FireProt 2.0: web-based platform for the fully automated design of thermostable proteins
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
TEAMING-CZ.02.1.01/0.0/0.0/17_043/0009632
Czech Ministry of Education
FW03010208
Technology Agency of the Czech Republic
857560
European Union
FIT-S-23-8209
Brno University of Technology
LX22NPO5107
National Institute for Neurology Research
PubMed
38018911
PubMed Central
PMC10685400
DOI
10.1093/bib/bbad425
PII: 7453438
Knihovny.cz E-zdroje
- Klíčová slova
- B-factor, ancestral, back-to-consensus, epistasis, evolution, force-field, multiple-point mutant, protein engineering, saturation mutagenesis, thermostability,
- MeSH
- algoritmy * MeSH
- internet MeSH
- mutace MeSH
- proteiny * genetika chemie MeSH
- stabilita proteinů MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- proteiny * MeSH
Thermostable proteins find their use in numerous biomedical and biotechnological applications. However, the computational design of stable proteins often results in single-point mutations with a limited effect on protein stability. However, the construction of stable multiple-point mutants can prove difficult due to the possibility of antagonistic effects between individual mutations. FireProt protocol enables the automated computational design of highly stable multiple-point mutants. FireProt 2.0 builds on top of the previously published FireProt web, retaining the original functionality and expanding it with several new stabilization strategies. FireProt 2.0 integrates the AlphaFold database and the homology modeling for structure prediction, enabling calculations starting from a sequence. Multiple-point designs are constructed using the Bron-Kerbosch algorithm minimizing the antagonistic effect between the individual mutations. Users can newly limit the FireProt calculation to a set of user-defined mutations, run a saturation mutagenesis of the whole protein or select rigidifying mutations based on B-factors. Evolution-based back-to-consensus strategy is complemented by ancestral sequence reconstruction. FireProt 2.0 is significantly faster and a reworked graphical user interface broadens the tool's availability even to users with older hardware. FireProt 2.0 is freely available at http://loschmidt.chemi.muni.cz/fireprotweb.
Zobrazit více v PubMed
Zamost BL, Nielsen HK, Starnes RL. Thermostable enzymes for industrial applications. J Ind Microbiol 1991;8(2):71–81.
Schmidt-Dannert C, Arnold FH. Directed evolution of industrial enzymes. Trends Biotechnol 1999;17(4):135–6. PubMed
Kumar A, Singh S. Directed evolution: tailoring biocatalysts for industrial applications. Crit Rev Biotechnol 2013;33(4):365–78. PubMed
Buß O, Rudat J, Ochsenreither K. FoldX as protein engineering tool: better than random based approaches? Comput Struct Biotechnol J 2018;16:25–33. PubMed PMC
Acevedo-Rocha CG, Reetz MT, Nov Y. Economical analysis of saturation mutagenesis experiments. Sci Rep 2015;5(1):10654. PubMed PMC
Kille S, Acevedo-Rocha CG, Parra LP, et al. Reducing codon redundancy and screening effort of combinatorial protein libraries created by saturation mutagenesis. ACS Synth Biol 2013;2(2):83–92. PubMed
Schymkowitz J, Borg J, Stricher F, et al. The FoldX web server: an online force field. Nucleic Acids Res 2005;33(suppl_2):W382–8. PubMed PMC
Parthiban V, Gromiha MM, Schomburg D. CUPSAT: prediction of protein stability upon point mutations. Nucleic Acids Res 2006;34(suppl_2):W239–42. PubMed PMC
Kellogg EH, Leaver-Fay A, Baker D. Role of conformational sampling in computing mutation-induced changes in protein structure and stability. Proteins 2011;79(3):830–8. PubMed PMC
Yin S, Ding F, Dokholyan NV. Eris: an automated estimator of protein stability. Nat Methods 2007;4(6):466–7. PubMed
Benedix A, Becker CM, de Groot BL, et al. Predicting free energy changes using structural ensembles. Nat Methods 2009;6(1):3–4. PubMed
Pandurangan AP, Ochoa-Montaño B, Ascher DB, Blundell TL. SDM: a server for predicting effects of mutations on protein stability. Nucleic Acids Res 2017;45(W1):W229–35. PubMed PMC
