Decoding Protein Stabilization: Impact on Aggregation, Solubility, and Unfolding Mechanisms

. 2025 Aug 25 ; 65 (16) : 8688-8701. [epub] 20250806

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40768221

Modern computational tools can predict the mutational effects on protein stability, sometimes at the expense of activity or solubility. Here, we investigate two homologous computationally stabilized haloalkane dehalogenases: (i) the soluble thermostable DhaA115 (Tmapp = 74 °C) and (ii) the poorly soluble and aggregating thermostable LinB116 (Tmapp = 65 °C), together with their respective wild-type variants. The intriguing difference in the solubility of these highly homologous proteins has remained unexplained for three decades. We combined experimental and in-silico techniques and examined the effects of stabilization on solubility and aggregation propensity. A detailed analysis of the unfolding mechanisms in the context of aggregation explained the negative consequences of stabilization observed in LinB116. With the aid of molecular dynamics simulations, we identified regions exposed during the unfolding of LinB116 that were later found to exhibit aggregation propensity. Our analysis identified cryptic aggregation-prone regions and increased surface hydrophobicity as key factors contributing to the reduced solubility of LinB116. This study reveals novel molecular mechanisms of unfolding for hyperstabilized dehalogenases and highlights the importance of contextual information in protein engineering to avoid the negative effects of stabilizing mutations on protein solubility.

Zobrazit více v PubMed

Liu Q., Xun G., Feng Y.. The State-of-the-Art Strategies of Protein Engineering for Enzyme Stabilization. Biotechnol. Adv. 2019;37(4):530–537. doi: 10.1016/j.biotechadv.2018.10.011. PubMed DOI

Vecchi G., Sormanni P., Mannini B., Vandelli A., Tartaglia G. G., Dobson C. M., Hartl F. U., Vendruscolo M.. Proteome-Wide Observation of the Phenomenon of Life on the Edge of Solubility. Proc. Natl. Acad. Sci. U.S.A. 2020;117(2):1015–1020. doi: 10.1073/pnas.1910444117. PubMed DOI PMC

Sauerborn M., Brinks V., Jiskoot W., Schellekens H.. Immunological Mechanism Underlying the Immune Response to Recombinant Human Protein Therapeutics. Trends Pharmacol. Sci. 2010;31(2):53–59. doi: 10.1016/j.tips.2009.11.001. PubMed DOI

Manning M. C., Chou D. K., Murphy B. M., Payne R. W., Katayama D. S.. Stability of Protein Pharmaceuticals: An Update. Pharm. Res. 2010;27(4):544–575. doi: 10.1007/s11095-009-0045-6. PubMed DOI

Choi S. I., Jin Y., Choi Y., Seong B. L.. Beyond Misfolding: A New Paradigm for the Relationship Between Protein Folding and Aggregation. Int. J. Mol. Sci. 2025;26(1):53. doi: 10.3390/ijms26010053. PubMed DOI PMC

Chi E. Y., Krishnan S., Randolph T. W., Carpenter J. F.. Physical Stability of Proteins in Aqueous Solution: Mechanism and Driving Forces in Nonnative Protein Aggregation. Pharm. Res. 2003;20(9):1325–1336. doi: 10.1023/A:1025771421906. PubMed DOI

Kwon W. S., Da Silva N. A., Kellis J. T.. Relationship between Thermal Stability, Degradation Rate and Expression Yield of Barnase Variants in the Periplasm of Escherichia Coli. Protein Eng. 1996;9(12):1197–1202. doi: 10.1093/protein/9.12.1197. PubMed DOI

Sanchez-Ruiz J. M.. Protein Kinetic Stability. Biophys. Chem. 2010;148(1–3):1–15. doi: 10.1016/j.bpc.2010.02.004. PubMed DOI

Broom A., Trainor K., Jacobi Z., Meiering E. M.. Computational Modeling of Protein Stability: Quantitative Analysis Reveals Solutions to Pervasive Problems. Structure. 2020;28(6):717–726. doi: 10.1016/j.str.2020.04.003. PubMed DOI

