HotSpot Wizard 2.0: automated design of site-specific mutations and smart libraries in protein engineering

. 2016 Jul 08 ; 44 (W1) : W479-87. [epub] 20160512

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid27174934

HotSpot Wizard 2.0 is a web server for automated identification of hot spots and design of smart libraries for engineering proteins' stability, catalytic activity, substrate specificity and enantioselectivity. The server integrates sequence, structural and evolutionary information obtained from 3 databases and 20 computational tools. Users are guided through the processes of selecting hot spots using four different protein engineering strategies and optimizing the resulting library's size by narrowing down a set of substitutions at individual randomized positions. The only required input is a query protein structure. The results of the calculations are mapped onto the protein's structure and visualized with a JSmol applet. HotSpot Wizard lists annotated residues suitable for mutagenesis and can automatically design appropriate codons for each implemented strategy. Overall, HotSpot Wizard provides comprehensive annotations of protein structures and assists protein engineers with the rational design of site-specific mutations and focused libraries. It is freely available at http://loschmidt.chemi.muni.cz/hotspotwizard.

Zobrazit více v PubMed

Romero P.A., Arnold F.H. Exploring protein fitness landscapes by directed evolution. Nat. Rev. Mol. Cell Biol. 2009;10:866–876. PubMed PMC

Currin A., Swainston N., Day P.J., Kell D.B. Synthetic biology for the directed evolution of protein biocatalysts: navigating sequence space intelligently. Chem. Soc. Rev. 2015;44:1172–1239. PubMed PMC

Cheng F., Zhu L., Schwaneberg U. Directed evolution 2.0: improving and deciphering enzyme properties. Chem. Commun. (Camb.) 2015;51:9760–9772. PubMed

Lutz S. Beyond directed evolution–semi-rational protein engineering and design. Curr. Opin. Biotechnol. 2010;21:734–743. PubMed PMC

Acevedo-Rocha C.G., Reetz M.T., Nov Y. Economical analysis of saturation mutagenesis experiments. Sci. Rep. 2015;5:10654. PubMed PMC

Lo Surdo P., Walsh M.A., Sollazzo M. A novel ADP- and zinc-binding fold from function-directed in vitro evolution. Nat. Struct. Mol. Biol. 2004;11:382–383. PubMed

Denard C.A., Ren H., Zhao H. Improving and repurposing biocatalysts via directed evolution. Curr. Opin. Chem. Biol. 2015;25:55–64. PubMed

Bornscheuer U.T., Huisman G.W., Kazlauskas R.J., Lutz S., Moore J.C., Robins K. Engineering the third wave of biocatalysis. Nature. 2012;485:185–194. PubMed

Xie Z.-R., Hwang M.-J. Methods for predicting protein-ligand binding sites. Methods Mol. Biol. 2015;1215:383–398. PubMed

Yuan Y., Pei J., Lai L. Binding site detection and druggability prediction of protein targets for structure-based drug design. Curr. Pharm. Des. 2013;19:2326–2333. PubMed

Lavecchia A., Di Giovanni C. Virtual screening strategies in drug discovery: a critical review. Curr. Med. Chem. 2013;20:2839–2860. PubMed

Sebestova E., Bendl J., Brezovsky J., Damborsky J. Computational tools for designing smart libraries. Methods Mol. Biol. 2014;1179:291–314. PubMed

Brezovsky J., Chovancova E., Gora A., Pavelka A., Biedermannova L., Damborsky J. Software tools for identification, visualization and analysis of protein tunnels and channels. Biotechnol. Adv. 2013;31:38–49. PubMed

Zhang Z., Li Y., Lin B., Schroeder M., Huang B. Identification of cavities on protein surface using multiple computational approaches for drug binding site prediction. Bioinformatics. 2011;27:2083–2088. PubMed

Bommarius A.S., Paye M.F. Stabilizing biocatalysts. Chem. Soc. Rev. 2013;42:6534–6565. PubMed

Wijma H.J., Floor R.J., Janssen D.B. Structure- and sequence-analysis inspired engineering of proteins for enhanced thermostability. Curr. Opin. Struct. Biol. 2013;23:588–594. PubMed

Yu H., Huang H. Engineering proteins for thermostability through rigidifying flexible sites. Biotechnol. Adv. 2014;32:308–315. PubMed

