FireProt 2.0: web-based platform for the fully automated design of thermostable proteins

. 2023 Nov 22 ; 25 (1) : .

Jazyk angličtina Země Anglie, Velká Británie Médium print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid38018911

Grantová podpora
TEAMING-CZ.02.1.01/0.0/0.0/17_043/0009632 Czech Ministry of Education
FW03010208 Technology Agency of the Czech Republic
857560 European Union
FIT-S-23-8209 Brno University of Technology
LX22NPO5107 National Institute for Neurology Research

Thermostable proteins find their use in numerous biomedical and biotechnological applications. However, the computational design of stable proteins often results in single-point mutations with a limited effect on protein stability. However, the construction of stable multiple-point mutants can prove difficult due to the possibility of antagonistic effects between individual mutations. FireProt protocol enables the automated computational design of highly stable multiple-point mutants. FireProt 2.0 builds on top of the previously published FireProt web, retaining the original functionality and expanding it with several new stabilization strategies. FireProt 2.0 integrates the AlphaFold database and the homology modeling for structure prediction, enabling calculations starting from a sequence. Multiple-point designs are constructed using the Bron-Kerbosch algorithm minimizing the antagonistic effect between the individual mutations. Users can newly limit the FireProt calculation to a set of user-defined mutations, run a saturation mutagenesis of the whole protein or select rigidifying mutations based on B-factors. Evolution-based back-to-consensus strategy is complemented by ancestral sequence reconstruction. FireProt 2.0 is significantly faster and a reworked graphical user interface broadens the tool's availability even to users with older hardware. FireProt 2.0 is freely available at http://loschmidt.chemi.muni.cz/fireprotweb.

Zobrazit více v PubMed

Zamost  BL, Nielsen  HK, Starnes  RL. Thermostable enzymes for industrial applications. J Ind Microbiol  1991;8(2):71–81.

Schmidt-Dannert  C, Arnold  FH. Directed evolution of industrial enzymes. Trends Biotechnol  1999;17(4):135–6. PubMed

Kumar  A, Singh  S. Directed evolution: tailoring biocatalysts for industrial applications. Crit Rev Biotechnol  2013;33(4):365–78. PubMed

Buß  O, Rudat  J, Ochsenreither  K. FoldX as protein engineering tool: better than random based approaches?  Comput Struct Biotechnol J  2018;16:25–33. PubMed PMC

Acevedo-Rocha  CG, Reetz  MT, Nov  Y. Economical analysis of saturation mutagenesis experiments. Sci Rep  2015;5(1):10654. PubMed PMC

Kille  S, Acevedo-Rocha  CG, Parra  LP, et al.  Reducing codon redundancy and screening effort of combinatorial protein libraries created by saturation mutagenesis. ACS Synth Biol  2013;2(2):83–92. PubMed

Schymkowitz  J, Borg  J, Stricher  F, et al.  The FoldX web server: an online force field. Nucleic Acids Res  2005;33(suppl_2):W382–8. PubMed PMC

Parthiban  V, Gromiha  MM, Schomburg  D. CUPSAT: prediction of protein stability upon point mutations. Nucleic Acids Res  2006;34(suppl_2):W239–42. PubMed PMC

Kellogg  EH, Leaver-Fay  A, Baker  D. Role of conformational sampling in computing mutation-induced changes in protein structure and stability. Proteins  2011;79(3):830–8. PubMed PMC

Yin  S, Ding  F, Dokholyan  NV. Eris: an automated estimator of protein stability. Nat Methods  2007;4(6):466–7. PubMed

Benedix  A, Becker  CM, de  Groot  BL, et al.  Predicting free energy changes using structural ensembles. Nat Methods  2009;6(1):3–4. PubMed

Pandurangan  AP, Ochoa-Montaño  B, Ascher  DB, Blundell  TL. SDM: a server for predicting effects of mutations on protein stability. Nucleic Acids Res  2017;45(W1):W229–35. PubMed PMC

Folkman  L, Stantic  B, Sattar  A, Zhou  Y. EASE-MM: sequence-based prediction of mutation-induced stability changes with feature-based multiple models. J Mol Biol  2016;428(6):1394–405. PubMed

Teng  S, Srivastava  AK, Wang  L. Sequence feature-based prediction of protein stability changes upon amino acid substitutions. BMC Genomics  2010;11(Suppl 2):S5. PubMed PMC