Broom A., Jacobi Z., Trainor K., Meiering E. M.. Computational Tools Help Improve Protein Stability but with a Solubility Tradeoff. J. Biol. Chem. 2017;292(35):14349–14361. doi: 10.1074/jbc.M117.784165. PubMed DOI PMC

Rocklin G. J., Chidyausiku T. M., Goreshnik I., Ford A., Houliston S., Lemak A., Carter L., Ravichandran R., Mulligan V. K., Chevalier A., Arrowsmith C. H., Baker D.. Global Analysis of Protein Folding Using Massively Parallel Design, Synthesis, and Testing. Science. 2017;357(6347):168–175. doi: 10.1126/science.aan0693. PubMed DOI PMC

Houben B., Rousseau F., Schymkowitz J.. Protein Structure and Aggregation: A Marriage of Necessity Ruled by Aggregation Gatekeepers. Trends Biochem. Sci. 2022;47(3):194–205. doi: 10.1016/j.tibs.2021.08.010. PubMed DOI

Shi J., Yuan B., Yang H., Sun Z.. Recent Advances on Protein Engineering for Improved Stability. BioDesign Res. 2025;7(1):100005. doi: 10.1016/j.bidere.2025.100005. DOI

Musil M., Konegger H., Hon J., Bednar D., Damborsky J.. Computational Design of Stable and Soluble Biocatalysts. ACS Catal. 2019;9(2):1033–1054. doi: 10.1021/acscatal.8b03613. DOI

Navarro S., Ventura S.. Computational Re-Design of Protein Structures to Improve Solubility. Expert Opin. Drug Discovery. 2019;14(10):1077–1088. doi: 10.1080/17460441.2019.1637413. PubMed DOI

Aalbers F. S., Fürst M. J., Rovida S., Trajkovic M., Gómez Castellanos J. R., Bartsch S., Vogel A., Mattevi A., Fraaije M. W.. Approaching Boiling Point Stability of an Alcohol Dehydrogenase through Computationally-Guided Enzyme Engineering. eLife. 2020;9:e54639. doi: 10.7554/eLife.54639. PubMed DOI PMC

Jones B. J., Lim H. Y., Huang J., Kazlauskas R. J.. Comparison of Five Protein Engineering Strategies to Stabilize an α/β-Hydrolase. Biochemistry. 2017;56(50):6521–6532. doi: 10.1021/acs.biochem.7b00571. PubMed DOI PMC

Muellers S. N., Allen K. N., Whitty A.. MEnTaT: A Machine-Learning Approach for the Identification of Mutations to Increase Protein Stability. Proc. Natl. Acad. Sci. U.S.A. 2023;120(49):e2309884120. doi: 10.1073/pnas.2309884120. PubMed DOI PMC

Navarro S., Ventura S.. Computational Methods to Predict Protein Aggregation. Curr. Opin. Struct. Biol. 2022;73:102343. doi: 10.1016/j.sbi.2022.102343. PubMed DOI

Daggett V.. Molecular Dynamics Simulations of the Protein Unfolding/Folding Reaction. Acc. Chem. Res. 2002;35(6):422–429. doi: 10.1021/ar0100834. PubMed DOI

Seelig J., Seelig A.. Protein Unfolding-Thermodynamic Perspectives and Unfolding Models. Int. J. Mol. Sci. 2023;24(6):5457. doi: 10.3390/ijms24065457. PubMed DOI PMC

Benrezkallah D.. Molecular Dynamics Simulations at High Temperatures of the Aeropyrum Pernix L7Ae Thermostable Protein: Insight into the Unfolding Pathway. J. Mol. Graph. Model. 2024;127:108700. doi: 10.1016/j.jmgm.2023.108700. PubMed DOI

Meric G., Naik S., Hunter A. K., Robinson A. S., Roberts C. J.. Challenges for Design of Aggregation-Resistant Variants of Granulocyte Colony-Stimulating Factor. Biophys. Chem. 2021;277:106630. doi: 10.1016/j.bpc.2021.106630. PubMed DOI

Gil-Garcia M., Bañó-Polo M., Varejão N., Jamroz M., Kuriata A., Díaz-Caballero M., Lascorz J., Morel B., Navarro S., Reverter D., Kmiecik S., Ventura S.. Combining Structural Aggregation Propensity and Stability Predictions To Redesign Protein Solubility. Mol. Pharmaceutics. 2018;15(9):3846–3859. doi: 10.1021/acs.molpharmaceut.8b00341. PubMed DOI

