A Pseudomonas putida strain genetically engineered for 1,2,3-trichloropropane bioremediation

. 2014 Sep ; 80 (17) : 5467-76. [epub] 20140627

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid24973068

1,2,3-Trichloropropane (TCP) is a toxic compound that is recalcitrant to biodegradation in the environment. Attempts to isolate TCP-degrading organisms using enrichment cultivation have failed. A potential biodegradation pathway starts with hydrolytic dehalogenation to 2,3-dichloro-1-propanol (DCP), followed by oxidative metabolism. To obtain a practically applicable TCP-degrading organism, we introduced an engineered haloalkane dehalogenase with improved TCP degradation activity into the DCP-degrading bacterium Pseudomonas putida MC4. For this purpose, the dehalogenase gene (dhaA31) was cloned behind the constitutive dhlA promoter and was introduced into the genome of strain MC4 using a transposon delivery system. The transposon-located antibiotic resistance marker was subsequently removed using a resolvase step. Growth of the resulting engineered bacterium, P. putida MC4-5222, on TCP was indeed observed, and all organic chlorine was released as chloride. A packed-bed reactor with immobilized cells of strain MC4-5222 degraded >95% of influent TCP (0.33 mM) under continuous-flow conditions, with stoichiometric release of inorganic chloride. The results demonstrate the successful use of a laboratory-evolved dehalogenase and genetic engineering to produce an effective, plasmid-free, and stable whole-cell biocatalyst for the aerobic bioremediation of a recalcitrant chlorinated hydrocarbon.

Zobrazit více v PubMed

U.S. Environmental Protection Agency. 2009. Toxicological review of 1,2,3-trichloropropane. EPA/635/R-08/010F. U.S. Environmental Protection Agency, Washington, DC

National Toxicology Program. 2002. 1,2,3-Trichloropropane. Rep. Carcinog. 10:248–249 PubMed

Kielhorn J, Könnecker G, Pohlenz-Michel C, Schmidt S, Mangelsdorf I. 2003. 1,2,3-Trichloropropane. Concise international chemical assessment document 56. World Health Organization, Geneva, Switzerland

Samin G, Janssen DB. 2012. Transformation and biodegradation of 1,2,3-trichloropropane (TCP). Environ. Sci. Pollut. Res. Int. 19:3067–3078. 10.1007/s11356-012-0859-3 PubMed DOI PMC

Salter-Blanc AJ, Tratnyek PG. 2011. Effects of solution chemistry on the dechlorination of 1,2,3-trichloropropane by zero-valent zinc. Environ. Sci. Technol. 45:4073–4079. 10.1021/es104081p PubMed DOI

Sarathy V, Salter AJ, Nurmi JT, O'Brien Johnson G, Johnson RL, Tratnyek PG. 2010. Degradation of 1,2,3-trichloropropane (TCP): hydrolysis, elimination, and reduction by iron and zinc. Environ. Sci. Technol. 44:787–793. 10.1021/es902595j PubMed DOI

Stucki G, Thuer M. 1995. Experiences of a large-scale application of 1,2-dichloroethane degrading microorganisms for groundwater treatment. Environ. Sci. Technol. 29:2339–2345. 10.1021/es00009a028 PubMed DOI

Janssen DB, Pries F, van der Ploeg J, Kazemier B, Terpstra P, Witholt B. 1989. Cloning of 1,2-dichloroethane degradation genes of Xanthobacter autotrophicus GJ10 and expression and sequencing of the dhlA gene. J. Bacteriol. 171:6791–6799 PubMed PMC

Löffler FE, Champine JE, Ritalahti KM, Sprague SJ, Tiedje JM. 1997. Complete reductive dechlorination of 1,2-dichloropropane by anaerobic bacteria. Appl. Environ. Microbiol. 63:2870–2875 PubMed PMC

Peijnenburg WJGM, Eriksson L, de Groot A, Sjöström M, Verboom HH. 1998. The kinetics of reductive dehalogenation of a set of halogenated aliphatic hydrocarbons in anaerobic sediment slurries. Environ. Sci. Pollut. Res. Int. 5:12–16. 10.1007/BF02986368 PubMed DOI

Yan J, Rash BA, Rainey FA, Moe WM. 2009. Isolation of novel bacteria within the Chloroflexi capable of reductive dechlorination of 1,2,3-trichloropropane. Environ. Microbiol. 11:833–843. 10.1111/j.1462-2920.2008.01804.x PubMed DOI

