Decoding Protein Stabilization: Impact on Aggregation, Solubility, and Unfolding Mechanisms
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
40768221
PubMed Central
PMC12381856
DOI
10.1021/acs.jcim.5c00611
Knihovny.cz E-zdroje
- MeSH
- hydrofobní a hydrofilní interakce MeSH
- hydrolasy * chemie metabolismus genetika MeSH
- proteinové agregáty * MeSH
- rozbalení proteinů * MeSH
- rozpustnost MeSH
- simulace molekulární dynamiky MeSH
- stabilita proteinů MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- haloalkane dehalogenase MeSH Prohlížeč
- hydrolasy * MeSH
- proteinové agregáty * MeSH
Modern computational tools can predict the mutational effects on protein stability, sometimes at the expense of activity or solubility. Here, we investigate two homologous computationally stabilized haloalkane dehalogenases: (i) the soluble thermostable DhaA115 (Tmapp = 74 °C) and (ii) the poorly soluble and aggregating thermostable LinB116 (Tmapp = 65 °C), together with their respective wild-type variants. The intriguing difference in the solubility of these highly homologous proteins has remained unexplained for three decades. We combined experimental and in-silico techniques and examined the effects of stabilization on solubility and aggregation propensity. A detailed analysis of the unfolding mechanisms in the context of aggregation explained the negative consequences of stabilization observed in LinB116. With the aid of molecular dynamics simulations, we identified regions exposed during the unfolding of LinB116 that were later found to exhibit aggregation propensity. Our analysis identified cryptic aggregation-prone regions and increased surface hydrophobicity as key factors contributing to the reduced solubility of LinB116. This study reveals novel molecular mechanisms of unfolding for hyperstabilized dehalogenases and highlights the importance of contextual information in protein engineering to avoid the negative effects of stabilizing mutations on protein solubility.
Zobrazit více v PubMed
Liu Q., Xun G., Feng Y.. The State-of-the-Art Strategies of Protein Engineering for Enzyme Stabilization. Biotechnol. Adv. 2019;37(4):530–537. doi: 10.1016/j.biotechadv.2018.10.011. PubMed DOI
Vecchi G., Sormanni P., Mannini B., Vandelli A., Tartaglia G. G., Dobson C. M., Hartl F. U., Vendruscolo M.. Proteome-Wide Observation of the Phenomenon of Life on the Edge of Solubility. Proc. Natl. Acad. Sci. U.S.A. 2020;117(2):1015–1020. doi: 10.1073/pnas.1910444117. PubMed DOI PMC
Sauerborn M., Brinks V., Jiskoot W., Schellekens H.. Immunological Mechanism Underlying the Immune Response to Recombinant Human Protein Therapeutics. Trends Pharmacol. Sci. 2010;31(2):53–59. doi: 10.1016/j.tips.2009.11.001. PubMed DOI
Manning M. C., Chou D. K., Murphy B. M., Payne R. W., Katayama D. S.. Stability of Protein Pharmaceuticals: An Update. Pharm. Res. 2010;27(4):544–575. doi: 10.1007/s11095-009-0045-6. PubMed DOI
Choi S. I., Jin Y., Choi Y., Seong B. L.. Beyond Misfolding: A New Paradigm for the Relationship Between Protein Folding and Aggregation. Int. J. Mol. Sci. 2025;26(1):53. doi: 10.3390/ijms26010053. PubMed DOI PMC