Sanchez-Romero I., Ariza A., Wilson K. S., Skjøt M., Vind J., De Maria L., Skov L. K., Sanchez-Ruiz J. M.. Mechanism of Protein Kinetic Stabilization by Engineered Disulfide Crosslinks. PLoS One. 2013;8(7):e70013. doi: 10.1371/journal.pone.0070013. PubMed DOI PMC

Malgieri G., D’Abrosca G., Pirone L., Toto A., Palmieri M., Russo L., Sciacca M. F. M., Tatè R., Sivo V., Baglivo I., Majewska R., Coletta M., Pedone P. V., Isernia C., De Stefano M., Gianni S., Pedone E. M., Milardi D., Fattorusso R.. Folding Mechanisms Steer the Amyloid Fibril Formation Propensity of Highly Homologous Proteins †Electronic Supplementary Information (ESI) Available. See. Chem. Sci. 2018;9(13):3290–3298. doi: 10.1039/C8SC00166A. PubMed DOI PMC

Singh R. K., Chamachi N. G., Chakrabarty S., Mukherjee A.. Mechanism of Unfolding of Human Prion Protein. J. Phys. Chem. B. 2017;121(3):550–564. doi: 10.1021/acs.jpcb.6b11416. PubMed DOI

Agrawal S., Govind Kumar V., Gundampati R. K., Moradi M., Kumar T. K. S.. Characterization of the Structural Forces Governing the Reversibility of the Thermal Unfolding of the Human Acidic Fibroblast Growth Factor. Sci. Rep. 2021;11(1):15579. doi: 10.1038/s41598-021-95050-2. PubMed DOI PMC

Panigrahi R., Arutyunova E., Panwar P., Gimpl K., Keller S., Lemieux M. J.. Reversible Unfolding of Rhomboid Intramembrane Proteases. Biophys. J. 2016;110(6):1379–1390. doi: 10.1016/j.bpj.2016.01.032. PubMed DOI PMC

Ang T.-F., Maiangwa J., Salleh A. B., Normi Y. M., Leow T. C.. Dehalogenases: From Improved Performance to Potential Microbial Dehalogenation Applications. Mol. Basel Switz. 2018;23(5):1100. doi: 10.3390/molecules23051100. PubMed DOI PMC

Chaloupková R., Sýkorová J., Prokop Z., Jesenská A., Monincová M., Pavlová M., Tsuda M., Nagata Y., Damborský J.. Modification of Activity and Specificity of Haloalkane Dehalogenase from Sphingomonas Paucimobilis UT26 by Engineering of Its Entrance Tunnel. J. Biol. Chem. 2003;278(52):52622–52628. doi: 10.1074/jbc.M306762200. PubMed DOI

Prokop Z., Sato Y., Brezovsky J., Mozga T., Chaloupkova R., Koudelakova T., Jerabek P., Stepankova V., Natsume R., van Leeuwen J. G. E., Janssen D. B., Florian J., Nagata Y., Senda T., Damborsky J.. Enantioselectivity of Haloalkane Dehalogenases and Its Modulation by Surface Loop Engineering. Angew. Chem., Int. Ed. 2010;49(35):6111–6115. doi: 10.1002/anie.201001753. PubMed DOI

Kunka A., Marques S. M., Havlasek M., Vasina M., Velatova N., Cengelova L., Kovar D., Damborsky J., Marek M., Bednar D., Prokop Z.. Advancing Enzyme’s Stability and Catalytic Efficiency through Synergy of Force-Field Calculations, Evolutionary Analysis, and Machine Learning. ACS Catal. 2023;13(19):12506–12518. doi: 10.1021/acscatal.3c02575. PubMed DOI PMC

Floor R. J., Wijma H. J., Colpa D. I., Ramos-Silva A., Jekel P. A., Szymański W., Feringa B. L., Marrink S. J., Janssen D. B.. Computational Library Design for Increasing Haloalkane Dehalogenase Stability. ChemBioChem. 2014;15(11):1660–1672. doi: 10.1002/cbic.201402128. PubMed DOI