Folkman L., Stantic B., Sattar A., Zhou Y. EASE-MM: Sequence-based prediction of mutation-induced stability changes with feature-based multiple models. J. Mol. Biol. 2016;428:1394–1405. PubMed

Bednar D., Beerens K., Sebestova E., Bendl J., Khare S., Chaloupkova R., Prokop Z., Brezovsky J., Baker D., Damborsky J. FireProt: Energy- and evolution-based computational design of thermostable multiple-point mutants. PLoS Comput. Biol. 2015;11:e1004556. PubMed PMC

Reetz M.T., Wu S. Greatly reduced amino acid alphabets in directed evolution: making the right choice for saturation mutagenesis at homologous enzyme positions. Chem. Commun. (Camb) 2008;43:5499–5501. PubMed

Jochens H., Bornscheuer U.T. Natural diversity to guide focused directed evolution. Chembiochem. 2010;11:1861–1866. PubMed

Pines G., Pines A., Garst A.D., Zeitoun R.I., Lynch S.A., Gill R.T. Codon compression algorithms for saturation mutagenesis. ACS Synth. Biol. 2015;4:604–614. PubMed

Reetz M.T., Kahakeaw D., Lohmer R. Addressing the numbers problem in directed evolution. Chembiochem. 2008;9:1797–1804. PubMed

Goldsmith M., Tawfik D.S. Enzyme engineering by targeted libraries. Methods Enzymol. 2013;523:257–283. PubMed

Chaparro-Riggers J.F., Polizzi K.M., Bommarius A.S. Better library design: data-driven protein engineering. Biotechnol. J. 2007;2:180–191. PubMed

Gaytán P., Contreras-Zambrano C., Ortiz-Alvarado M., Morales-Pablos A., Yáñez J. TrimerDimer: an oligonucleotide-based saturation mutagenesis approach that removes redundant and stop codons. Nucleic Acids Res. 2009;37:e125. PubMed PMC

Nov Y. Probabilistic methods in directed evolution: library size, mutation rate, and diversity. Methods Mol. Biol. 2014;1179:261–278. PubMed

Pavelka A., Chovancova E., Damborsky J. HotSpot Wizard: a web server for identification of hot spots in protein engineering. Nucleic Acids Res. 2009;37:W376–W383. PubMed PMC

Furnham N., Holliday G.L., de Beer T.A.P., Jacobsen J.O.B., Pearson W.R., Thornton J.M. The Catalytic Site Atlas 2.0: cataloging catalytic sites and residues identified in enzymes. Nucleic Acids Res. 2014;42:D485–D489. PubMed PMC

UniProt Consortium. UniProt: a hub for protein information. Nucleic Acids Res. 2015;43:D204–D212. PubMed PMC

Kabsch W., Sander C. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers. 1983;22:2577–2637. PubMed

Shrake A., Rupley J.A. Environment and exposure to solvent of protein atoms. Lysozyme and insulin. J. Mol. Biol. 1973;79:351–371. PubMed

Prlić A., Yates A., Bliven S.E., Rose P.W., Jacobsen J., Troshin P.V., Chapman M., Gao J., Koh C.H., Foisy S., et al. BioJava: an open-source framework for bioinformatics in 2012. Bioinformatics. 2012;28:2693–2695. PubMed PMC

Reetz M.T., Carballeira J.D., Vogel A. Iterative saturation mutagenesis on the basis of B factors as a strategy for increasing protein thermostability. Angew. Chem. Int. Ed Engl. 2006;45:7745–7751. PubMed

Le Guilloux V., Schmidtke P., Tuffery P. Fpocket: an open source platform for ligand pocket detection. BMC Bioinformatics. 2009;10:168. PubMed PMC

Chovancova E., Pavelka A., Benes P., Strnad O., Brezovsky J., Kozlikova B., Gora A., Sustr V., Klvana M., Medek P., et al. CAVER 3.0: a tool for the analysis of transport pathways in dynamic protein structures. PLoS Comput. Biol. 2012;8:e1002708. PubMed PMC

Camacho C., Coulouris G., Avagyan V., Ma N., Papadopoulos J., Bealer K., Madden T.L. BLAST+: architecture and applications. BMC Bioinformatics. 2009;10:421. PubMed PMC