Chi E. Y., Krishnan S., Randolph T. W., Carpenter J. F.. Physical Stability of Proteins in Aqueous Solution: Mechanism and Driving Forces in Nonnative Protein Aggregation. Pharm. Res. 2003;20(9):1325–1336. doi: 10.1023/A:1025771421906. PubMed DOI
Kwon W. S., Da Silva N. A., Kellis J. T.. Relationship between Thermal Stability, Degradation Rate and Expression Yield of Barnase Variants in the Periplasm of Escherichia Coli. Protein Eng. 1996;9(12):1197–1202. doi: 10.1093/protein/9.12.1197. PubMed DOI
Sanchez-Ruiz J. M.. Protein Kinetic Stability. Biophys. Chem. 2010;148(1–3):1–15. doi: 10.1016/j.bpc.2010.02.004. PubMed DOI
Broom A., Trainor K., Jacobi Z., Meiering E. M.. Computational Modeling of Protein Stability: Quantitative Analysis Reveals Solutions to Pervasive Problems. Structure. 2020;28(6):717–726. doi: 10.1016/j.str.2020.04.003. PubMed DOI
Broom A., Jacobi Z., Trainor K., Meiering E. M.. Computational Tools Help Improve Protein Stability but with a Solubility Tradeoff. J. Biol. Chem. 2017;292(35):14349–14361. doi: 10.1074/jbc.M117.784165. PubMed DOI PMC
Rocklin G. J., Chidyausiku T. M., Goreshnik I., Ford A., Houliston S., Lemak A., Carter L., Ravichandran R., Mulligan V. K., Chevalier A., Arrowsmith C. H., Baker D.. Global Analysis of Protein Folding Using Massively Parallel Design, Synthesis, and Testing. Science. 2017;357(6347):168–175. doi: 10.1126/science.aan0693. PubMed DOI PMC
Houben B., Rousseau F., Schymkowitz J.. Protein Structure and Aggregation: A Marriage of Necessity Ruled by Aggregation Gatekeepers. Trends Biochem. Sci. 2022;47(3):194–205. doi: 10.1016/j.tibs.2021.08.010. PubMed DOI
Shi J., Yuan B., Yang H., Sun Z.. Recent Advances on Protein Engineering for Improved Stability. BioDesign Res. 2025;7(1):100005. doi: 10.1016/j.bidere.2025.100005. DOI
Musil M., Konegger H., Hon J., Bednar D., Damborsky J.. Computational Design of Stable and Soluble Biocatalysts. ACS Catal. 2019;9(2):1033–1054. doi: 10.1021/acscatal.8b03613. DOI
Navarro S., Ventura S.. Computational Re-Design of Protein Structures to Improve Solubility. Expert Opin. Drug Discovery. 2019;14(10):1077–1088. doi: 10.1080/17460441.2019.1637413. PubMed DOI
Aalbers F. S., Fürst M. J., Rovida S., Trajkovic M., Gómez Castellanos J. R., Bartsch S., Vogel A., Mattevi A., Fraaije M. W.. Approaching Boiling Point Stability of an Alcohol Dehydrogenase through Computationally-Guided Enzyme Engineering. eLife. 2020;9:e54639. doi: 10.7554/eLife.54639. PubMed DOI PMC
Jones B. J., Lim H. Y., Huang J., Kazlauskas R. J.. Comparison of Five Protein Engineering Strategies to Stabilize an α/β-Hydrolase. Biochemistry. 2017;56(50):6521–6532. doi: 10.1021/acs.biochem.7b00571. PubMed DOI PMC
Muellers S. N., Allen K. N., Whitty A.. MEnTaT: A Machine-Learning Approach for the Identification of Mutations to Increase Protein Stability. Proc. Natl. Acad. Sci. U.S.A. 2023;120(49):e2309884120. doi: 10.1073/pnas.2309884120. PubMed DOI PMC
Navarro S., Ventura S.. Computational Methods to Predict Protein Aggregation. Curr. Opin. Struct. Biol. 2022;73:102343. doi: 10.1016/j.sbi.2022.102343. PubMed DOI
Daggett V.. Molecular Dynamics Simulations of the Protein Unfolding/Folding Reaction. Acc. Chem. Res. 2002;35(6):422–429. doi: 10.1021/ar0100834. PubMed DOI