Bednar D., Beerens K., Sebestova E., Bendl J., Khare S., Chaloupkova R., Prokop Z., Brezovsky J., Baker D., Damborsky J.. FireProt: Energy- and Evolution-Based Computational Design of Thermostable Multiple-Point Mutants. PLoS Comput. Biol. 2015;11(11):e1004556. doi: 10.1371/journal.pcbi.1004556. PubMed DOI PMC

Damborsky, J. ; Chaloupkova, R. ; Pavlova, M. ; Chovancova, E. ; Brezovsky, J. . Structure–Function Relationships and Engineering of Haloalkane Dehalogenases. In Handbook of Hydrocarbon and Lipid Microbiology; Timmis, K. N. , Ed.; Springer: Berlin, Heidelberg, 2010; pp 1081–1098. 10.1007/978-3-540-77587-4_76. DOI

Pavlova M., Klvana M., Prokop Z., Chaloupkova R., Banas P., Otyepka M., Wade R. C., Tsuda M., Nagata Y., Damborsky J.. Redesigning Dehalogenase Access Tunnels as a Strategy for Degrading an Anthropogenic Substrate. Nat. Chem. Biol. 2009;5(10):727–733. doi: 10.1038/nchembio.205. PubMed DOI

Markova K., Chmelova K., Marques S. M., Carpentier P., Bednar D., Damborsky J., Marek M.. Decoding the Intricate Network of Molecular Interactions of a Hyperstable Engineered Biocatalyst. Chem. Sci. 2020;11(41):11162–11178. doi: 10.1039/D0SC03367G. PubMed DOI PMC

Nagata Y., Nariya T., Ohtomo R., Fukuda M., Yano K., Takagi M.. Cloning and Sequencing of a Dehalogenase Gene Encoding an Enzyme with Hydrolase Activity Involved in the Degradation of Gamma-Hexachlorocyclohexane in Pseudomonas Paucimobilis. J. Bacteriol. 1993;175(20):6403–6410. doi: 10.1128/jb.175.20.6403-6410.1993. PubMed DOI PMC

Biedermannová L., Prokop Z., Gora A., Chovancová E., Kovács M., Damborský J., Wade R. C.. A Single Mutation in a Tunnel to the Active Site Changes the Mechanism and Kinetics of Product Release in Haloalkane Dehalogenase LinB *. J. Biol. Chem. 2012;287(34):29062–29074. doi: 10.1074/jbc.M112.377853. PubMed DOI PMC

Kunka A., Lacko D., Stourac J., Damborsky J., Prokop Z., Mazurenko S.. CalFitter 2.0: Leveraging the Power of Singular Value Decomposition to Analyse Protein Thermostability. Nucleic Acids Res. 2022;50(W1):W145–W151. doi: 10.1093/nar/gkac378. PubMed DOI PMC

Doerr S., Harvey M. J., Noé F., De Fabritiis G.. HTMD: High-Throughput Molecular Dynamics for Molecular Discovery. J. Chem. Theory Comput. 2016;12(4):1845–1852. doi: 10.1021/acs.jctc.6b00049. PubMed DOI

Kleiman D. E., Nadeem H., Shukla D.. Adaptive Sampling Methods for Molecular Dynamics in the Era of Machine Learning. J. Phys. Chem. B. 2023;127(50):10669–10681. doi: 10.1021/acs.jpcb.3c04843. PubMed DOI

Day R., Bennion B. J., Ham S., Daggett V.. Increasing Temperature Accelerates Protein Unfolding Without Changing the Pathway of Unfolding. J. Mol. Biol. 2002;322(1):189–203. doi: 10.1016/S0022-2836(02)00672-1. PubMed DOI

Fersht A. R., Daggett V.. Protein Folding and Unfolding at Atomic Resolution. Cell. 2002;108(4):573–582. doi: 10.1016/S0092-8674(02)00620-7. PubMed DOI