Wainreb  G, Wolf  L, Ashkenazy  H, et al.  Protein stability: a single recorded mutation aids in predicting the effects of other mutations in the same amino acid site. Bioinformatics  2011;27(23):3286–92. PubMed PMC

Cheng  J, Randall  A, Baldi  P. Prediction of protein stability changes for single-site mutations using support vector machines. Proteins  2006;62(4):1125–32. PubMed

Huang  L-T, Gromiha  MM, Ho  S-Y. iPTREE-STAB: interpretable decision tree based method for predicting protein stability changes upon mutations. Bioinformatics  2007;23(10):1292–3. PubMed

Savojardo  C, Fariselli  P, Martelli  PL, Casadio  R. INPS-MD: a web server to predict stability of protein variants from sequence and structure. Bioinformatics  2016;32(16):2542–4. PubMed

Chen  C-W, Lin  M-H, Liao  C-C, et al.  iStable 2.0: predicting protein thermal stability changes by integrating various characteristic modules. Comput Struct Biotechnol J  2020;18:622–30. PubMed PMC

Lazaridis  T, Karplus  M. Effective energy functions for protein structure prediction. Curr Opin Struct Biol  2000;10(2):139–45. PubMed

The Rosetta all-atom energy function for macromolecular modeling and design. J Chem Theory Comput. 2017;13(6):3031–30489. PubMed PMC

Dehouck  Y, Gilis  D, Rooman  M. A new generation of statistical potentials for proteins. Biophys J  2006;90(11):4010–7. PubMed PMC

Liu  H. On statistical energy functions for biomolecular modeling and design. Quant Biol  2015;3(4):157–67.

Musil  M, Konegger  H, Hon  J, et al.  Computational design of stable and soluble biocatalysts. ACS Catal  2019;9(2):1033–54.

Varadi  M, Anyango  S, Deshpande  M, et al.  AlphaFold protein structure database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res  2022;50(D1):D439–44. PubMed PMC

Stourac  J, Dubrava  J, Musil  M, et al.  FireProtDB: database of manually curated protein stability data. Nucleic Acids Res  2021;49(D1):D319–24. PubMed PMC

Nikam  R, Kulandaisamy  A, Harini  K, et al.  ProThermDB: thermodynamic database for proteins and mutants revisited after 15 years. Nucleic Acids Res  2021;49(D1):D420–4. PubMed PMC

Sasidharan Nair  P, Vihinen  M. VariBench: a benchmark database for variations. Hum Mutat  2013;34(1):42–9. PubMed

Martins De Oliveira  V, Godoi Contessoto  VD, Bruno Da Silva  F, et al.  Effects of pH and salt concentration on stability of a protein G variant using coarse-grained models. Biophys J  2018;114(1):65–75. PubMed PMC

Khatun  J, Khare  SD, Dokholyan  NV. Can contact potentials reliably predict stability of proteins?  J Mol Biol  2004;336(5):1223–38. PubMed

Kazlauskas  R. Engineering more stable proteins. Chem Soc Rev  2018;47(24):9026–45. PubMed

Pucci  F, Bourgeas  R, Rooman  M. Predicting protein thermal stability changes upon point mutations using statistical potentials: introducing HoTMuSiC. Sci Rep  2016;6(1):23257. PubMed PMC

Three simple properties explain protein stability change upon mutation. J Chem Inf Model 2021;61(4):1981–1988. PubMed

Fang  X, Huang  J, Zhang  R, et al.  Convolution neural network-based prediction of protein thermostability. J Chem Inf Model  2019;59(11):4833–43. PubMed

Cang  Z, Wei  G-W. TopologyNet: topology based deep convolutional and multi-task neural networks for biomolecular property predictions. PLoS Comput Biol  2017;13(7):e1005690. PubMed PMC

Blaabjerg  LM, Kassem  MM, Good  LL, et al.  Rapid protein stability prediction using deep learning representations. Elife  2023;12:e82593. PubMed PMC

Zhou  Y, Pan  Q, Pires  DEV, et al.  DDMut: predicting effects of mutations on protein stability using deep learning. Nucleic Acids Res  2023;51:W122–8. PubMed PMC

Shroff  R, Cole  AW, Morrow  BR, et al.  A structure-based deep learning framework for protein engineering. bioRxiv November 8. 2019;833905.