Seelig J., Seelig A.. Protein Unfolding-Thermodynamic Perspectives and Unfolding Models. Int. J. Mol. Sci. 2023;24(6):5457. doi: 10.3390/ijms24065457. PubMed DOI PMC
Benrezkallah D.. Molecular Dynamics Simulations at High Temperatures of the Aeropyrum Pernix L7Ae Thermostable Protein: Insight into the Unfolding Pathway. J. Mol. Graph. Model. 2024;127:108700. doi: 10.1016/j.jmgm.2023.108700. PubMed DOI
Meric G., Naik S., Hunter A. K., Robinson A. S., Roberts C. J.. Challenges for Design of Aggregation-Resistant Variants of Granulocyte Colony-Stimulating Factor. Biophys. Chem. 2021;277:106630. doi: 10.1016/j.bpc.2021.106630. PubMed DOI
Gil-Garcia M., Bañó-Polo M., Varejão N., Jamroz M., Kuriata A., Díaz-Caballero M., Lascorz J., Morel B., Navarro S., Reverter D., Kmiecik S., Ventura S.. Combining Structural Aggregation Propensity and Stability Predictions To Redesign Protein Solubility. Mol. Pharmaceutics. 2018;15(9):3846–3859. doi: 10.1021/acs.molpharmaceut.8b00341. PubMed DOI
Sanchez-Romero I., Ariza A., Wilson K. S., Skjøt M., Vind J., De Maria L., Skov L. K., Sanchez-Ruiz J. M.. Mechanism of Protein Kinetic Stabilization by Engineered Disulfide Crosslinks. PLoS One. 2013;8(7):e70013. doi: 10.1371/journal.pone.0070013. PubMed DOI PMC
Malgieri G., D’Abrosca G., Pirone L., Toto A., Palmieri M., Russo L., Sciacca M. F. M., Tatè R., Sivo V., Baglivo I., Majewska R., Coletta M., Pedone P. V., Isernia C., De Stefano M., Gianni S., Pedone E. M., Milardi D., Fattorusso R.. Folding Mechanisms Steer the Amyloid Fibril Formation Propensity of Highly Homologous Proteins †Electronic Supplementary Information (ESI) Available. See. Chem. Sci. 2018;9(13):3290–3298. doi: 10.1039/C8SC00166A. PubMed DOI PMC
Singh R. K., Chamachi N. G., Chakrabarty S., Mukherjee A.. Mechanism of Unfolding of Human Prion Protein. J. Phys. Chem. B. 2017;121(3):550–564. doi: 10.1021/acs.jpcb.6b11416. PubMed DOI
Agrawal S., Govind Kumar V., Gundampati R. K., Moradi M., Kumar T. K. S.. Characterization of the Structural Forces Governing the Reversibility of the Thermal Unfolding of the Human Acidic Fibroblast Growth Factor. Sci. Rep. 2021;11(1):15579. doi: 10.1038/s41598-021-95050-2. PubMed DOI PMC
Panigrahi R., Arutyunova E., Panwar P., Gimpl K., Keller S., Lemieux M. J.. Reversible Unfolding of Rhomboid Intramembrane Proteases. Biophys. J. 2016;110(6):1379–1390. doi: 10.1016/j.bpj.2016.01.032. PubMed DOI PMC
Ang T.-F., Maiangwa J., Salleh A. B., Normi Y. M., Leow T. C.. Dehalogenases: From Improved Performance to Potential Microbial Dehalogenation Applications. Mol. Basel Switz. 2018;23(5):1100. doi: 10.3390/molecules23051100. PubMed DOI PMC
Chaloupková R., Sýkorová J., Prokop Z., Jesenská A., Monincová M., Pavlová M., Tsuda M., Nagata Y., Damborský J.. Modification of Activity and Specificity of Haloalkane Dehalogenase from Sphingomonas Paucimobilis UT26 by Engineering of Its Entrance Tunnel. J. Biol. Chem. 2003;278(52):52622–52628. doi: 10.1074/jbc.M306762200. PubMed DOI
Prokop Z., Sato Y., Brezovsky J., Mozga T., Chaloupkova R., Koudelakova T., Jerabek P., Stepankova V., Natsume R., van Leeuwen J. G. E., Janssen D. B., Florian J., Nagata Y., Senda T., Damborsky J.. Enantioselectivity of Haloalkane Dehalogenases and Its Modulation by Surface Loop Engineering. Angew. Chem., Int. Ed. 2010;49(35):6111–6115. doi: 10.1002/anie.201001753. PubMed DOI