Beerens K., Mazurenko S., Kunka A., Marques S. M., Hansen N., Musil M., Chaloupkova R., Waterman J., Brezovsky J., Bednar D., Prokop Z., Damborsky J.. Evolutionary Analysis As a Powerful Complement to Energy Calculations for Protein Stabilization. ACS Catal. 2018;8(10):9420–9428. doi: 10.1021/acscatal.8b01677. DOI

Mamonova T. B., Glyakina A. V., Galzitskaya O. V., Kurnikova M. G.. Stability and Rigidity/FlexibilityTwo Sides of the Same Coin? Biochim. Biophys. Acta, Proteins Proteomics. 2013;1834(5):854–866. doi: 10.1016/j.bbapap.2013.02.011. PubMed DOI

Karshikoff A., Nilsson L., Ladenstein R.. Rigidity versus Flexibility: The Dilemma of Understanding Protein Thermal Stability. FEBS J. 2015;282(20):3899–3917. doi: 10.1111/febs.13343. PubMed DOI

Sljoka, A. Structural and Functional Analysis of Proteins Using Rigidity Theory. In Sublinear Computation Paradigm: Algorithmic Revolution in the Big Data Era; Katoh, N. , Higashikawa, Y. , Ito, H. , Nagao, A. , Shibuya, T. , Sljoka, A. , Tanaka, K. , Uno, Y. , Eds.; Springer: Singapore, 2022; pp 337–367. 10.1007/978-981-16-4095-7_14. DOI

Planas-Iglesias J., Borko S., Swiatkowski J., Elias M., Havlasek M., Salamon O., Grakova E., Kunka A., Martinovic T., Damborsky J., Martinovic J., Bednar D.. AggreProt: A Web Server for Predicting and Engineering Aggregation Prone Regions in Proteins. Nucleic Acids Res. 2024;52(W1):W159–W169. doi: 10.1093/nar/gkae420. PubMed DOI PMC

Kuriata A., Iglesias V., Pujols J., Kurcinski M., Kmiecik S., Ventura S.. Aggrescan3D (A3D) 2.0: Prediction and Engineering of Protein Solubility. Nucleic Acids Res. 2019;47(W1):W300–W307. doi: 10.1093/nar/gkz321. PubMed DOI PMC

Cima V., Kunka A., Grakova E., Planas-Iglesias J., Havlasek M., Subramanian M., Beloch M., Marek M., Slaninova K., Damborsky J., Prokop Z., Bednar D., Martinovic J.. Prediction of Aggregation Prone Regions in Proteins Using Deep Neural Networks and Their Suppression by Computational Design. bioRxiv. 2024:2024.03.06.583680. doi: 10.1101/2024.03.06.583680. DOI

Beerten J., Schymkowitz J., Rousseau F.. Aggregation Prone Regions and Gatekeeping Residues in Protein Sequences. Curr. Top. Med. Chem. 2013;12(22):2470–2478. doi: 10.2174/1568026611212220003. PubMed DOI

Pintado-Grima C., Santos J., Iglesias V., Manglano-Artuñedo Z., Pallarès I., Ventura S.. Exploring Cryptic Amyloidogenic Regions in Prion-like Proteins from Plants. Front. Plant Sci. 2023;13:1060410. doi: 10.3389/fpls.2022.1060410. PubMed DOI PMC

Santos J., Pallarès I., Iglesias V., Ventura S.. Cryptic Amyloidogenic Regions in Intrinsically Disordered Proteins: Function and Disease Association. Comput. Struct. Biotechnol. J. 2021;19:4192–4206. doi: 10.1016/j.csbj.2021.07.019. PubMed DOI PMC

Tan, C. ; Gao, Z. ; Xia, J. ; Hu, B. ; Li, S. Z. . Global-Context Aware Generative Protein Design. In ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2023; pp 1–5. 10.1109/ICASSP49357.2023.10095229. DOI

Luo Y., Jiang G., Yu T., Liu Y., Vo L., Ding H., Su Y., Qian W. W., Zhao H., Peng J.. ECNet Is an Evolutionary Context-Integrated Deep Learning Framework for Protein Engineering. Nat. Commun. 2021;12:5743. doi: 10.1038/s41467-021-25976-8. PubMed DOI PMC

