HotSpot Wizard 2.0: automated design of site-specific mutations and smart libraries in protein engineering
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
27174934
PubMed Central
PMC4987947
DOI
10.1093/nar/gkw416
PII: gkw416
Knihovny.cz E-zdroje
- MeSH
- automatizace MeSH
- biokatalýza MeSH
- databáze proteinů MeSH
- internet * MeSH
- molekulární evoluce MeSH
- molekulární modely MeSH
- mutace * MeSH
- mutageneze cílená metody MeSH
- peptidová knihovna * MeSH
- proteiny chemie genetika MeSH
- software * MeSH
- stabilita proteinů MeSH
- substituce aminokyselin MeSH
- substrátová specifita MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- peptidová knihovna * MeSH
- proteiny MeSH
HotSpot Wizard 2.0 is a web server for automated identification of hot spots and design of smart libraries for engineering proteins' stability, catalytic activity, substrate specificity and enantioselectivity. The server integrates sequence, structural and evolutionary information obtained from 3 databases and 20 computational tools. Users are guided through the processes of selecting hot spots using four different protein engineering strategies and optimizing the resulting library's size by narrowing down a set of substitutions at individual randomized positions. The only required input is a query protein structure. The results of the calculations are mapped onto the protein's structure and visualized with a JSmol applet. HotSpot Wizard lists annotated residues suitable for mutagenesis and can automatically design appropriate codons for each implemented strategy. Overall, HotSpot Wizard provides comprehensive annotations of protein structures and assists protein engineers with the rational design of site-specific mutations and focused libraries. It is freely available at http://loschmidt.chemi.muni.cz/hotspotwizard.
Zobrazit více v PubMed
Romero P.A., Arnold F.H. Exploring protein fitness landscapes by directed evolution. Nat. Rev. Mol. Cell Biol. 2009;10:866–876. PubMed PMC
Currin A., Swainston N., Day P.J., Kell D.B. Synthetic biology for the directed evolution of protein biocatalysts: navigating sequence space intelligently. Chem. Soc. Rev. 2015;44:1172–1239. PubMed PMC
Cheng F., Zhu L., Schwaneberg U. Directed evolution 2.0: improving and deciphering enzyme properties. Chem. Commun. (Camb.) 2015;51:9760–9772. PubMed
Lutz S. Beyond directed evolution–semi-rational protein engineering and design. Curr. Opin. Biotechnol. 2010;21:734–743. PubMed PMC
Acevedo-Rocha C.G., Reetz M.T., Nov Y. Economical analysis of saturation mutagenesis experiments. Sci. Rep. 2015;5:10654. PubMed PMC
Lo Surdo P., Walsh M.A., Sollazzo M. A novel ADP- and zinc-binding fold from function-directed in vitro evolution. Nat. Struct. Mol. Biol. 2004;11:382–383. PubMed
Denard C.A., Ren H., Zhao H. Improving and repurposing biocatalysts via directed evolution. Curr. Opin. Chem. Biol. 2015;25:55–64. PubMed
Bornscheuer U.T., Huisman G.W., Kazlauskas R.J., Lutz S., Moore J.C., Robins K. Engineering the third wave of biocatalysis. Nature. 2012;485:185–194. PubMed
Xie Z.-R., Hwang M.-J. Methods for predicting protein-ligand binding sites. Methods Mol. Biol. 2015;1215:383–398. PubMed
Yuan Y., Pei J., Lai L. Binding site detection and druggability prediction of protein targets for structure-based drug design. Curr. Pharm. Des. 2013;19:2326–2333. PubMed
Lavecchia A., Di Giovanni C. Virtual screening strategies in drug discovery: a critical review. Curr. Med. Chem. 2013;20:2839–2860. PubMed
Sebestova E., Bendl J., Brezovsky J., Damborsky J. Computational tools for designing smart libraries. Methods Mol. Biol. 2014;1179:291–314. PubMed
Brezovsky J., Chovancova E., Gora A., Pavelka A., Biedermannova L., Damborsky J. Software tools for identification, visualization and analysis of protein tunnels and channels. Biotechnol. Adv. 2013;31:38–49. PubMed