Suzek B.E., Wang Y., Huang H., McGarvey P.B., Wu C.H., UniProt Consortium UniRef clusters: a comprehensive and scalable alternative for improving sequence similarity searches. Bioinformatics. 2015;31:926–932. PubMed PMC

Edgar R.C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010;26:2460–2461. PubMed

Sievers F., Wilm A., Dineen D., Gibson T.J., Karplus K., Li W., Lopez R., McWilliam H., Remmert M., Söding J., et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 2011;7:539. PubMed PMC

Capra J.A., Singh M. Predicting functionally important residues from sequence conservation. Bioinformatics. 2007;23:1875–1882. PubMed

Korber B.T., Farber R.M., Wolpert D.H., Lapedes A.S. Covariation of mutations in the V3 loop of human immunodeficiency virus type 1 envelope protein: an information theoretic analysis. Proc. Natl. Acad. Sci. U.S.A. 1993;90:7176–7180. PubMed PMC

Lee B.-C., Kim D. A new method for revealing correlated mutations under the structural and functional constraints in proteins. Bioinformatics. 2009;25:2506–2513. PubMed

Kass I., Horovitz A. Mapping pathways of allosteric communication in GroEL by analysis of correlated mutations. Proteins. 2002;48:611–617. PubMed

Lockless S.W., Ranganathan R. Evolutionarily conserved pathways of energetic connectivity in protein families. Science. 1999;286:295–299. PubMed

Weigt M., White R.A., Szurmant H., Hoch J.A., Hwa T. Identification of direct residue contacts in protein-protein interaction by message passing. Proc. Natl. Acad. Sci. U.S.A. 2009;106:67–72. PubMed PMC

Olmea O., Rost B., Valencia A. Effective use of sequence correlation and conservation in fold recognition. J. Mol. Biol. 1999;293:1221–1239. PubMed

Dekker J.P., Fodor A., Aldrich R.W., Yellen G. A perturbation-based method for calculating explicit likelihood of evolutionary co-variance in multiple sequence alignments. Bioinformatics. 2004;20:1565–1572. PubMed

Pavlova M., Klvana M., Prokop Z., Chaloupkova R., Banas P., Otyepka M., Wade R.C., Tsuda M., Nagata Y., Damborsky J. Redesigning dehalogenase access tunnels as a strategy for degrading an anthropogenic substrate. Nat. Chem. Biol. 2009;5:727–733. PubMed

Gopal S., Rastogi V., Ashman W., Mulbry W. Mutagenesis of organophosphorus hydrolase to enhance hydrolysis of the nerve agent VX. Biochem. Biophys. Res. Commun. 2000;279:516–519. PubMed

Watkins L.M., Mahoney H.J., McCulloch J.K., Raushel F.M. Augmented hydrolysis of diisopropyl fluorophosphate in engineered mutants of phosphotriesterase. J. Biol. Chem. 1997;272:25596–25601. PubMed

Reetz M.T., Wang L.-W., Bocola M. Directed evolution of enantioselective enzymes: iterative cycles of CASTing for probing protein-sequence space. Angew. Chem. Int. Ed Engl. 2006;45:1236–1241. PubMed

Reetz M.T., Torre C., Eipper A., Lohmer R., Hermes M., Brunner B., Maichele A., Bocola M., Arand M., Cronin A., et al. Enhancing the enantioselectivity of an epoxide hydrolase by directed evolution. Org. Lett. 2004;6:177–180. PubMed

Cerdobbel A., De Winter K., Aerts D., Kuipers R., Joosten H.-J., Soetaert W., Desmet T. Increasing the thermostability of sucrose phosphorylase by a combination of sequence- and structure-based mutagenesis. Protein Eng. Des. Sel. 2011;24:829–834. PubMed

Jochens H., Aerts D., Bornscheuer U.T. Thermostabilization of an esterase by alignment-guided focussed directed evolution. Protein Eng. Des. Sel. 2010;23:903–909. PubMed

Sullivan B.J., Nguyen T., Durani V., Mathur D., Rojas S., Thomas M., Syu T., Magliery T.J. Stabilizing proteins from sequence statistics: the interplay of conservation and correlation in triosephosphate isomerase stability. J. Mol. Biol. 2012;420:384–399. PubMed PMC