Folkman L, Stantic B, Sattar A, Zhou Y. EASE-MM: sequence-based prediction of mutation-induced stability changes with feature-based multiple models. J Mol Biol 2016;428(6):1394–405. PubMed
Teng S, Srivastava AK, Wang L. Sequence feature-based prediction of protein stability changes upon amino acid substitutions. BMC Genomics 2010;11(Suppl 2):S5. PubMed PMC
Wainreb G, Wolf L, Ashkenazy H, et al. Protein stability: a single recorded mutation aids in predicting the effects of other mutations in the same amino acid site. Bioinformatics 2011;27(23):3286–92. PubMed PMC
Cheng J, Randall A, Baldi P. Prediction of protein stability changes for single-site mutations using support vector machines. Proteins 2006;62(4):1125–32. PubMed
Huang L-T, Gromiha MM, Ho S-Y. iPTREE-STAB: interpretable decision tree based method for predicting protein stability changes upon mutations. Bioinformatics 2007;23(10):1292–3. PubMed
Savojardo C, Fariselli P, Martelli PL, Casadio R. INPS-MD: a web server to predict stability of protein variants from sequence and structure. Bioinformatics 2016;32(16):2542–4. PubMed
Chen C-W, Lin M-H, Liao C-C, et al. iStable 2.0: predicting protein thermal stability changes by integrating various characteristic modules. Comput Struct Biotechnol J 2020;18:622–30. PubMed PMC
Lazaridis T, Karplus M. Effective energy functions for protein structure prediction. Curr Opin Struct Biol 2000;10(2):139–45. PubMed
The Rosetta all-atom energy function for macromolecular modeling and design. J Chem Theory Comput. 2017;13(6):3031–30489. PubMed PMC
Dehouck Y, Gilis D, Rooman M. A new generation of statistical potentials for proteins. Biophys J 2006;90(11):4010–7. PubMed PMC
Liu H. On statistical energy functions for biomolecular modeling and design. Quant Biol 2015;3(4):157–67.
Musil M, Konegger H, Hon J, et al. Computational design of stable and soluble biocatalysts. ACS Catal 2019;9(2):1033–54.
Varadi M, Anyango S, Deshpande M, et al. AlphaFold protein structure database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res 2022;50(D1):D439–44. PubMed PMC
Stourac J, Dubrava J, Musil M, et al. FireProtDB: database of manually curated protein stability data. Nucleic Acids Res 2021;49(D1):D319–24. PubMed PMC
Nikam R, Kulandaisamy A, Harini K, et al. ProThermDB: thermodynamic database for proteins and mutants revisited after 15 years. Nucleic Acids Res 2021;49(D1):D420–4. PubMed PMC
Sasidharan Nair P, Vihinen M. VariBench: a benchmark database for variations. Hum Mutat 2013;34(1):42–9. PubMed
Martins De Oliveira V, Godoi Contessoto VD, Bruno Da Silva F, et al. Effects of pH and salt concentration on stability of a protein G variant using coarse-grained models. Biophys J 2018;114(1):65–75. PubMed PMC
Khatun J, Khare SD, Dokholyan NV. Can contact potentials reliably predict stability of proteins? J Mol Biol 2004;336(5):1223–38. PubMed
Kazlauskas R. Engineering more stable proteins. Chem Soc Rev 2018;47(24):9026–45. PubMed
Pucci F, Bourgeas R, Rooman M. Predicting protein thermal stability changes upon point mutations using statistical potentials: introducing HoTMuSiC. Sci Rep 2016;6(1):23257. PubMed PMC
Three simple properties explain protein stability change upon mutation. J Chem Inf Model 2021;61(4):1981–1988. PubMed
Fang X, Huang J, Zhang R, et al. Convolution neural network-based prediction of protein thermostability. J Chem Inf Model 2019;59(11):4833–43. PubMed
Cang Z, Wei G-W. TopologyNet: topology based deep convolutional and multi-task neural networks for biomolecular property predictions. PLoS Comput Biol 2017;13(7):e1005690. PubMed PMC
Blaabjerg LM, Kassem MM, Good LL, et al. Rapid protein stability prediction using deep learning representations. Elife 2023;12:e82593. PubMed PMC
Zhou Y, Pan Q, Pires DEV, et al. DDMut: predicting effects of mutations on protein stability using deep learning. Nucleic Acids Res 2023;51:W122–8. PubMed PMC
Shroff R, Cole AW, Morrow BR, et al. A structure-based deep learning framework for protein engineering. bioRxiv November 8. 2019;833905.