Krapp L. F., Meireles F. A., Abriata L. A., Devillard J., Vacle S., Marcaida M. J., Dal Peraro M.. Context-Aware Geometric Deep Learning for Protein Sequence Design. Nat. Commun. 2024;15(1):6273. doi: 10.1038/s41467-024-50571-y. PubMed DOI PMC

Volk A. A., Epps R. W., Yonemoto D. T., Masters B. S., Castellano F. N., Reyes K. G., Abolhasani M. A.F.. AlphaFlow: autonomous discovery and optimization of multi-step chemistry using a self-driven fluidic lab guided by reinforcement learning. Nat. Commun. 2023;14(1):1403. doi: 10.1038/s41467-023-37139-y. PubMed DOI PMC

Jing B., Berger B., Jaakkola T.. AlphaFold Meets Flow Matching for Generating Protein Ensembles. arXiv. 2024:arXiv.2402.04845. doi: 10.48550/arXiv.2402.04845. DOI

Lewis S., Hempel T., Jiménez-Luna J., Gastegger M., Xie Y., Foong A. Y. K., Satorras V. G., Abdin O., Veeling B. S., Zaporozhets I., Chen Y., Yang S., Foster A. E., Schneuing A., Nigam J., Barbero F., Stimper V., Campbell A., Yim J., Lienen M., Shi Y., Zheng S., Schulz H., Munir U., Sordillo R., Tomioka R.. et al. Scalable Emulation of Protein Equilibrium Ensembles with Generative Deep Learning. bioRxiv. 2025:2024.12.05.626885. doi: 10.1126/science.adv9817. PubMed DOI

Conchillo-Solé O., de Groot N. S., Avilés F. X., Vendrell J., Daura X., Ventura S.. AGGRESCAN: A Server for the Prediction and Evaluation of “Hot Spots” of Aggregation in Polypeptides. BMC Bioinf. 2007;8(1):65. doi: 10.1186/1471-2105-8-65. PubMed DOI PMC

Van Durme J., De Baets G., Van Der Kant R., Ramakers M., Ganesan A., Wilkinson H., Gallardo R., Rousseau F., Schymkowitz J.. Solubis: A Webserver to Reduce Protein Aggregation through Mutation. Protein Eng. Des. Sel. 2016;29(8):285–289. doi: 10.1093/protein/gzw019. PubMed DOI

Rose P. W., Bi C., Bluhm W. F., Christie C. H., Dimitropoulos D., Dutta S., Green R. K., Goodsell D. S., Prlić A., Quesada M., Quinn G. B., Ramos A. G., Westbrook J. D., Young J., Zardecki C., Berman H. M., Bourne P. E.. The RCSB Protein Data Bank: New Resources for Research and Education. Nucleic Acids Res. 2012;41(D1):D475–D482. doi: 10.1093/nar/gks1200. PubMed DOI PMC

Waterhouse A., Bertoni M., Bienert S., Studer G., Tauriello G., Gumienny R., Heer F. T., de Beer T. A. P., Rempfer C., Bordoli L., Lepore R., Schwede T.. SWISS-MODEL: Homology Modelling of Protein Structures and Complexes. Nucleic Acids Res. 2018;46(W1):W296–W303. doi: 10.1093/nar/gky427. PubMed DOI PMC

Gordon J. C., Myers J. B., Folta T., Shoja V., Heath L. S., Onufriev A.. H++: A Server for Estimating pKas and Adding Missing Hydrogens to Macromolecules. Nucleic Acids Res. 2005;33(Web Server):W368–W371. doi: 10.1093/nar/gki464. PubMed DOI PMC

Jorgensen W. L., Chandrasekhar J., Madura J. D., Impey R. W., Klein M. L.. Comparison of Simple Potential Functions for Simulating Liquid Water. J. Chem. Phys. 1983;79(2):926–935. doi: 10.1063/1.445869. DOI

Huang J., Rauscher S., Nawrocki G., Ran T., Feig M., de Groot B. L., Grubmüller H., MacKerell A. D.. CHARMM36m: An Improved Force Field for Folded and Intrinsically Disordered Proteins. Nat. Methods. 2017;14(1):71–73. doi: 10.1038/nmeth.4067. PubMed DOI PMC