Jung  F, Frey  K, Zimmer  D, Mühlhaus  T. DeepSTABp: a deep learning approach for the prediction of thermal protein stability. Int J Mol Sci  2023;24(8):7444. PubMed PMC

Quan  L, Lv  Q, Zhang  Y. STRUM: structure-based prediction of protein stability changes upon single-point mutation. Bioinformatics  2016;32(19):2936–46. PubMed PMC

Cao  H, Wang  J, He  L, et al.  DeepDDG: predicting the stability change of protein point mutations using neural networks. J Chem Inf Model  2019;59(4):1508–14. PubMed

Rodrigues  CHM, Pires  DEV, Ascher  DB. DynaMut2: assessing changes in stability and flexibility upon single and multiple point missense mutations. Protein Sci  2021;30(1):60–9. PubMed PMC

Pires  DEV, Ascher  DB, Blundell  TL. DUET: a server for predicting effects of mutations on protein stability using an integrated computational approach. Nucleic Acids Res  2014;42(W1):W314–9. PubMed PMC

Fariselli  P, Martelli  PL, Savojardo  C, Casadio  R. INPS: predicting the impact of non-synonymous variations on protein stability from sequence. Bioinformatics  2015;31(17):2816–21. PubMed

Laimer  J, Hofer  H, Fritz  M, et al.  MAESTRO - multi agent stability prediction upon point mutations. BMC Bioinformatics  2015;16(1):116. PubMed PMC

Witvliet  DK, Strokach  A, Giraldo-Forero  AF, et al.  ELASPIC web-server: proteome-wide structure-based prediction of mutation effects on protein stability and binding affinity. Bioinformatics  2016;32(10):1589–91. PubMed

Montanucci  L, Savojardo  C, Martelli  PL, et al.  On the biases in predictions of protein stability changes upon variations: the INPS test case. Bioinformatics  2019;35(14):2525–7. PubMed

Thiltgen  G, Goldstein  RA. Assessing predictors of changes in protein stability upon mutation using self-consistency. PloS One  2012;7(10):e46084. PubMed PMC

Usmanova  DR, Bogatyreva  NS, Ariño Bernad  J, et al.  Self-consistency test reveals systematic bias in programs for prediction change of stability upon mutation. Bioinformatics  2018;34(21):3653–8. PubMed PMC

Montanucci  L, Capriotti  E, Frank  Y, et al.  DDGun: an untrained method for the prediction of protein stability changes upon single and multiple point variations. BMC Bioinformatics  2019;20(14):335. PubMed PMC

Pucci  F, Bernaerts  K, Teheux  F, et al.  Symmetry principles in optimization problems: an application to protein stability prediction★. IFAC-PapersOnLine  2015;48(1):458–63.

Li  Y, Fang  J. PROTS-RF: a robust model for predicting mutation-induced protein stability changes. PloS One  2012;7(10):e47247. PubMed PMC

Tian  J, Wu  N, Chu  X, Fan  Y. Predicting changes in protein thermostability brought about by single- or multi-site mutations. BMC Bioinformatics  2010;11(1):370. PubMed PMC

Bednar D, Beerens K, Sebestova E, et al.. FireProt: energy- and evolution-based computational design of thermostable multiple-point mutants. PLoS Comput Biol 2015;11:e1004556. PubMed PMC

Floor  RJ, Wijma  HJ, Colpa  DI, et al.  Computational library design for increasing haloalkane dehalogenase stability. Chembiochem  2014;15(11):1660–72. PubMed

Weinstein  JJ, Goldenzweig  A, Hoch  S, Fleishman  SJ. PROSS 2: a new server for the design of stable and highly expressed protein variants. Bioinformatics  2021;37(1):123–5. PubMed PMC

Musil  M, Stourac  J, Bendl  J, et al.  FireProt: web server for automated design of thermostable proteins. Nucleic Acids Res  2017;45(W1):W393–9. PubMed PMC

Goldenzweig  A, Goldsmith  M, Hill  SE, et al.  Automated structure- and sequence-based design of proteins for high bacterial expression and stability. Mol Cell  2016;63(2):337–46. PubMed PMC

Bron  C, Kerbosch  J. Algorithm 457: finding all cliques of an undirected graph. Commun ACM  1973;16(9):575–7.