Kunka A., Marques S. M., Havlasek M., Vasina M., Velatova N., Cengelova L., Kovar D., Damborsky J., Marek M., Bednar D., Prokop Z.. Advancing Enzyme’s Stability and Catalytic Efficiency through Synergy of Force-Field Calculations, Evolutionary Analysis, and Machine Learning. ACS Catal. 2023;13(19):12506–12518. doi: 10.1021/acscatal.3c02575. PubMed DOI PMC
Floor R. J., Wijma H. J., Colpa D. I., Ramos-Silva A., Jekel P. A., Szymański W., Feringa B. L., Marrink S. J., Janssen D. B.. Computational Library Design for Increasing Haloalkane Dehalogenase Stability. ChemBioChem. 2014;15(11):1660–1672. doi: 10.1002/cbic.201402128. PubMed DOI
Bednar D., Beerens K., Sebestova E., Bendl J., Khare S., Chaloupkova R., Prokop Z., Brezovsky J., Baker D., Damborsky J.. FireProt: Energy- and Evolution-Based Computational Design of Thermostable Multiple-Point Mutants. PLoS Comput. Biol. 2015;11(11):e1004556. doi: 10.1371/journal.pcbi.1004556. PubMed DOI PMC
Damborsky, J. ; Chaloupkova, R. ; Pavlova, M. ; Chovancova, E. ; Brezovsky, J. . Structure–Function Relationships and Engineering of Haloalkane Dehalogenases. In Handbook of Hydrocarbon and Lipid Microbiology; Timmis, K. N. , Ed.; Springer: Berlin, Heidelberg, 2010; pp 1081–1098. 10.1007/978-3-540-77587-4_76. DOI
Pavlova M., Klvana M., Prokop Z., Chaloupkova R., Banas P., Otyepka M., Wade R. C., Tsuda M., Nagata Y., Damborsky J.. Redesigning Dehalogenase Access Tunnels as a Strategy for Degrading an Anthropogenic Substrate. Nat. Chem. Biol. 2009;5(10):727–733. doi: 10.1038/nchembio.205. PubMed DOI
Markova K., Chmelova K., Marques S. M., Carpentier P., Bednar D., Damborsky J., Marek M.. Decoding the Intricate Network of Molecular Interactions of a Hyperstable Engineered Biocatalyst. Chem. Sci. 2020;11(41):11162–11178. doi: 10.1039/D0SC03367G. PubMed DOI PMC
Nagata Y., Nariya T., Ohtomo R., Fukuda M., Yano K., Takagi M.. Cloning and Sequencing of a Dehalogenase Gene Encoding an Enzyme with Hydrolase Activity Involved in the Degradation of Gamma-Hexachlorocyclohexane in Pseudomonas Paucimobilis. J. Bacteriol. 1993;175(20):6403–6410. doi: 10.1128/jb.175.20.6403-6410.1993. PubMed DOI PMC
Biedermannová L., Prokop Z., Gora A., Chovancová E., Kovács M., Damborský J., Wade R. C.. A Single Mutation in a Tunnel to the Active Site Changes the Mechanism and Kinetics of Product Release in Haloalkane Dehalogenase LinB *. J. Biol. Chem. 2012;287(34):29062–29074. doi: 10.1074/jbc.M112.377853. PubMed DOI PMC
Kunka A., Lacko D., Stourac J., Damborsky J., Prokop Z., Mazurenko S.. CalFitter 2.0: Leveraging the Power of Singular Value Decomposition to Analyse Protein Thermostability. Nucleic Acids Res. 2022;50(W1):W145–W151. doi: 10.1093/nar/gkac378. PubMed DOI PMC
Doerr S., Harvey M. J., Noé F., De Fabritiis G.. HTMD: High-Throughput Molecular Dynamics for Molecular Discovery. J. Chem. Theory Comput. 2016;12(4):1845–1852. doi: 10.1021/acs.jctc.6b00049. PubMed DOI
Kleiman D. E., Nadeem H., Shukla D.. Adaptive Sampling Methods for Molecular Dynamics in the Era of Machine Learning. J. Phys. Chem. B. 2023;127(50):10669–10681. doi: 10.1021/acs.jpcb.3c04843. PubMed DOI