Feenstra K. A., Hess B., Berendsen H. J. C.. Improving Efficiency of Large Time-Scale Molecular Dynamics Simulations of Hydrogen-Rich Systems. J. Comput. Chem. 1999;20(8):786–798. doi: 10.1002/(SICI)1096-987X(199906)20:8<786::AID-JCC5>3.0.CO;2-B. PubMed DOI

Harvey M. J., Giupponi G., Fabritiis G. D.. ACEMD: Accelerating Biomolecular Dynamics in the Microsecond Time Scale. J. Chem. Theory Comput. 2009;5(6):1632–1639. doi: 10.1021/ct9000685. PubMed DOI

Harvey M. J., De Fabritiis G.. An Implementation of the Smooth Particle Mesh Ewald Method on GPU Hardware. J. Chem. Theory Comput. 2009;5(9):2371–2377. doi: 10.1021/ct900275y. PubMed DOI

Hopkins C. W., Le Grand S., Walker R. C., Roitberg A. E.. Long-Time-Step Molecular Dynamics through Hydrogen Mass Repartitioning. J. Chem. Theory Comput. 2015;11(4):1864–1874. doi: 10.1021/ct5010406. PubMed DOI

Fass J., Sivak D. A., Crooks G. E., Beauchamp K. A., Leimkuhler B., Chodera J. D.. Quantifying Configuration-Sampling Error in Langevin Simulations of Complex Molecular Systems. Entropy Basel Switz. 2018;20(5):318. doi: 10.3390/e20050318. PubMed DOI PMC

Naritomi Y., Fuchigami S.. Slow Dynamics in Protein Fluctuations Revealed by Time-Structure Based Independent Component Analysis: The Case of Domain Motions. J. Chem. Phys. 2011;134(6):065101. doi: 10.1063/1.3554380. PubMed DOI

Humphrey W., Dalke A., Schulten K.. VMD: Visual Molecular Dynamics. J. Mol. Graph. 1996;14(1):33–38. doi: 10.1016/0263-7855(96)00018-5. PubMed DOI

Roe D. R., Cheatham T. E.. PTRAJ and CPPTRAJ: Software for Processing and Analysis of Molecular Dynamics Trajectory Data. J. Chem. Theory Comput. 2013;9(7):3084–3095. doi: 10.1021/ct400341p. PubMed DOI

Case, D. A. ; Betz, R. M. ; Cerutti, D. S. ; Cheatham, T. E., III ; Darden, T. A. ; Duke, R. E. ; Giese, T. J. ; Gohlke, H. ; Goetz, A. W. ; Homeyer, N. ; Izadi, S. ; Janowski, P. ; Kaus, J. ; Kovalenko, A. ; Lee, T. S. ; LeGrand, S. ; Li, P. ; Lin, C. ; Luchko, T. ; Luo, R. ; Madej, B. ; Mermelstein, D. ; Merz, K. M. ; Monard, G. ; Nguyen, H. ; Nguyen, H. T. ; Omelyan, I. ; Onufriev, A. ; Roe, D. R. ; Roitberg, A. ; Sagui, C. ; Simmerling, C. L. ; Botello-Smith, W. M. ; Swails, J. ; Walker, R. C. ; Wang, J. ; Wolf, R. M. ; Wu, X. ; Xiao, L. ; Kollman, P. A. . AMBER 2016.

Weiser J., Shenkin P. S., Still W. C.. Approximate atomic surfaces from linear combinations of pairwise overlaps (LCPO) J. Comput. Chem. 1999;20(2):217–230. doi: 10.1002/(SICI)1096-987X(19990130)20:2<217::AID-JCC4>3.0.CO;2-A. DOI

Tien M. Z., Meyer A. G., Sydykova D. K., Spielman S. J., Wilke C. O.. Maximum Allowed Solvent Accessibilites of Residues in Proteins. PLoS One. 2013;8(11):e80635. doi: 10.1371/journal.pone.0080635. PubMed DOI PMC

Levy E. D.. A Simple Definition of Structural Regions in Proteins and Its Use in Analyzing Interface Evolution. J. Mol. Biol. 2010;403(4):660–670. doi: 10.1016/j.jmb.2010.09.028. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...