Zhang Z., Li Y., Lin B., Schroeder M., Huang B. Identification of cavities on protein surface using multiple computational approaches for drug binding site prediction. Bioinformatics. 2011;27:2083–2088. PubMed
Bommarius A.S., Paye M.F. Stabilizing biocatalysts. Chem. Soc. Rev. 2013;42:6534–6565. PubMed
Wijma H.J., Floor R.J., Janssen D.B. Structure- and sequence-analysis inspired engineering of proteins for enhanced thermostability. Curr. Opin. Struct. Biol. 2013;23:588–594. PubMed
Yu H., Huang H. Engineering proteins for thermostability through rigidifying flexible sites. Biotechnol. Adv. 2014;32:308–315. PubMed
Folkman L., Stantic B., Sattar A., Zhou Y. EASE-MM: Sequence-based prediction of mutation-induced stability changes with feature-based multiple models. J. Mol. Biol. 2016;428:1394–1405. PubMed
Bednar D., Beerens K., Sebestova E., Bendl J., Khare S., Chaloupkova R., Prokop Z., Brezovsky J., Baker D., Damborsky J. FireProt: Energy- and evolution-based computational design of thermostable multiple-point mutants. PLoS Comput. Biol. 2015;11:e1004556. PubMed PMC
Reetz M.T., Wu S. Greatly reduced amino acid alphabets in directed evolution: making the right choice for saturation mutagenesis at homologous enzyme positions. Chem. Commun. (Camb) 2008;43:5499–5501. PubMed
Jochens H., Bornscheuer U.T. Natural diversity to guide focused directed evolution. Chembiochem. 2010;11:1861–1866. PubMed
Pines G., Pines A., Garst A.D., Zeitoun R.I., Lynch S.A., Gill R.T. Codon compression algorithms for saturation mutagenesis. ACS Synth. Biol. 2015;4:604–614. PubMed
Reetz M.T., Kahakeaw D., Lohmer R. Addressing the numbers problem in directed evolution. Chembiochem. 2008;9:1797–1804. PubMed
Goldsmith M., Tawfik D.S. Enzyme engineering by targeted libraries. Methods Enzymol. 2013;523:257–283. PubMed
Chaparro-Riggers J.F., Polizzi K.M., Bommarius A.S. Better library design: data-driven protein engineering. Biotechnol. J. 2007;2:180–191. PubMed
Gaytán P., Contreras-Zambrano C., Ortiz-Alvarado M., Morales-Pablos A., Yáñez J. TrimerDimer: an oligonucleotide-based saturation mutagenesis approach that removes redundant and stop codons. Nucleic Acids Res. 2009;37:e125. PubMed PMC
Nov Y. Probabilistic methods in directed evolution: library size, mutation rate, and diversity. Methods Mol. Biol. 2014;1179:261–278. PubMed
Pavelka A., Chovancova E., Damborsky J. HotSpot Wizard: a web server for identification of hot spots in protein engineering. Nucleic Acids Res. 2009;37:W376–W383. PubMed PMC
Furnham N., Holliday G.L., de Beer T.A.P., Jacobsen J.O.B., Pearson W.R., Thornton J.M. The Catalytic Site Atlas 2.0: cataloging catalytic sites and residues identified in enzymes. Nucleic Acids Res. 2014;42:D485–D489. PubMed PMC
UniProt Consortium. UniProt: a hub for protein information. Nucleic Acids Res. 2015;43:D204–D212. PubMed PMC
Kabsch W., Sander C. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers. 1983;22:2577–2637. PubMed
Shrake A., Rupley J.A. Environment and exposure to solvent of protein atoms. Lysozyme and insulin. J. Mol. Biol. 1973;79:351–371. PubMed
Prlić A., Yates A., Bliven S.E., Rose P.W., Jacobsen J., Troshin P.V., Chapman M., Gao J., Koh C.H., Foisy S., et al. BioJava: an open-source framework for bioinformatics in 2012. Bioinformatics. 2012;28:2693–2695. PubMed PMC
Reetz M.T., Carballeira J.D., Vogel A. Iterative saturation mutagenesis on the basis of B factors as a strategy for increasing protein thermostability. Angew. Chem. Int. Ed Engl. 2006;45:7745–7751. PubMed
Le Guilloux V., Schmidtke P., Tuffery P. Fpocket: an open source platform for ligand pocket detection. BMC Bioinformatics. 2009;10:168. PubMed PMC
Chovancova E., Pavelka A., Benes P., Strnad O., Brezovsky J., Kozlikova B., Gora A., Sustr V., Klvana M., Medek P., et al. CAVER 3.0: a tool for the analysis of transport pathways in dynamic protein structures. PLoS Comput. Biol. 2012;8:e1002708. PubMed PMC
