusks. NVEO—Nat. Volatiles Essent. Oils. 2021;8:2858–2869.
Mayerberger E.A., Street R.M., McDaniel R.M., Barsoum M.W., Schauer C.L. Antibacterial properties of electrospun Ti3C2Tz (MXene)/chitosan nanofibers. RSC Adv. 2018;8:35386–35394. doi: 10.1039/C8RA06274A. PubMed DOI PMC
Zheng H., Wang S., Cheng F., He X., Liu Z., Wang W., Zhou L., Zhang Q. Bioactive anti-inflammatory, antibacterial, conductive multifunctional scaffold based on MXene@CeO2 nanocomposites for infection-impaired skin multimodal therapy. Chem. Eng. J. 2021;424:130148. doi: 10.1016/j.cej.2021.130148. DOI
Mallakpour S., Behranvand V., Hussain C.M. MXenes-based materials: Structure, synthesis, and various applications. Ceram. Int. 2021;47:26585–26597. doi: 10.1016/j.ceramint.2021.06.107. DOI
Dong Y., Sang D., He C., Sheng X., Lei L. Mxene/alginate composites for lead and copper ion removal from aqueous solutions. RSC Adv. 2019;9:29015–29022. doi: 10.1039/C9RA05251H. PubMed DOI PMC
Hroncekova S., Bertok T., Hires M., Jane E., Lorencova L., Vikartovska A., Tanvir A., Kasak P., Tkac J. Ultrasensitive Ti3C2TX MXene/Chitosan Nanocomposite-Based Amperometric Biosensor for Detection of Potential Prostate Cancer Marker in Urine Samples. Processes. 2020;8:580. doi: 10.3390/pr8050580. PubMed DOI PMC
Zhang Z.-H., Xu J.-Y., Yang X.-L. MXene/sodium alginate gel beads for adsorption of methylene blue. Mater. Chem. Phys. 2021;260:124123. doi: 10.1016/j.matchemphys.2020.124123. DOI
Rozmysłowska-Wojciechowska A., Karwowska E., Gloc M., Woźniak J., Petrus M., Przybyszewski B., Wojciechowski T., Jastrzębska A.M. Controlling the Porosity and Biocidal Properties of the Chitosan-Hyaluronate Matrix Hydrogel Nanocomposites by the Addition of 2D Ti3C2Tx MXene. Materials. 2020;13:4587. doi: 10.3390/ma13204587. PubMed DOI PMC
Li H., Ding G., Yang Z. A High Sensitive Flexible Pressure Sensor Designed by Silver Nanowires Embedded in Polyimide (AgNW-PI) Micromachines. 2019;10:206. doi: 10.3390/mi10030206. PubMed DOI PMC
Hu D., Huang X., Li S., Jiang P. Flexible and durable cellulose/MXene nanocomposite paper for efficient electromagnetic interference shielding. Compos. Sci. Technol. 2020;188:107995. doi: 10.1016/j.compscitech.2020.107995. DOI
Dicker K.T., Gurski L.A., Pradhan-Bhatt S., Witt R.L., Farach-Carson M.C., Jia X. Hyaluronan: A simple polysaccharide with diverse biological functions. Acta Biomater. 2014;10:1558–1570. doi: 10.1016/j.actbio.2013.12.019. PubMed DOI PMC
Zhou L., Zheng H., Liu Z., Wang S., Liu Z., Chen F., Zhang H., Kong J., Zhou F., Zhang Q. Conductive Antibacterial Hemostatic Multifunctional Scaffolds Based on Ti3C2Tx MXene Nanosheets for Promoting Multidrug-Resistant Bacteria-Infected Wound Healing. ACS Nano. 2021;15:2468–2480. doi: 10.1021/acsnano.0c06287. PubMed DOI
Ren J., Zhu Z., Qiu Y., Yu F., Zhou T., Ma J., Zhao J. Enhanced adsorption performance of alginate/MXene/CoFe2O4 for antibiotic and heavy metal under rotating magnetic field. Chemosphere. 2021;284:131284. doi: 10.1016/j.chemosphere.2021.131284. PubMed DOI