Sun Z, Liu Q, Qu G, et al.. Utility of B-factors in protein science: interpreting rigidity, flexibility, and internal motion and engineering thermostability. Chem Rev. 2019;119(3):1626–1665. PubMed

Thornton  JW. Resurrecting ancient genes: experimental analysis of extinct molecules. Nat Rev Genet  2004;5(5):366–75. PubMed

Musil  M, Khan  RT, Beier  A, et al.  FireProtASR: a web server for fully automated ancestral sequence reconstruction. Brief Bioinform  2020;22(4):bbaa337. PubMed PMC

Studer  G, Tauriello  G, Bienert  S, et al.  ProMod3—a versatile homology modelling toolbox. PLoS Comput Biol  2021;17(1):e1008667. PubMed PMC

Sehnal  D, Bittrich  S, Deshpande  M, et al.  Mol* viewer: modern web app for 3D visualization and analysis of large biomolecular structures. Nucleic Acids Res  2021;49(W1):W431–7. PubMed PMC

UniProt Consortium  T. UniProt: the universal protein knowledgebase. Nucleic Acids Res  2018;46(5):2699–9. PubMed PMC

Camacho  C, Coulouris  G, Avagyan  V, et al.  BLAST+: architecture and applications. BMC Bioinformatics  2009;10(1):421. PubMed PMC

Sussman  JL, Lin  D, Jiang  J, et al.  Protein Data Bank (PDB): database of three-dimensional structural information of biological macromolecules. Acta Cryst D  1998;54(6):1078–84. PubMed

Boeckmann  B, Bairoch  A, Apweiler  R, et al.  The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003. Nucleic Acids Res  2003;31(1):365–70. PubMed PMC

Suzek  BE, Wang  Y, Huang  H, et al.  UniRef clusters: a comprehensive and scalable alternative for improving sequence similarity searches. Bioinformatics  2015;31(6):926–32. PubMed PMC

Edgar  RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics  2010;26(19):2460–1. PubMed

Sievers  F, Wilm  A, Dineen  D, et al.  Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol  2011;7(1):539. PubMed PMC

Capra  JA, Singh  M. Predicting functionally important residues from sequence conservation. Bioinformatics  2007;23(15):1875–82. PubMed

Kass  I, Horovitz  A. Mapping pathways of allosteric communication in GroEL by analysis of correlated mutations. Proteins  2002;48(4):611–7. PubMed

Korber  BT, Farber  RM, Wolpert  DH, Lapedes  AS. Covariation of mutations in the V3 loop of human immunodeficiency virus type 1 envelope protein: an information theoretic analysis. Proc Natl Acad Sci U S A  1993;90(15):7176–80. PubMed PMC

Lee  B-C, Kim  D. A new method for revealing correlated mutations under the structural and functional constraints in proteins. Bioinformatics  2009;25(19):2506–13. PubMed

Weigt  M, White  RA, Szurmant  H, et al.  Identification of direct residue contacts in protein-protein interaction by message passing. Proc Natl Acad Sci U S A  2009;106(1):67–72. PubMed PMC

Lockless  SW, Ranganathan  R. Evolutionarily conserved pathways of energetic connectivity in protein families. Science  1999;286(5438):295–9. PubMed

Dekker  JP, Fodor  A, Aldrich  RW, Yellen  G. A perturbation-based method for calculating explicit likelihood of evolutionary co-variance in multiple sequence alignments. Bioinformatics  2004;20(10):1565–72. PubMed

Olmea  O, Rost  B, Valencia  A. Effective use of sequence correlation and conservation in fold recognition. J Mol Biol  1999;293(5):1221–39. PubMed

Reetz  MT, Carballeira  JD, Vogel  A. Iterative saturation mutagenesis on the basis of B factors as a strategy for increasing protein thermostability. Angew Chem Int Ed Engl  2006;45(46):7745–51. PubMed

Benner  SA, Gerloff  D. Patterns of divergence in homologous proteins as indicators of secondary and tertiary structure: a prediction of the structure of the catalytic domain of protein kinases. Adv Enzyme Regul  1991;31:121–81. PubMed

Brenner  S. The molecular evolution of genes and proteins: a tale of two serines. Nature  1988;334(6182):528–30. PubMed

Cooperman  BS, Baykov  AA, Lahti  R. Evolutionary conservation of the active site of soluble inorganic pyrophosphatase. Trends Biochem Sci  1992;17(7):262–6. PubMed

Howell  N. Evolutionary conservation of protein regions in the protonmotive cytochrome b and their possible roles in redox catalysis. J Mol Evol  1989;29(2):157–69. PubMed

Göbel  U, Sander  C, Schneider  R, Valencia  A. Correlated mutations and residue contacts in proteins. Proteins  1994;18(4):309–17. PubMed