Bowman KS, Nobre MF, da Costa MS, Rainey FA, Moe WM. 2013. Dehalogenimonas alkenigignens sp. nov., a chlorinated-alkane-dehalogenating bacterium isolated from groundwater. Int. J. Syst. Evol. Microbiol. 63:1492–1498. 10.1099/ijs.0.045054-0 PubMed DOI

Padilla-Crespo E, Yan J, Swift C, Wagner DD, Chourey K, Hettich RL, Ritalahti KM, Löffler FE. 2014. Identification and environmental distribution of dcpA, which encodes the reductive dehalogenase catalyzing the dichloroelimination of 1,2-dichloropropane to propene in organohalide-respiring Chloroflexi. Appl. Environ. Microbiol. 80:808–818. 10.1128/AEM.02927-13 PubMed DOI PMC

Bosma T, Janssen DB. 1998. Conversion of chlorinated propanes by Methylosinus trichosporium OB3b expressing soluble methane monooxygenase. Appl. Microbiol. Biotechnol. 50:105–112. 10.1007/s002530051263 PubMed DOI PMC

Bosma T, Kruizinga E, de Bruin EJ, Poelarends GJ, Janssen DB. 1999. Utilization of trihalogenated propanes by Agrobacterium radiobacter AD1 through heterologous expression of the haloalkane dehalogenase from Rhodococcus sp. strain M15-3. Appl. Environ. Microbiol. 65:4575–4581 PubMed PMC

Bosma T, Damborsky J, Stucki G, Janssen DB. 2002. Biodegradation of 1,2,3-trichloropropane through directed evolution and heterologous expression of a haloalkane dehalogenase gene. Appl. Environ. Microbiol. 68:3582–3587. 10.1128/AEM.68.7.3582-3587.2002 PubMed DOI PMC

Kurumbang NP, Dvorak P, Bendl J, Brezovsky J, Prokop Z, Damborsky J. 2014. Computer assisted engineering of the synthetic pathway for biodegradation of a toxic persistent pollutant. ACS Synth. Biol. 3:172–181. 10.1021/sb400147n PubMed DOI

Bylaska EJ, Glaesemann KR, Felmy AR, Vasiliu M, Dixon DA, Tratnyek PG. 2010. Free energies for degradation reactions of 1,2,3-trichloropropane from ab initio electronic structure theory. J. Phys. Chem. A 114:12269–12282. 10.1021/jp105726u PubMed DOI

Gray KA, Richardson TH, Kretz K, Short JM, Bartnek F, Knowles R, Kan L, Swanson PE, Robertson DE. 2001. Rapid evolution of reversible denaturation and elevated melting temperature in a microbial haloalkane dehalogenase. Adv. Synth. Catal. 343:607–617. 10.1002/1615-4169(200108)343:6/7<607::AID-ADSC607>3.0.CO;2-M DOI

Janssen DB. 2004. Evolving haloalkane dehalogenases. Curr. Opin. Chem. Biol. 8:150–159. 10.1016/j.cbpa.2004.02.012 PubMed DOI

Koudelakova T, Chovancova E, Brezovsky J, Monincova M, Fortova A, Jarkovsky J, Damborsky J. 2011. Substrate specificity of haloalkane dehalogenases. Biochem. J. 435:345–354. 10.1042/BJ20101405 PubMed DOI

Poelarends GJ, van Hylckama Vlieg JETV, Marchesi JR, Freitas dos Santos LM, Janssen DB. 1999. Degradation of 1,2-dibromoethane by Mycobacterium sp. strain GP1. J. Bacteriol. 181:2050–2058 PubMed PMC

Poelarends GJ, Zandstra M, Bosma T, Kulakov LA, Larkin MJ, Marchesi JR, Weightman AJ, Janssen DB. 2000. Haloalkane-utilizing Rhodococcus strains isolated from geographically distinct locations possess a highly conserved gene cluster encoding haloalkane catabolism. J. Bacteriol. 182:2725–2731. 10.1128/JB.182.10.2725-2731.2000 PubMed DOI PMC