Kloster G.A., Muraca D., Londoño O.M., Pirota K.R., Mosiewicki M.A., Marcovich N.E. Alginate based nanocomposites with magnetic properties. Compos. Part A Appl. Sci. Manuf. 2020;135:105936. doi: 10.1016/j.compositesa.2020.105936. DOI
Boucelkha A., Petit E., Elboutachfaiti R., Molinié R., Amari S., Zaidi-Yahaoui R. Production of guluronate oligosaccharide of alginate from brown algae Stypocaulon scoparium using an alginate lyase. J. Appl. Phycol. 2017;29:509–519. doi: 10.1007/s10811-016-0928-y. DOI
Wan S., Li X., Wang Y., Chen Y., Xie X., Yang R., Tomsia A.P., Jiang L., Cheng Q. Strong sequentially bridged MXene sheets. Proc. Natl. Acad. Sci. USA. 2020;117:27154–27161. doi: 10.1073/pnas.2009432117. PubMed DOI PMC
Xu B., Zhi C., Shi P. Latest advances in MXene biosensors. J. Phys. Mater. 2020;3:031001. doi: 10.1088/2515-7639/ab8f78. DOI
Huang M., Gu Z., Zhang J., Zhang D., Zhang H., Yang Z., Qu J. MXene and black phosphorus based 2D nanomaterials in bioimaging and biosensing: Progress and perspectives. J. Mater. Chem. B. 2021;9:5195–5220. doi: 10.1039/D1TB00410G. PubMed DOI
Huang Z., Cui X., Li S., Wei J., Li P., Wang Y., Lee C.S. Two-dimensional MXene-based materials for photothermal therapy. Nanophotonics. 2020;9:2233–2249. doi: 10.1515/nanoph-2019-0571. DOI
Aghajanzadeh M., Zamani M., Rajabi Kouchi F., Eixenberger J., Shirini D., Estrada D., Shirini F. Synergic Antitumor Effect of Photodynamic Therapy and Chemotherapy Mediated by Nano Drug Delivery Systems. Pharmaceutics. 2022;14:322. doi: 10.3390/pharmaceutics14020322. PubMed DOI PMC
Iravani S., Varma R.S. MXenes for Cancer Therapy and Diagnosis: Recent Advances and Current Challenges. ACS Biomater. Sci. Eng. 2021;7:1900–1913. doi: 10.1021/acsbiomaterials.0c01763. PubMed DOI
George S.M., Kandasubramanian B. Advancements in MXene-Polymer composites for various biomedical applications. Ceram. Int. 2020;46:8522–8535. doi: 10.1016/j.ceramint.2019.12.257. DOI
Ashrafizadeh M., Mirzaei S., Gholami M.H., Hashemi F., Zabolian A., Raei M., Hushmandi K., Zarrabi A., Voelcker N.H., Aref A.R., et al. Hyaluronic acid-based nanoplatforms for Doxorubicin: A review of stimuli-responsive carriers, co-delivery and resistance suppression. Carbohydr. Polym. 2021;272:118491. doi: 10.1016/j.carbpol.2021.118491. PubMed DOI
Lin H., Gao S., Dai C., Chen Y., Shi J. A Two-Dimensional Biodegradable Niobium Carbide (MXene) for Photothermal Tumor Eradication in NIR-I and NIR-II Biowindows. J. Am. Chem. Soc. 2017;139:16235–16247. doi: 10.1021/jacs.7b07818. PubMed DOI
Ambekar R.S., Kandasubramanian B. A polydopamine-based platform for anti-cancer drug delivery. Biomater. Sci. 2019;7:1776–1793. doi: 10.1039/C8BM01642A. PubMed DOI
Han X., Huang J., Lin H., Wang Z., Li P., Chen Y. 2D Ultrathin MXene-Based Drug-Delivery Nanoplatform for Synergistic Photothermal Ablation and Chemotherapy of Cancer. Adv. Healthc. Mater. 2018;7:1701394. doi: 10.1002/adhm.201701394. PubMed DOI
Liu G., Zou J., Tang Q., Yang X., Zhang Y., Zhang Q., Huang W., Chen P., Shao J., Dong X. Surface Modified Ti3C2 MXene Nanosheets for Tumor Targeting Photothermal/Photodynamic/Chemo Synergistic Therapy. ACS Appl. Mater. Interfaces. 2017;9:40077–40086. doi: 10.1021/acsami.7b13421. PubMed DOI