Pey A.L., Rodriguez-Larrea D., Bomke S., Dammers S., Godoy-Ruiz R., Garcia-Mira M.M., Sanchez-Ruiz J.M. Engineering proteins with tunable thermodynamic and kinetic stabilities. Proteins. 2008;71:165–174. PubMed

Amin N., Liu A.D., Ramer S., Aehle W., Meijer D., Metin M., Wong S., Gualfetti P., Schellenberger V. Construction of stabilized proteins by combinatorial consensus mutagenesis. Protein Eng. Des. Sel. 2004;17:787–793. PubMed

Akasako A., Haruki M., Oobatake M., Kanaya S. Conformational stabilities of Escherichia coli RNase HI variants with a series of amino acid substitutions at a cavity within the hydrophobic core. J. Biol. Chem. 1997;272:18686–18693. PubMed

van den Heuvel R.H.H., Fraaije M.W., Ferrer M., Mattevi A., van Berkel W.J.H. Inversion of stereospecificity of vanillyl-alcohol oxidase. Proc. Natl. Acad. Sci. U.S.A. 2000;97:9455–9460. PubMed PMC

Killick T.R., Freund S.M., Fersht A.R. Real-time NMR studies on folding of mutants of barnase and chymotrypsin inhibitor 2. FEBS Lett. 1998;423:110–112. PubMed

Encell L.P., Friedman Ohana R., Zimmerman K., Otto P., Vidugiris G., Wood M.G., Los G.V., McDougall M.G., Zimprich C., Karassina N., et al. Development of a dehalogenase-based protein fusion tag capable of rapid, selective and covalent attachment to customizable ligands. Curr. Chem. Genomics. 2012;6:55–71. PubMed PMC

Reetz M.T., Bocola M., Carballeira J.D., Zha D., Vogel A. Expanding the range of substrate acceptance of enzymes: combinatorial active-site saturation test. Angew. Chem. Int. Ed Engl. 2005;44:4192–4196. PubMed

Morley K.L., Kazlauskas R.J. Improving enzyme properties: when are closer mutations better? Trends Biotechnol. 2005;23:231–237. PubMed

Lehmann M., Loch C., Middendorf A., Studer D., Lassen S.F., Pasamontes L., van Loon A.P.G.M., Wyss M. The consensus concept for thermostability engineering of proteins: further proof of concept. Protein Eng. 2002;15:403–411. PubMed

de Juan D., Pazos F., Valencia A. Emerging methods in protein co-evolution. Nat. Rev. Genet. 2013;14:249–261. PubMed

Kuipers R.K.P., Joosten H.-J., Verwiel E., Paans S., Akerboom J., van der Oost J., Leferink N.G.H., van Berkel W.J.H., Vriend G., Schaap P.J. Correlated mutation analyses on super-family alignments reveal functionally important residues. Proteins. 2009;76:608–616. PubMed

Nobili A., Tao Y., Pavlidis I.V., van den Bergh T., Joosten H.-J., Tan T., Bornscheuer U.T. Simultaneous use of in silico design and a correlated mutation network as a tool to efficiently guide enzyme engineering. Chembiochem. 2015;16:805–810. PubMed

Wang C., Huang R., He B., Du Q. Improving the thermostability of alpha-amylase by combinatorial coevolving-site saturation mutagenesis. BMC Bioinformatics. 2012;13:263. PubMed PMC

Martin L.C., Gloor G.B., Dunn S.D., Wahl L.M. Using information theory to search for co-evolving residues in proteins. Bioinformatics. 2005;21:4116–4124. PubMed

Fodor A.A., Aldrich R.W. Influence of conservation on calculations of amino acid covariance in multiple sequence alignments. Proteins. 2004;56:211–221. PubMed

Nov Y. When second best is good enough: another probabilistic look at saturation mutagenesis. Appl. Environ. Microbiol. 2012;78:258–262. PubMed PMC

Jacobs T.M., Yumerefendi H., Kuhlman B., Leaver-Fay A. SwiftLib: rapid degenerate-codon-library optimization through dynamic programming. Nucleic Acids Res. 2015;43:e34. PubMed PMC

Li W., Cowley A., Uludag M., Gur T., McWilliam H., Squizzato S., Park Y.M., Buso N., Lopez R. The EMBL-EBI bioinformatics web and programmatic tools framework. Nucleic Acids Res. 2015;43:W580–W584. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...