Maximizing the efficiency of multienzyme process by stoichiometry optimization
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
25099170
DOI
10.1002/cbic.201402265
Knihovny.cz E-zdroje
- Klíčová slova
- biocatalysis, biotransformations, kinetic modeling, multienzyme reaction, stoichiometry optimization,
- MeSH
- algoritmy MeSH
- biokatalýza * MeSH
- chemické modely MeSH
- enzymy chemie MeSH
- kinetika MeSH
- proteinové inženýrství MeSH
- průběh práce MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- enzymy MeSH
Multienzyme processes represent an important area of biocatalysis. Their efficiency can be enhanced by optimization of the stoichiometry of the biocatalysts. Here we present a workflow for maximizing the efficiency of a three-enzyme system catalyzing a five-step chemical conversion. Kinetic models of pathways with wild-type or engineered enzymes were built, and the enzyme stoichiometry of each pathway was optimized. Mathematical modeling and one-pot multienzyme experiments provided detailed insights into pathway dynamics, enabled the selection of a suitable engineered enzyme, and afforded high efficiency while minimizing biocatalyst loadings. Optimizing the stoichiometry in a pathway with an engineered enzyme reduced the total biocatalyst load by an impressive 56 %. Our new workflow represents a broadly applicable strategy for optimizing multienzyme processes.
Citace poskytuje Crossref.org
Detection of Chloroalkanes by Surface-Enhanced Raman Spectroscopy in Microfluidic Chips