Sharma S., Chhetry A., Sharifuzzaman M., Yoon H., Park J.Y. Wearable Capacitive Pressure Sensor Based on MXene Composite Nanofibrous Scaffolds for Reliable Human Physiological Signal Acquisition. ACS Appl. Mater. Interfaces. 2020;12:22212–22224. doi: 10.1021/acsami.0c05819. PubMed DOI
Rakhi R.B., Nayuk P., Xia C., Alshareef H.N. Novel amperometric glucose biosensor based on MXene nanocomposite. Sci. Rep. 2016;6:36422. doi: 10.1038/srep36422. PubMed DOI PMC
Hussein E.A., Zagho M.M., Rizeq B.R., Younes N.N., Pintus G., Mahmoud K.A., Nasrallah G.K., Elzatahry A.A. Plasmonic MXene-based nanocomposites exhibiting photothermal therapeutic effects with lower acute toxicity than pure MXene. Int. J. Nanomed. 2019;14:4529–4539. doi: 10.2147/IJN.S202208. PubMed DOI PMC
Szuplewska A., Kulpińska D., Dybko A., Jastrzębska A.M., Wojciechowski T., Rozmysłowska A., Chudy M., Grabowska-Jadach I., Ziemkowska W., Brzózka Z., et al. 2D Ti2C (MXene) as a novel highly efficient and selective agent for photothermal therapy. Mater. Sci. Eng. C. 2019;98:874–886. doi: 10.1016/j.msec.2019.01.021. PubMed DOI
Syamsai R., Grace A.N. Ta4C3 MXene as supercapacitor electrodes. J. Alloys Compd. 2019;792:1230–1238. doi: 10.1016/j.jallcom.2019.04.096. DOI
Chen K., Chen Y., Deng Q., Jeong S.-H., Jang T.-S., Du S., Kim H.-E., Huang Q., Han C.-M. Strong and biocompatible poly(lactic acid) membrane enhanced by Ti3C2Tz (MXene) nanosheets for Guided bone regeneration. Mater. Lett. 2018;229:114–117. doi: 10.1016/j.matlet.2018.06.063. DOI
Zhang J., Fu Y., Mo A. Multilayered Titanium Carbide MXene Film for Guided Bone Regeneration. Int. J. Nanomed. 2019;14:10091–10103. doi: 10.2147/IJN.S227830. PubMed DOI PMC
Yadav R., Balasubramanian K. Engineering of Nanobiomaterials. Elsevier; Amsterdam, The Netherlands: 2016. Bioabsorbable engineered nanobiomaterials for antibacterial therapy; pp. 77–117.
Yadav R., Balasubramanian K. Polyacrylonitrile/Syzygium aromaticum hierarchical hydrophilic nanocomposite as a carrier for antibacterial drug delivery systems. RSC Adv. 2015;5:3291–3298. doi: 10.1039/C4RA12755B. DOI
Shamsabadi A.A., Sharifian Gh. M., Anasori B., Soroush M. Antimicrobial Mode-of-Action of Colloidal Ti3C2Tx MXene Nanosheets. ACS Sustain. Chem. Eng. 2018;6:16586–16596. doi: 10.1021/acssuschemeng.8b03823. DOI
Rasool K., Mahmoud K.A., Johnson D.J., Helal M., Berdiyorov G.R., Gogotsi Y. Efficient Antibacterial Membrane based on Two-Dimensional Ti3C2Tx (MXene) Nanosheets. Sci. Rep. 2017;7:1598. doi: 10.1038/s41598-017-01714-3. PubMed DOI PMC
Rozmysłowska-Wojciechowska A., Szuplewska A., Wojciechowski T., Poźniak S., Mitrzak J., Chudy M., Ziemkowska W., Chlubny L., Olszyna A., Jastrzębska A.M. A simple, low-cost and green method for controlling the cytotoxicity of MXenes. Mater. Sci. Eng. C. 2020;111:110790. doi: 10.1016/j.msec.2020.110790. PubMed DOI
Alhussain H., Augustine R., Hussein E.A., Gupta I., Hasan A., Al Moustafa A.-E., Elzatahry A. MXene Nanosheets May Induce Toxic Effect on the Early Stage of Embryogenesis. J. Biomed. Nanotechnol. 2020;16:364–372. doi: 10.1166/jbn.2020.2894. PubMed DOI