Neher  E. How frequent are correlated changes in families of protein sequences?  Proc Natl Acad Sci U S A  1994;91(1):98–102. PubMed PMC

Taylor  WR, Hatrick  K. Compensating changes in protein multiple sequence alignments. Protein Eng  1994;7(3):341–8. PubMed

Broom  A, Jacobi  Z, Trainor  K, Meiering  EM. Computational tools help improve protein stability but with a solubility tradeoff. J Biol Chem  2017;292(35):14349–61. PubMed PMC

Tria  FDK, Landan  G, Dagan  T. Phylogenetic rooting using minimal ancestor deviation. Nat Ecol Evol  2017;1(1):1–7. PubMed

Hanson-Smith  V, Kolaczkowski  B, Thornton  JW. Robustness of ancestral sequence reconstruction to phylogenetic uncertainty. Mol Biol Evol  2010;27(9):1988–99. PubMed PMC

Contessoto  VG, de  Oliveira  VM, de  Carvalho  SJ, et al.  NTL9 folding at constant pH: the importance of electrostatic interaction and pH dependence. J Chem Theory Comput  2016;12(7):3270–7. PubMed

Yu  Z, Yu  H, Xu  J, et al.  Enhancing thermostability of lipase from Pseudomonas alcaligenes for producing l-menthol by the CREATE strategy. Cat Sci Technol  2022;12(8):2531–41.

Pongpamorn  P, Watthaisong  P, Pimviriyakul  P, et al.  Identification of a hotspot residue for improving the thermostability of a flavin-dependent monooxygenase. Chembiochem  2019;20(24):3020–31. PubMed

Markova  K, Chmelova  K, Marques  M, et al.  Decoding the intricate network of molecular interactions of a hyperstable engineered biocatalyst. Chem Sci  2020;11(41):11162–78. PubMed PMC

Livada J, Vargas AM, Martinez CA, et al. Ancestral sequence reconstruction enhances Gene Mining efforts for industrial Ene reductases by expanding enzyme panels with thermostable catalysts. ACS Catal 2023;13:2576–85.

Steipe  B, Schiller  B, Plückthun  A, Steinbacher  S. Sequence statistics reliably predict stabilizing mutations in a protein domain. J Mol Biol  1994;240(3):188–92. PubMed

Porebski  BT, Buckle  AM. Consensus protein design. Protein Eng Des Sel  2016;29(7):245–51. PubMed PMC

Chaloupkova  R, Liskova  V, Toul  M, et al.  Light-emitting dehalogenases: reconstruction of multifunctional biocatalysts. ACS Catal  2019;9(6):4810–23.

Dauparas J, Anishchenko I, Bennett N, et al. Robust deep learning–based protein sequence design using ProteinMPNN. Science 2022;378:49–56. PubMed PMC

Watson  JL, Juergens  D, Bennett  NR, et al.  Broadly applicable and accurate protein design by integrating structure prediction networks and diffusion generative models. bioRxiv December 14. 2022p 2022.12.09.519842.

Contessoto  VG, de  Oliveira  VM, Fernandes  BR, et al.  TKSA-MC: a web server for rational mutation through the optimization of protein charge interactions. Proteins  2018;86(11):1184–8. PubMed

Ngo  K, Bruno da Silva  F, Leite  VBP, et al.  Improving the thermostability of xylanase a from Bacillus subtilis by combining bioinformatics and electrostatic interactions optimization. J Phys Chem B  2021;125(17):4359–67. PubMed

De Godoi Contessoto  V, Ramos  FC, De Melo  RR, et al.  Electrostatic interaction optimization improves catalytic rates and thermotolerance on xylanases. Biophys J  2021;120(11):2172–80. PubMed PMC

Myers  JK, Nick Pace  C, Martin Scholtz  J. Denaturant m values and heat capacity changes: relation to changes in accessible surface areas of protein unfolding. Protein Sci  1995;4(10):2138–48. PubMed PMC

Miller  SR. An appraisal of the enzyme stability-activity trade-off. Evolution  2017;71(7):1876–87. PubMed

Siddiqui  KS. Defying the activity–stability trade-off in enzymes: taking advantage of entropy to enhance activity and thermostability. Crit Rev Biotechnol  2017;37(3):309–22. PubMed

Ruller  R, Deliberto  L, Ferreira  TL, Ward  RJ. Thermostable variants of the recombinant xylanase a from Bacillus subtilis produced by directed evolution show reduced heat capacity changes. Proteins  2008;70(4):1280–93. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...