Jung F, Frey K, Zimmer D, Mühlhaus T. DeepSTABp: a deep learning approach for the prediction of thermal protein stability. Int J Mol Sci 2023;24(8):7444. PubMed PMC
Quan L, Lv Q, Zhang Y. STRUM: structure-based prediction of protein stability changes upon single-point mutation. Bioinformatics 2016;32(19):2936–46. PubMed PMC
Cao H, Wang J, He L, et al. DeepDDG: predicting the stability change of protein point mutations using neural networks. J Chem Inf Model 2019;59(4):1508–14. PubMed
Rodrigues CHM, Pires DEV, Ascher DB. DynaMut2: assessing changes in stability and flexibility upon single and multiple point missense mutations. Protein Sci 2021;30(1):60–9. PubMed PMC
Pires DEV, Ascher DB, Blundell TL. DUET: a server for predicting effects of mutations on protein stability using an integrated computational approach. Nucleic Acids Res 2014;42(W1):W314–9. PubMed PMC
Fariselli P, Martelli PL, Savojardo C, Casadio R. INPS: predicting the impact of non-synonymous variations on protein stability from sequence. Bioinformatics 2015;31(17):2816–21. PubMed
Laimer J, Hofer H, Fritz M, et al. MAESTRO - multi agent stability prediction upon point mutations. BMC Bioinformatics 2015;16(1):116. PubMed PMC
Witvliet DK, Strokach A, Giraldo-Forero AF, et al. ELASPIC web-server: proteome-wide structure-based prediction of mutation effects on protein stability and binding affinity. Bioinformatics 2016;32(10):1589–91. PubMed
Montanucci L, Savojardo C, Martelli PL, et al. On the biases in predictions of protein stability changes upon variations: the INPS test case. Bioinformatics 2019;35(14):2525–7. PubMed
Thiltgen G, Goldstein RA. Assessing predictors of changes in protein stability upon mutation using self-consistency. PloS One 2012;7(10):e46084. PubMed PMC
Usmanova DR, Bogatyreva NS, Ariño Bernad J, et al. Self-consistency test reveals systematic bias in programs for prediction change of stability upon mutation. Bioinformatics 2018;34(21):3653–8. PubMed PMC
Montanucci L, Capriotti E, Frank Y, et al. DDGun: an untrained method for the prediction of protein stability changes upon single and multiple point variations. BMC Bioinformatics 2019;20(14):335. PubMed PMC
Pucci F, Bernaerts K, Teheux F, et al. Symmetry principles in optimization problems: an application to protein stability prediction★. IFAC-PapersOnLine 2015;48(1):458–63.
Li Y, Fang J. PROTS-RF: a robust model for predicting mutation-induced protein stability changes. PloS One 2012;7(10):e47247. PubMed PMC
Tian J, Wu N, Chu X, Fan Y. Predicting changes in protein thermostability brought about by single- or multi-site mutations. BMC Bioinformatics 2010;11(1):370. PubMed PMC
Bednar D, Beerens K, Sebestova E, et al.. FireProt: energy- and evolution-based computational design of thermostable multiple-point mutants. PLoS Comput Biol 2015;11:e1004556. PubMed PMC
Floor RJ, Wijma HJ, Colpa DI, et al. Computational library design for increasing haloalkane dehalogenase stability. Chembiochem 2014;15(11):1660–72. PubMed
Weinstein JJ, Goldenzweig A, Hoch S, Fleishman SJ. PROSS 2: a new server for the design of stable and highly expressed protein variants. Bioinformatics 2021;37(1):123–5. PubMed PMC
Musil M, Stourac J, Bendl J, et al. FireProt: web server for automated design of thermostable proteins. Nucleic Acids Res 2017;45(W1):W393–9. PubMed PMC
Goldenzweig A, Goldsmith M, Hill SE, et al. Automated structure- and sequence-based design of proteins for high bacterial expression and stability. Mol Cell 2016;63(2):337–46. PubMed PMC
Bron C, Kerbosch J. Algorithm 457: finding all cliques of an undirected graph. Commun ACM 1973;16(9):575–7.
Sun Z, Liu Q, Qu G, et al.. Utility of B-factors in protein science: interpreting rigidity, flexibility, and internal motion and engineering thermostability. Chem Rev. 2019;119(3):1626–1665. PubMed
Thornton JW. Resurrecting ancient genes: experimental analysis of extinct molecules. Nat Rev Genet 2004;5(5):366–75. PubMed
Musil M, Khan RT, Beier A, et al. FireProtASR: a web server for fully automated ancestral sequence reconstruction. Brief Bioinform 2020;22(4):bbaa337. PubMed PMC
Studer G, Tauriello G, Bienert S, et al. ProMod3—a versatile homology modelling toolbox. PLoS Comput Biol 2021;17(1):e1008667. PubMed PMC
Sehnal D, Bittrich S, Deshpande M, et al. Mol* viewer: modern web app for 3D visualization and analysis of large biomolecular structures. Nucleic Acids Res 2021;49(W1):W431–7. PubMed PMC
UniProt Consortium T. UniProt: the universal protein knowledgebase. Nucleic Acids Res 2018;46(5):2699–9. PubMed PMC
Camacho C, Coulouris G, Avagyan V, et al. BLAST+: architecture and applications. BMC Bioinformatics 2009;10(1):421. PubMed PMC
Sussman JL, Lin D, Jiang J, et al. Protein Data Bank (PDB): database of three-dimensional structural information of biological macromolecules. Acta Cryst D 1998;54(6):1078–84. PubMed
Boeckmann B, Bairoch A, Apweiler R, et al. The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003. Nucleic Acids Res 2003;31(1):365–70. PubMed PMC
Suzek BE, Wang Y, Huang H, et al. UniRef clusters: a comprehensive and scalable alternative for improving sequence similarity searches. Bioinformatics 2015;31(6):926–32. PubMed PMC
Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 2010;26(19):2460–1. PubMed
Sievers F, Wilm A, Dineen D, et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol 2011;7(1):539. PubMed PMC
Capra JA, Singh M. Predicting functionally important residues from sequence conservation. Bioinformatics 2007;23(15):1875–82. PubMed
Kass I, Horovitz A. Mapping pathways of allosteric communication in GroEL by analysis of correlated mutations. Proteins 2002;48(4):611–7. PubMed
Korber BT, Farber RM, Wolpert DH, Lapedes AS. Covariation of mutations in the V3 loop of human immunodeficiency virus type 1 envelope protein: an information theoretic analysis. Proc Natl Acad Sci U S A 1993;90(15):7176–80. PubMed PMC
Lee B-C, Kim D. A new method for revealing correlated mutations under the structural and functional constraints in proteins. Bioinformatics 2009;25(19):2506–13. PubMed
Weigt M, White RA, Szurmant H, et al. Identification of direct residue contacts in protein-protein interaction by message passing. Proc Natl Acad Sci U S A 2009;106(1):67–72. PubMed PMC
Lockless SW, Ranganathan R. Evolutionarily conserved pathways of energetic connectivity in protein families. Science 1999;286(5438):295–9. PubMed
Dekker JP, Fodor A, Aldrich RW, Yellen G. A perturbation-based method for calculating explicit likelihood of evolutionary co-variance in multiple sequence alignments. Bioinformatics 2004;20(10):1565–72. PubMed
Olmea O, Rost B, Valencia A. Effective use of sequence correlation and conservation in fold recognition. J Mol Biol 1999;293(5):1221–39. PubMed
Reetz MT, Carballeira JD, Vogel A. Iterative saturation mutagenesis on the basis of B factors as a strategy for increasing protein thermostability. Angew Chem Int Ed Engl 2006;45(46):7745–51. PubMed
Benner SA, Gerloff D. Patterns of divergence in homologous proteins as indicators of secondary and tertiary structure: a prediction of the structure of the catalytic domain of protein kinases. Adv Enzyme Regul 1991;31:121–81. PubMed
Brenner S. The molecular evolution of genes and proteins: a tale of two serines. Nature 1988;334(6182):528–30. PubMed
Cooperman BS, Baykov AA, Lahti R. Evolutionary conservation of the active site of soluble inorganic pyrophosphatase. Trends Biochem Sci 1992;17(7):262–6. PubMed
Howell N. Evolutionary conservation of protein regions in the protonmotive cytochrome b and their possible roles in redox catalysis. J Mol Evol 1989;29(2):157–69. PubMed