Pavlova M, Klvana M, Prokop Z, Chaloupkova R, Banas P, Otyepka M, Wade RC, Tsuda M, Nagata Y, Damborsky J. 2009. Redesigning dehalogenase access tunnels as a strategy for degrading an anthropogenic substrate. Nat. Chem. Biol. 5:727–733. 10.1038/nchembio.205 PubMed DOI

Dvorak P, Bidmanova S, Damborsky J, Prokop Z. 2014. Immobilized synthetic pathway for biodegradation of toxic recalcitrant pollutant 1,2,3-trichloropropane. Environ. Sci. Technol. 48:6859–6866. 10.1021/es500396r PubMed DOI

Arif MI, Samin G, van Leeuwen JG, Oppentocht J, Janssen DB. 2012. A novel dehalogenase mechanism for 2,3-dichloro-1-propanol utilization in Pseudomonas putida strain MC4. Appl. Environ. Microbiol. 78:6128–6136. 10.1128/AEM.00760-12 PubMed DOI PMC

Lahoda M, Mesters JR, Stsiapanava A, Chaloupkova R, Kuty M, Damborsky J, Kuta Smatanova I. 2014. Crystallographic analysis of 1,2,3-trichloropropane biodegradation by the haloalkane dehalogenase DhaA31. Acta Crystallogr. D Biol. Crystallogr. 70:209–217. 10.1107/S1399004713026254 PubMed DOI

Schallmey A, den Besten G, Teune IG, Kembaren RF, Janssen DB. 2011. Characterization of cytochrome P450 monooxygenase CYP154H1 from the thermophilic soil bacterium Thermobifida fusca. Appl. Microbiol. Biotechnol. 89:1475–1485. 10.1007/s00253-010-2965-9 PubMed DOI PMC

Brosius J, Erfle M, Storella J. 1985. Spacing of the −10 and −35 regions in the Tac promoter. Effect on its in vivo activity. J. Biol. Chem. 260:3539–3541 PubMed

Kovach ME, Elzer PH, Hill DS, Robertson GT, Farris MA, Roop RM, Peterson KM. 1995. Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene 166:175–176. 10.1016/0378-1119(95)00584-1 PubMed DOI

de Lorenzo V. 2009. Recombinant bacteria for environmental release: what went wrong and what we have learnt from it. Clin. Microbiol. Infect. 15:63–65. 10.1111/j.1469-0691.2008.02683.x PubMed DOI

Panke S, Sanchez-Romero JM, de Lorenzo V. 1998. Engineering of quasi-natural Pseudomonas putida strains for toluene metabolism through an ortho-cleavage degradation pathway. Appl. Environ. Microbiol. 64:748–751 PubMed PMC

Kristensen CS, Eberl L, Sanchez-Romero JM, Givskov M, Molin S, de Lorenzo V. 1995. Site-specific deletions of chromosomally located DNA segments with the multimer resolution system of broad-host-range plasmid RP4. J. Bacteriol. 177:52–58 PubMed PMC

Kessler B, de Lorenzo V, Timmis KN. 1992. A general system to integrate lacZ fusions into the chromosomes of gram-negative eubacteria: regulation of the Pm promoter of the TOL plasmid studied with all controlling elements in monocopy. Mol. Gen. Genet. 233:293–301. 10.1007/BF00587591 PubMed DOI

de Lorenzo V, Timmis KN. 1994. Analysis and construction of stable phenotypes in Gram-negative bacteria with Tn5-derived and Tn10-derived minitransposons. Methods Enzymol. 235:386–405. 10.1016/0076-6879(94)35157-0 PubMed DOI

de Lorenzo V, Herrero M, Sanchez JM, Timmis KN. 1998. Mini-transposons in microbial ecology and environmental biotechnology. FEMS Microbiol. Ecol. 27:211–224. 10.1111/j.1574-6941.1998.tb00538.x DOI

Carver T, Berriman M, Tivey A, Patel C, Böhme U, Barrell BG, Parkhill J, Rajandream MA. 2008. Artemis and ACT: viewing, annotating and comparing sequences stored in a relational database. Bioinformatics 24:2672–2676. 10.1093/bioinformatics/btn529 PubMed DOI PMC

Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, Formsma K, Gerdes S, Glass EM, Kubal M, Meyer F, Olsen GJ, Olson R, Osterman AL, Overbeek RA, McNeil LK, Paarmann D, Paczian T, Parrello B, Pusch GD, Reich C, Stevens R, Vassieva O, Vonstein V, Wilke A, Zagnitko O. 2008. The RAST Server: rapid annotations using subsystems technology. BMC Genomics 9:75. 10.1186/1471-2164-9-75 PubMed DOI PMC