Camacho C., Coulouris G., Avagyan V., Ma N., Papadopoulos J., Bealer K., Madden T.L. BLAST+: architecture and applications. BMC Bioinformatics. 2009;10:421. PubMed PMC
Suzek B.E., Wang Y., Huang H., McGarvey P.B., Wu C.H., UniProt Consortium UniRef clusters: a comprehensive and scalable alternative for improving sequence similarity searches. Bioinformatics. 2015;31:926–932. PubMed PMC
Edgar R.C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010;26:2460–2461. PubMed
Sievers F., Wilm A., Dineen D., Gibson T.J., Karplus K., Li W., Lopez R., McWilliam H., Remmert M., Söding J., et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 2011;7:539. PubMed PMC
Capra J.A., Singh M. Predicting functionally important residues from sequence conservation. Bioinformatics. 2007;23:1875–1882. PubMed
Korber B.T., Farber R.M., Wolpert D.H., Lapedes A.S. Covariation of mutations in the V3 loop of human immunodeficiency virus type 1 envelope protein: an information theoretic analysis. Proc. Natl. Acad. Sci. U.S.A. 1993;90:7176–7180. PubMed PMC
Lee B.-C., Kim D. A new method for revealing correlated mutations under the structural and functional constraints in proteins. Bioinformatics. 2009;25:2506–2513. PubMed
Kass I., Horovitz A. Mapping pathways of allosteric communication in GroEL by analysis of correlated mutations. Proteins. 2002;48:611–617. PubMed
Lockless S.W., Ranganathan R. Evolutionarily conserved pathways of energetic connectivity in protein families. Science. 1999;286:295–299. PubMed
Weigt M., White R.A., Szurmant H., Hoch J.A., Hwa T. Identification of direct residue contacts in protein-protein interaction by message passing. Proc. Natl. Acad. Sci. U.S.A. 2009;106:67–72. PubMed PMC
Olmea O., Rost B., Valencia A. Effective use of sequence correlation and conservation in fold recognition. J. Mol. Biol. 1999;293:1221–1239. PubMed
Dekker J.P., Fodor A., Aldrich R.W., Yellen G. A perturbation-based method for calculating explicit likelihood of evolutionary co-variance in multiple sequence alignments. Bioinformatics. 2004;20:1565–1572. PubMed
Pavlova M., Klvana M., Prokop Z., Chaloupkova R., Banas P., Otyepka M., Wade R.C., Tsuda M., Nagata Y., Damborsky J. Redesigning dehalogenase access tunnels as a strategy for degrading an anthropogenic substrate. Nat. Chem. Biol. 2009;5:727–733. PubMed
Gopal S., Rastogi V., Ashman W., Mulbry W. Mutagenesis of organophosphorus hydrolase to enhance hydrolysis of the nerve agent VX. Biochem. Biophys. Res. Commun. 2000;279:516–519. PubMed
Watkins L.M., Mahoney H.J., McCulloch J.K., Raushel F.M. Augmented hydrolysis of diisopropyl fluorophosphate in engineered mutants of phosphotriesterase. J. Biol. Chem. 1997;272:25596–25601. PubMed
Reetz M.T., Wang L.-W., Bocola M. Directed evolution of enantioselective enzymes: iterative cycles of CASTing for probing protein-sequence space. Angew. Chem. Int. Ed Engl. 2006;45:1236–1241. PubMed
Reetz M.T., Torre C., Eipper A., Lohmer R., Hermes M., Brunner B., Maichele A., Bocola M., Arand M., Cronin A., et al. Enhancing the enantioselectivity of an epoxide hydrolase by directed evolution. Org. Lett. 2004;6:177–180. PubMed
Cerdobbel A., De Winter K., Aerts D., Kuipers R., Joosten H.-J., Soetaert W., Desmet T. Increasing the thermostability of sucrose phosphorylase by a combination of sequence- and structure-based mutagenesis. Protein Eng. Des. Sel. 2011;24:829–834. PubMed
Jochens H., Aerts D., Bornscheuer U.T. Thermostabilization of an esterase by alignment-guided focussed directed evolution. Protein Eng. Des. Sel. 2010;23:903–909. PubMed
Sullivan B.J., Nguyen T., Durani V., Mathur D., Rojas S., Thomas M., Syu T., Magliery T.J. Stabilizing proteins from sequence statistics: the interplay of conservation and correlation in triosephosphate isomerase stability. J. Mol. Biol. 2012;420:384–399. PubMed PMC
Pey A.L., Rodriguez-Larrea D., Bomke S., Dammers S., Godoy-Ruiz R., Garcia-Mira M.M., Sanchez-Ruiz J.M. Engineering proteins with tunable thermodynamic and kinetic stabilities. Proteins. 2008;71:165–174. PubMed
Amin N., Liu A.D., Ramer S., Aehle W., Meijer D., Metin M., Wong S., Gualfetti P., Schellenberger V. Construction of stabilized proteins by combinatorial consensus mutagenesis. Protein Eng. Des. Sel. 2004;17:787–793. PubMed
Akasako A., Haruki M., Oobatake M., Kanaya S. Conformational stabilities of Escherichia coli RNase HI variants with a series of amino acid substitutions at a cavity within the hydrophobic core. J. Biol. Chem. 1997;272:18686–18693. PubMed
van den Heuvel R.H.H., Fraaije M.W., Ferrer M., Mattevi A., van Berkel W.J.H. Inversion of stereospecificity of vanillyl-alcohol oxidase. Proc. Natl. Acad. Sci. U.S.A. 2000;97:9455–9460. PubMed PMC
Killick T.R., Freund S.M., Fersht A.R. Real-time NMR studies on folding of mutants of barnase and chymotrypsin inhibitor 2. FEBS Lett. 1998;423:110–112. PubMed
Encell L.P., Friedman Ohana R., Zimmerman K., Otto P., Vidugiris G., Wood M.G., Los G.V., McDougall M.G., Zimprich C., Karassina N., et al. Development of a dehalogenase-based protein fusion tag capable of rapid, selective and covalent attachment to customizable ligands. Curr. Chem. Genomics. 2012;6:55–71. PubMed PMC
Reetz M.T., Bocola M., Carballeira J.D., Zha D., Vogel A. Expanding the range of substrate acceptance of enzymes: combinatorial active-site saturation test. Angew. Chem. Int. Ed Engl. 2005;44:4192–4196. PubMed
Morley K.L., Kazlauskas R.J. Improving enzyme properties: when are closer mutations better? Trends Biotechnol. 2005;23:231–237. PubMed
Lehmann M., Loch C., Middendorf A., Studer D., Lassen S.F., Pasamontes L., van Loon A.P.G.M., Wyss M. The consensus concept for thermostability engineering of proteins: further proof of concept. Protein Eng. 2002;15:403–411. PubMed
de Juan D., Pazos F., Valencia A. Emerging methods in protein co-evolution. Nat. Rev. Genet. 2013;14:249–261. PubMed
Kuipers R.K.P., Joosten H.-J., Verwiel E., Paans S., Akerboom J., van der Oost J., Leferink N.G.H., van Berkel W.J.H., Vriend G., Schaap P.J. Correlated mutation analyses on super-family alignments reveal functionally important residues. Proteins. 2009;76:608–616. PubMed
Nobili A., Tao Y., Pavlidis I.V., van den Bergh T., Joosten H.-J., Tan T., Bornscheuer U.T. Simultaneous use of in silico design and a correlated mutation network as a tool to efficiently guide enzyme engineering. Chembiochem. 2015;16:805–810. PubMed
Wang C., Huang R., He B., Du Q. Improving the thermostability of alpha-amylase by combinatorial coevolving-site saturation mutagenesis. BMC Bioinformatics. 2012;13:263. PubMed PMC
Martin L.C., Gloor G.B., Dunn S.D., Wahl L.M. Using information theory to search for co-evolving residues in proteins. Bioinformatics. 2005;21:4116–4124. PubMed
Fodor A.A., Aldrich R.W. Influence of conservation on calculations of amino acid covariance in multiple sequence alignments. Proteins. 2004;56:211–221. PubMed
Nov Y. When second best is good enough: another probabilistic look at saturation mutagenesis. Appl. Environ. Microbiol. 2012;78:258–262. PubMed PMC
Jacobs T.M., Yumerefendi H., Kuhlman B., Leaver-Fay A. SwiftLib: rapid degenerate-codon-library optimization through dynamic programming. Nucleic Acids Res. 2015;43:e34. PubMed PMC
Li W., Cowley A., Uludag M., Gur T., McWilliam H., Squizzato S., Park Y.M., Buso N., Lopez R. The EMBL-EBI bioinformatics web and programmatic tools framework. Nucleic Acids Res. 2015;43:W580–W584. PubMed PMC
SoluProtMutDB: A manually curated database of protein solubility changes upon mutations
FireProt: web server for automated design of thermostable proteins