Göbel U, Sander C, Schneider R, Valencia A. Correlated mutations and residue contacts in proteins. Proteins 1994;18(4):309–17. PubMed
Neher E. How frequent are correlated changes in families of protein sequences? Proc Natl Acad Sci U S A 1994;91(1):98–102. PubMed PMC
Taylor WR, Hatrick K. Compensating changes in protein multiple sequence alignments. Protein Eng 1994;7(3):341–8. PubMed
Broom A, Jacobi Z, Trainor K, Meiering EM. Computational tools help improve protein stability but with a solubility tradeoff. J Biol Chem 2017;292(35):14349–61. PubMed PMC
Tria FDK, Landan G, Dagan T. Phylogenetic rooting using minimal ancestor deviation. Nat Ecol Evol 2017;1(1):1–7. PubMed
Hanson-Smith V, Kolaczkowski B, Thornton JW. Robustness of ancestral sequence reconstruction to phylogenetic uncertainty. Mol Biol Evol 2010;27(9):1988–99. PubMed PMC
Contessoto VG, de Oliveira VM, de Carvalho SJ, et al. NTL9 folding at constant pH: the importance of electrostatic interaction and pH dependence. J Chem Theory Comput 2016;12(7):3270–7. PubMed
Yu Z, Yu H, Xu J, et al. Enhancing thermostability of lipase from Pseudomonas alcaligenes for producing l-menthol by the CREATE strategy. Cat Sci Technol 2022;12(8):2531–41.
Pongpamorn P, Watthaisong P, Pimviriyakul P, et al. Identification of a hotspot residue for improving the thermostability of a flavin-dependent monooxygenase. Chembiochem 2019;20(24):3020–31. PubMed
Markova K, Chmelova K, Marques M, et al. Decoding the intricate network of molecular interactions of a hyperstable engineered biocatalyst. Chem Sci 2020;11(41):11162–78. PubMed PMC
Livada J, Vargas AM, Martinez CA, et al. Ancestral sequence reconstruction enhances Gene Mining efforts for industrial Ene reductases by expanding enzyme panels with thermostable catalysts. ACS Catal 2023;13:2576–85.
Steipe B, Schiller B, Plückthun A, Steinbacher S. Sequence statistics reliably predict stabilizing mutations in a protein domain. J Mol Biol 1994;240(3):188–92. PubMed
Porebski BT, Buckle AM. Consensus protein design. Protein Eng Des Sel 2016;29(7):245–51. PubMed PMC
Chaloupkova R, Liskova V, Toul M, et al. Light-emitting dehalogenases: reconstruction of multifunctional biocatalysts. ACS Catal 2019;9(6):4810–23.
Dauparas J, Anishchenko I, Bennett N, et al. Robust deep learning–based protein sequence design using ProteinMPNN. Science 2022;378:49–56. PubMed PMC
Watson JL, Juergens D, Bennett NR, et al. Broadly applicable and accurate protein design by integrating structure prediction networks and diffusion generative models. bioRxiv December 14. 2022p 2022.12.09.519842.
Contessoto VG, de Oliveira VM, Fernandes BR, et al. TKSA-MC: a web server for rational mutation through the optimization of protein charge interactions. Proteins 2018;86(11):1184–8. PubMed
Ngo K, Bruno da Silva F, Leite VBP, et al. Improving the thermostability of xylanase a from Bacillus subtilis by combining bioinformatics and electrostatic interactions optimization. J Phys Chem B 2021;125(17):4359–67. PubMed
De Godoi Contessoto V, Ramos FC, De Melo RR, et al. Electrostatic interaction optimization improves catalytic rates and thermotolerance on xylanases. Biophys J 2021;120(11):2172–80. PubMed PMC
Myers JK, Nick Pace C, Martin Scholtz J. Denaturant m values and heat capacity changes: relation to changes in accessible surface areas of protein unfolding. Protein Sci 1995;4(10):2138–48. PubMed PMC
Miller SR. An appraisal of the enzyme stability-activity trade-off. Evolution 2017;71(7):1876–87. PubMed
Siddiqui KS. Defying the activity–stability trade-off in enzymes: taking advantage of entropy to enhance activity and thermostability. Crit Rev Biotechnol 2017;37(3):309–22. PubMed
Ruller R, Deliberto L, Ferreira TL, Ward RJ. Thermostable variants of the recombinant xylanase a from Bacillus subtilis produced by directed evolution show reduced heat capacity changes. Proteins 2008;70(4):1280–93. PubMed