Schanstra JP, Kingma J, Janssen DB. 1996. Specificity and kinetics of haloalkane dehalogenase. J. Biol. Chem. 271:14747–14753. 10.1074/jbc.271.25.14747 PubMed DOI

Hui A, Hayflick J, Dinkelspiel K, de Boer HA. 1984. Mutagenesis of the 3 bases preceding the start codon of the beta-galactosidase messenger-RNA and its effect on translation in Escherichia coli. EMBO J. 3:623–629 PubMed PMC

Haro MA, de Lorenzo V. 2001. Metabolic engineering of bacteria for environmental applications: construction of Pseudomonas strains for biodegradation of 2-chlorotoluene. J. Biotechnol. 85:103–113. 10.1016/S0168-1656(00)00367-9 PubMed DOI

Cases I, de Lorenzo V. 2005. Genetically modified organisms for the environment: stories of success and failure and what we have learned from them. Int. Microbiol. 8:213–222 PubMed

Chen W, Brühlmann F, Richins RD, Mulchandani A. 1999. Engineering of improved microbes and enzymes for bioremediation. Curr. Opin. Biotechnol. 10:137–141. 10.1016/S0958-1669(99)80023-8 PubMed DOI

Furukawa K. 2003. ‘Super bugs' for bioremediation. Trends Biotechnol. 21:187–190. 10.1016/S0167-7799(03)00054-4 PubMed DOI

Lau PCK, de Lorenzo V. 1999. Genetic engineering: the frontier of bioremediation. Environ. Sci. Technol. 33:124A–128A. 10.1021/es9926865 PubMed DOI

Pieper DH, Reineke W. 2000. Engineering bacteria for bioremediation. Curr. Opin. Biotechnol. 11:262–270. 10.1016/S0958-1669(00)00094-X PubMed DOI

Singh JS, Abhilash PC, Singh HB, Singh RP, Singh DP. 2011. Genetically engineered bacteria: an emerging tool for environmental remediation and future research perspectives. Gene 480:1–9. 10.1016/j.gene.2011.03.001 PubMed DOI

Timmis KN, Pieper DH. 1999. Bacteria designed for bioremediation. Trends Biotechnol. 5:201–204 PubMed

Megharaj M, Ramakrishnan B, Venkateswarlu K, Sethunathan N, Naidu R. 2011. Bioremediation approaches for organic pollutants: a critical perspective. Environ. Int. 37:1362–1375. 10.1016/j.envint.2011.06.003 PubMed DOI

Ripp S, Nivens DE, Ahn Y, Werner C, Jarrell J, Easter JP, Cox CD, Burlage S, Sayler GS. 2000. Controlled field release of a bioluminescent genetically engineered microorganism for bioremediation process monitoring and control. Environ. Sci. Technol. 34:846–853. 10.1021/es9908319 DOI

Shields MS, Reagin MJ. 1992. Selection of a Pseudomonas cepacia strain constitutive for the degradation of trichloroethylene. Appl. Environ. Microbiol. 58:3977–3983 PubMed PMC

Rojo F, Pieper D, Engesser K, Knacknuss H, Timmis K. 1987. Assemblage of ortho cleavage route for simultaneous degradation of chloroaromatics and methylaromatics. Science 238:1395–1398. 10.1126/science.3479842 PubMed DOI

van Hylckama Vlieg J, Poelarends G, Mars A, Janssen DB. 2000. Detoxification of reactive intermediates during microbial metabolism of halogenated compounds. Curr. Opin. Microbiol. 3:257–262. 10.1016/S1369-5274(00)00086-2 PubMed DOI

van den Wijngaard AJ, van der Kleij RG, Doornweerd RE, Janssen DB. 1993. Influence of organic nutrients and cocultures on the competitive behavior of 1,2-dichloroethane-degrading bacteria. Appl. Environ. Microbiol. 59:3400–3405 PubMed PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Exacerbation of substrate toxicity by IPTG in Escherichia coli BL21(DE3) carrying a synthetic metabolic pathway

. 2015 Dec 21 ; 14 () : 201. [epub] 20151221

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace