Multi-Objective Optimization of Machining Parameters for Drilling LM5/ZrO2 Composites Using Grey Relational Analysis
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
SP2023/088
This work was supported by the project SP2023/088 supported by the Ministry of Education, Youth and Sports, Czech Republic.
PubMed
37241242
PubMed Central
PMC10221591
DOI
10.3390/ma16103615
PII: ma16103615
Knihovny.cz E-resources
- Keywords
- ANOVA, composites, design of experiments, drilling, grey relational analysis,
- Publication type
- Journal Article MeSH
In today's world, engineering materials have changed dramatically. Traditional materials are failing to satisfy the demands of present applications, so several composites are being used to address these issues. Drilling is the most vital manufacturing process in most applications, and the drilled holes serve as maximum stress areas that need to be treated with extreme caution. The issue of selecting optimal parameters for drilling novel composite materials has fascinated researchers and professional engineers for a long time. In this work, LM5/ZrO2 composites are manufactured by stir casting using 3, 6, and 9 wt% zirconium dioxide (ZrO2) as reinforcement and LM5 aluminium alloy as matrix. Fabricated composites were drilled using the L27 OA to determine the optimum machining parameters by varying the input parameters. The purpose of this research is to find the optimal cutting parameters while simultaneously addressing the thrust force (TF), surface roughness (SR), and burr height (BH) of drilled holes for the novel composite LM5/ZrO2 using grey relational analysis (GRA). The significance of machining variables on the standard characteristics of the drilling as well as the contribution of machining parameters were found using GRA. However, to obtain the optimum values, a confirmation experiment was conducted as a last step. The experimental results and GRA reveal that a feed rate (F) of 50 m/s, a spindle speed (S) of 3000 rpm, Carbide drill material, and 6% reinforcement are the optimum process parameters for accomplishing maximum grey relational grade (GRG). Analysis of variance (ANOVA) reveals that drill material (29.08%) has the highest influence on GRG, followed by feed rate (24.24%) and spindle speed (19.52%). The interaction of feed rate and drill material has a minor impact on GRG; the variable reinforcement percentage and its interactions with all other variables were pooled up to the error term. The predicted GRG is 0.824, and the experimental value is 0.856. The predicted and experimental values match each other well. The error is 3.7%, which is very minimal. Mathematical models were also developed for all responses based on the drill bits used.
See more in PubMed
Shivatsan T.S., Ibrahim T.S., Mehmed F.A., Lavernia E.J. Processing techniques for particulate-reinforced metal aluminium matrix composites. J. Mater. Sci. 1991;26:5965–5978. doi: 10.1007/BF01113872. DOI
Hashim J., Looney L., Hashmi M.S.J. The enhancement of wettability of SiC particles in cast aluminium matrix composites. J. Mater. Process. Technol. 1999;119:329–335. doi: 10.1016/S0924-0136(01)00919-0. DOI
Nturanabo F., Masu L., Kirabira J.B. Novel Applications of Aluminium Metal Matrix Composites. IntechOpen; London, UK: 2019.
Prakash J.U., Ananth S., Sivakumar G., Moorthy T.V. Multi-Objective Optimization of Wear Parameters for Aluminium Matrix Composites (413/B4C) using Grey Relational Analysis. Mater. Today Proc. 2018;5:7207–7216. doi: 10.1016/j.matpr.2017.11.387. DOI
Davim J.P., Antonio C.A.C. Optimization of cutting conditions in machining of aluminium matrix composites using a numerical and experimental model. J. Mater. Process. Technol. 2001;112:78–82. doi: 10.1016/S0924-0136(01)00551-9. DOI
Prakash J.U., Rubi C.S., Rajkumar C., Juliyana S.J. Multi-objective drilling parameter optimization of hybrid metal matrix composites using grey relational analysis. Mater. Today Proc. 2020;39:1345–1350. doi: 10.1016/j.matpr.2020.04.570. DOI
Haq A.N., Marimuthu P., Jeyapaul R. Multi response optimization of machining parameters of drilling Al/SiC metal matrix composite using grey relational analysis in the Taguchi method. Int. J. Adv. Manuf. Technol. 2008;37:250–255. doi: 10.1007/s00170-007-0981-4. DOI
Ponnuvel S., Moorthy T. Multi-Criteria Optimisation in Drilling of Epoxy/Glass Fabric Hybrid Nanocomposite Using Grey Relational Analysis. Appl. Mech. Mater. 2014;446–447:172–175. doi: 10.4028/www.scientific.net/AMM.446-447.172. DOI
Rajmohan T., Palanikumar K., Prakash S. Grey-fuzzy algorithm to optimise machining parameters in drilling of hybrid metal matrix composites. Compos. Part B Eng. 2013;50:297–308. doi: 10.1016/j.compositesb.2013.02.030. DOI
Salura E., Aslanb A., Kuntoglub M., Gunesc A., Sahin O.S. Experimental study and analysis of machinability characteristics of metal matrix composites during drilling. Compos. Part B. 2019;166:401–413. doi: 10.1016/j.compositesb.2019.02.023. DOI
Palanikumar K., Muniaraj A. Experimental investigation and analysis of thrust force in drilling cast hybrid metal matrix (Al–15% SiC–4% graphite) composites. Measurement. 2014;53:240–250. doi: 10.1016/j.measurement.2014.03.027. DOI
Davim J.P. A note on the determination of optimal cutting conditions for surface finish obtained in turning using design of experiments. J. Mater. Process. Technol. 2001;116:305–308. doi: 10.1016/S0924-0136(01)01063-9. DOI
Samy G.S., Kumaran S.T. Measurement and analysis of temperature, thrust force and surface roughness in drilling of AA (6351)-B4C composite. Measurement. 2017;103:1–9. doi: 10.1016/j.measurement.2017.02.016. DOI
Xiang J., Xiea L., Gao F., Yia J., Panga S., Wang X. Diamond tools wear in drilling of SiCp/Al matrix composites containing Copper. Ceram. Int. 2017;44:5341–5351. doi: 10.1016/j.ceramint.2017.12.154. DOI
Jayaganth A., Jayakumar K., Deepak A., Pazhanivel K. Experimental studies on drilling of 410 stainless steel. Mater. Today Proc. 2018;5:7168–7173. doi: 10.1016/j.matpr.2017.11.382. DOI
Mahamani A. Experimental investigation on drilling of AA2219-TiB2/ZrB2 In-situ metal matrix composites. Procedia Mater. Sci. 2014;6:950–960. doi: 10.1016/j.mspro.2014.07.165. DOI
Ekici E., Motorcu A.R., Uzun G. An investigation of the effects of cutting parameters and graphite reinforcement on quality characteristics during the drilling of Al/10B4C composites. Measurement. 2017;95:395–404. doi: 10.1016/j.measurement.2016.10.041. DOI
Ravindranath V.M., Yerriswamy M., Vivek S.V., Shankar G.S., Kumar N.S. Drilling of Al2219/B4C/Gr metal matrix hybrid composites. Mater. Today Proc. 2017;4:9898–9901. doi: 10.1016/j.matpr.2017.06.290. DOI
Ankalagi S., Gaitonde V.N., Petkar P. Experimental Studies on Hole Quality in Drilling of SA182 Steel. Mater. Today Proc. 2017;4:11201–11209. doi: 10.1016/j.matpr.2017.09.041. DOI
Juliyana S.J., Prakash J.U., SachinSalunkhe, Hussein H.M.A., Gawade S.R. Mechanical Characterization and Microstructural Analysis of Hybrid Composites (LM5/ZrO2/Gr) Crystals. 2022;12:1207. doi: 10.3390/cryst12091207. DOI
Rubi C.S., Prakash J.U., Čep R., Elangovan M. Optimization of Process Variables in the Drilling of LM6/B4C Composites through Grey Relational Analysis. Materials. 2022;15:4860. doi: 10.3390/ma15144860. PubMed DOI PMC
Doreswamy D., Shreyas D.S., Bhat S.K., Rao R.N. Optimization of material removal rate and surfacecharacterization of wire electric discharge machined Ti-6Al-4V alloy by response surface method. Manuf. Rev. 2022;9:15.
Adiga K., Herbert M.A., Rao S.S., Shettigar A. Applications of reinforcement particles in the fabrication of Aluminium Metal Matrix Composites by Friction Stir Processing—A Review. Manuf. Rev. 2022;9:26. doi: 10.1051/mfreview/2022025. DOI
Prakash J.U., Rubi C.S., Palani S., Juliyana S.J. Optimization of machining parameters in drilling of LM6/B4C/Fly ash hybrid composites. Manuf. Rev. 2022;9:28. doi: 10.1051/mfreview/2022026. DOI
Kuntoğlu M., Aslan A., Pimenov D.Y., Usca Ü.A., Salur E., Gupta M.K., Mikolajczyk T., Giasin K., Kapłonek W., Sharma S. A review of indirect tool condition monitoring systems and decision-making methods in turning: Critical analysis and trends. Sensors. 2020;21:108. doi: 10.3390/s21010108. PubMed DOI PMC
Aslan A. Optimization and analysis of process parameters for flank wear, cutting forces and vibration in turning of AISI 5140: A comprehensive study. Measurement. 2020;163:107959. doi: 10.1016/j.measurement.2020.107959. DOI
Usca Ü.A., Şap S., Uzun M., Kuntoğlu M., Salur E., Karabiber A., Pimenov D.Y., Giasin K., Wojciechowski S. Estimation, optimization and analysis based investigation of the energy consumption in machinability of ceramic-based metal matrix composite materials. J. Mater. Res. Technol. 2022;17:2987–2998. doi: 10.1016/j.jmrt.2022.02.055. DOI
Durão L.M.P., Tavares J.M.R., De Albuquerque V.H.C., Marques J.F.S., Andrade O.N. Drilling damage in composite material. Materials. 2014;7:3802–3819. doi: 10.3390/ma7053802. PubMed DOI PMC
Caggiano A., Improta I., Nele L. Characterization of a new dry drill-milling process of carbon fibre reinforced polymer laminates. Materials. 2018;11:1470. doi: 10.3390/ma11081470. PubMed DOI PMC
Uddin M., Basak A., Pramanik A., Singh S., Krolczyk G.M., Prakash C. Evaluating hole quality in drilling of Al 6061 alloys. Materials. 2018;11:2443. doi: 10.3390/ma11122443. PubMed DOI PMC
Aamir M., Tu S., Tolouei-Rad M., Giasin K., Vafadar A. Optimization and modeling of process parameters in multi-hole simultaneous drilling using taguchi method and fuzzy logic approach. Materials. 2020;13:680. doi: 10.3390/ma13030680. PubMed DOI PMC
Parasuraman S., Elamvazuthi I., Kanagaraj G., Natarajan E., Pugazhenthi A. Assessments of process parameters on cutting force and surface roughness during drilling of AA7075/TiB2 in situ composite. Materials. 2020;14:1726. doi: 10.3390/ma14071726. PubMed DOI PMC
Franczyk E., Ślusarczyk Ł., Zębala W. Drilling Burr minimization by changing drill geometry. Materials. 2020;13:3207. doi: 10.3390/ma13143207. PubMed DOI PMC
Jebarose Juliyana S., Udaya Prakash J. Drilling parameter optimization of metal matrix composites (LM5/ZrO2) using Taguchi Technique. Mater. Today Proc. 2020;33:3046–3050. doi: 10.1016/j.matpr.2020.03.211. DOI
Ananth S., Udaya Prakash J., Moorthy T.V., Hariharan P. Optimization of Wear Parameters for Grey Cast Iron under Different Conditions using Grey Relational Analysis. Mater. Today Proc. 2018;5:7346–7354. doi: 10.1016/j.matpr.2017.11.404. DOI