Day R., Bennion B. J., Ham S., Daggett V.. Increasing Temperature Accelerates Protein Unfolding Without Changing the Pathway of Unfolding. J. Mol. Biol. 2002;322(1):189–203. doi: 10.1016/S0022-2836(02)00672-1. PubMed DOI
Fersht A. R., Daggett V.. Protein Folding and Unfolding at Atomic Resolution. Cell. 2002;108(4):573–582. doi: 10.1016/S0092-8674(02)00620-7. PubMed DOI
Beerens K., Mazurenko S., Kunka A., Marques S. M., Hansen N., Musil M., Chaloupkova R., Waterman J., Brezovsky J., Bednar D., Prokop Z., Damborsky J.. Evolutionary Analysis As a Powerful Complement to Energy Calculations for Protein Stabilization. ACS Catal. 2018;8(10):9420–9428. doi: 10.1021/acscatal.8b01677. DOI
Mamonova T. B., Glyakina A. V., Galzitskaya O. V., Kurnikova M. G.. Stability and Rigidity/FlexibilityTwo Sides of the Same Coin? Biochim. Biophys. Acta, Proteins Proteomics. 2013;1834(5):854–866. doi: 10.1016/j.bbapap.2013.02.011. PubMed DOI
Karshikoff A., Nilsson L., Ladenstein R.. Rigidity versus Flexibility: The Dilemma of Understanding Protein Thermal Stability. FEBS J. 2015;282(20):3899–3917. doi: 10.1111/febs.13343. PubMed DOI
Sljoka, A. Structural and Functional Analysis of Proteins Using Rigidity Theory. In Sublinear Computation Paradigm: Algorithmic Revolution in the Big Data Era; Katoh, N. , Higashikawa, Y. , Ito, H. , Nagao, A. , Shibuya, T. , Sljoka, A. , Tanaka, K. , Uno, Y. , Eds.; Springer: Singapore, 2022; pp 337–367. 10.1007/978-981-16-4095-7_14. DOI
Planas-Iglesias J., Borko S., Swiatkowski J., Elias M., Havlasek M., Salamon O., Grakova E., Kunka A., Martinovic T., Damborsky J., Martinovic J., Bednar D.. AggreProt: A Web Server for Predicting and Engineering Aggregation Prone Regions in Proteins. Nucleic Acids Res. 2024;52(W1):W159–W169. doi: 10.1093/nar/gkae420. PubMed DOI PMC
Kuriata A., Iglesias V., Pujols J., Kurcinski M., Kmiecik S., Ventura S.. Aggrescan3D (A3D) 2.0: Prediction and Engineering of Protein Solubility. Nucleic Acids Res. 2019;47(W1):W300–W307. doi: 10.1093/nar/gkz321. PubMed DOI PMC
Cima V., Kunka A., Grakova E., Planas-Iglesias J., Havlasek M., Subramanian M., Beloch M., Marek M., Slaninova K., Damborsky J., Prokop Z., Bednar D., Martinovic J.. Prediction of Aggregation Prone Regions in Proteins Using Deep Neural Networks and Their Suppression by Computational Design. bioRxiv. 2024:2024.03.06.583680. doi: 10.1101/2024.03.06.583680. DOI
Beerten J., Schymkowitz J., Rousseau F.. Aggregation Prone Regions and Gatekeeping Residues in Protein Sequences. Curr. Top. Med. Chem. 2013;12(22):2470–2478. doi: 10.2174/1568026611212220003. PubMed DOI
Pintado-Grima C., Santos J., Iglesias V., Manglano-Artuñedo Z., Pallarès I., Ventura S.. Exploring Cryptic Amyloidogenic Regions in Prion-like Proteins from Plants. Front. Plant Sci. 2023;13:1060410. doi: 10.3389/fpls.2022.1060410. PubMed DOI PMC
Santos J., Pallarès I., Iglesias V., Ventura S.. Cryptic Amyloidogenic Regions in Intrinsically Disordered Proteins: Function and Disease Association. Comput. Struct. Biotechnol. J. 2021;19:4192–4206. doi: 10.1016/j.csbj.2021.07.019. PubMed DOI PMC
Tan, C. ; Gao, Z. ; Xia, J. ; Hu, B. ; Li, S. Z. . Global-Context Aware Generative Protein Design. In ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2023; pp 1–5. 10.1109/ICASSP49357.2023.10095229. DOI
Luo Y., Jiang G., Yu T., Liu Y., Vo L., Ding H., Su Y., Qian W. W., Zhao H., Peng J.. ECNet Is an Evolutionary Context-Integrated Deep Learning Framework for Protein Engineering. Nat. Commun. 2021;12:5743. doi: 10.1038/s41467-021-25976-8. PubMed DOI PMC
Krapp L. F., Meireles F. A., Abriata L. A., Devillard J., Vacle S., Marcaida M. J., Dal Peraro M.. Context-Aware Geometric Deep Learning for Protein Sequence Design. Nat. Commun. 2024;15(1):6273. doi: 10.1038/s41467-024-50571-y. PubMed DOI PMC
Volk A. A., Epps R. W., Yonemoto D. T., Masters B. S., Castellano F. N., Reyes K. G., Abolhasani M. A.F.. AlphaFlow: autonomous discovery and optimization of multi-step chemistry using a self-driven fluidic lab guided by reinforcement learning. Nat. Commun. 2023;14(1):1403. doi: 10.1038/s41467-023-37139-y. PubMed DOI PMC
Jing B., Berger B., Jaakkola T.. AlphaFold Meets Flow Matching for Generating Protein Ensembles. arXiv. 2024:arXiv.2402.04845. doi: 10.48550/arXiv.2402.04845. DOI
Lewis S., Hempel T., Jiménez-Luna J., Gastegger M., Xie Y., Foong A. Y. K., Satorras V. G., Abdin O., Veeling B. S., Zaporozhets I., Chen Y., Yang S., Foster A. E., Schneuing A., Nigam J., Barbero F., Stimper V., Campbell A., Yim J., Lienen M., Shi Y., Zheng S., Schulz H., Munir U., Sordillo R., Tomioka R.. et al. Scalable Emulation of Protein Equilibrium Ensembles with Generative Deep Learning. bioRxiv. 2025:2024.12.05.626885. doi: 10.1126/science.adv9817. PubMed DOI
Conchillo-Solé O., de Groot N. S., Avilés F. X., Vendrell J., Daura X., Ventura S.. AGGRESCAN: A Server for the Prediction and Evaluation of “Hot Spots” of Aggregation in Polypeptides. BMC Bioinf. 2007;8(1):65. doi: 10.1186/1471-2105-8-65. PubMed DOI PMC
Van Durme J., De Baets G., Van Der Kant R., Ramakers M., Ganesan A., Wilkinson H., Gallardo R., Rousseau F., Schymkowitz J.. Solubis: A Webserver to Reduce Protein Aggregation through Mutation. Protein Eng. Des. Sel. 2016;29(8):285–289. doi: 10.1093/protein/gzw019. PubMed DOI
Rose P. W., Bi C., Bluhm W. F., Christie C. H., Dimitropoulos D., Dutta S., Green R. K., Goodsell D. S., Prlić A., Quesada M., Quinn G. B., Ramos A. G., Westbrook J. D., Young J., Zardecki C., Berman H. M., Bourne P. E.. The RCSB Protein Data Bank: New Resources for Research and Education. Nucleic Acids Res. 2012;41(D1):D475–D482. doi: 10.1093/nar/gks1200. PubMed DOI PMC
Waterhouse A., Bertoni M., Bienert S., Studer G., Tauriello G., Gumienny R., Heer F. T., de Beer T. A. P., Rempfer C., Bordoli L., Lepore R., Schwede T.. SWISS-MODEL: Homology Modelling of Protein Structures and Complexes. Nucleic Acids Res. 2018;46(W1):W296–W303. doi: 10.1093/nar/gky427. PubMed DOI PMC
Gordon J. C., Myers J. B., Folta T., Shoja V., Heath L. S., Onufriev A.. H++: A Server for Estimating pKas and Adding Missing Hydrogens to Macromolecules. Nucleic Acids Res. 2005;33(Web Server):W368–W371. doi: 10.1093/nar/gki464. PubMed DOI PMC
Jorgensen W. L., Chandrasekhar J., Madura J. D., Impey R. W., Klein M. L.. Comparison of Simple Potential Functions for Simulating Liquid Water. J. Chem. Phys. 1983;79(2):926–935. doi: 10.1063/1.445869. DOI
Huang J., Rauscher S., Nawrocki G., Ran T., Feig M., de Groot B. L., Grubmüller H., MacKerell A. D.. CHARMM36m: An Improved Force Field for Folded and Intrinsically Disordered Proteins. Nat. Methods. 2017;14(1):71–73. doi: 10.1038/nmeth.4067. PubMed DOI PMC
Feenstra K. A., Hess B., Berendsen H. J. C.. Improving Efficiency of Large Time-Scale Molecular Dynamics Simulations of Hydrogen-Rich Systems. J. Comput. Chem. 1999;20(8):786–798. doi: 10.1002/(SICI)1096-987X(199906)20:8<786::AID-JCC5>3.0.CO;2-B. PubMed DOI
Harvey M. J., Giupponi G., Fabritiis G. D.. ACEMD: Accelerating Biomolecular Dynamics in the Microsecond Time Scale. J. Chem. Theory Comput. 2009;5(6):1632–1639. doi: 10.1021/ct9000685. PubMed DOI
Harvey M. J., De Fabritiis G.. An Implementation of the Smooth Particle Mesh Ewald Method on GPU Hardware. J. Chem. Theory Comput. 2009;5(9):2371–2377. doi: 10.1021/ct900275y. PubMed DOI
Hopkins C. W., Le Grand S., Walker R. C., Roitberg A. E.. Long-Time-Step Molecular Dynamics through Hydrogen Mass Repartitioning. J. Chem. Theory Comput. 2015;11(4):1864–1874. doi: 10.1021/ct5010406. PubMed DOI
Fass J., Sivak D. A., Crooks G. E., Beauchamp K. A., Leimkuhler B., Chodera J. D.. Quantifying Configuration-Sampling Error in Langevin Simulations of Complex Molecular Systems. Entropy Basel Switz. 2018;20(5):318. doi: 10.3390/e20050318. PubMed DOI PMC
Naritomi Y., Fuchigami S.. Slow Dynamics in Protein Fluctuations Revealed by Time-Structure Based Independent Component Analysis: The Case of Domain Motions. J. Chem. Phys. 2011;134(6):065101. doi: 10.1063/1.3554380. PubMed DOI
Humphrey W., Dalke A., Schulten K.. VMD: Visual Molecular Dynamics. J. Mol. Graph. 1996;14(1):33–38. doi: 10.1016/0263-7855(96)00018-5. PubMed DOI
Roe D. R., Cheatham T. E.. PTRAJ and CPPTRAJ: Software for Processing and Analysis of Molecular Dynamics Trajectory Data. J. Chem. Theory Comput. 2013;9(7):3084–3095. doi: 10.1021/ct400341p. PubMed DOI
Case, D. A. ; Betz, R. M. ; Cerutti, D. S. ; Cheatham, T. E., III ; Darden, T. A. ; Duke, R. E. ; Giese, T. J. ; Gohlke, H. ; Goetz, A. W. ; Homeyer, N. ; Izadi, S. ; Janowski, P. ; Kaus, J. ; Kovalenko, A. ; Lee, T. S. ; LeGrand, S. ; Li, P. ; Lin, C. ; Luchko, T. ; Luo, R. ; Madej, B. ; Mermelstein, D. ; Merz, K. M. ; Monard, G. ; Nguyen, H. ; Nguyen, H. T. ; Omelyan, I. ; Onufriev, A. ; Roe, D. R. ; Roitberg, A. ; Sagui, C. ; Simmerling, C. L. ; Botello-Smith, W. M. ; Swails, J. ; Walker, R. C. ; Wang, J. ; Wolf, R. M. ; Wu, X. ; Xiao, L. ; Kollman, P. A. . AMBER 2016.
Weiser J., Shenkin P. S., Still W. C.. Approximate atomic surfaces from linear combinations of pairwise overlaps (LCPO) J. Comput. Chem. 1999;20(2):217–230. doi: 10.1002/(SICI)1096-987X(19990130)20:2<217::AID-JCC4>3.0.CO;2-A. DOI
Tien M. Z., Meyer A. G., Sydykova D. K., Spielman S. J., Wilke C. O.. Maximum Allowed Solvent Accessibilites of Residues in Proteins. PLoS One. 2013;8(11):e80635. doi: 10.1371/journal.pone.0080635. PubMed DOI PMC
Levy E. D.. A Simple Definition of Structural Regions in Proteins and Its Use in Analyzing Interface Evolution. J. Mol. Biol. 2010;403(4):660–670. doi: 10.1016/j.jmb.2010.09.028. PubMed DOI