Effect of phosphorus availability on the selection of species with different ploidy levels and genome sizes in a long-term grassland fertilization experiment

. 2013 Nov ; 200 (3) : 911-921. [epub] 20130702

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid23819630

Polyploidy and increased genome size are hypothesized to increase organismal nutrient demands, namely of phosphorus (P), which is an essential and abundant component of nucleic acids. Therefore, polyploids and plants with larger genomes are expected to be selectively disadvantaged in P-limited environments. However, this hypothesis has yet to be experimentally tested. We measured the somatic DNA content and ploidy level in 74 vascular plant species in a long-term fertilization experiment. The differences between the fertilizer treatments regarding the DNA content and ploidy level of the established species were tested using phylogeny-based statistics. The percentage and biomass of polyploid species clearly increased with soil P in particular fertilizer treatments, and a similar but weaker trend was observed for the DNA content. These increases were associated with the dominance of competitive life strategy (particularly advantageous in the P-treated plots) in polyploids and the enhanced competitive ability of dominant polyploid grasses at high soil P concentrations, indicating their increased P limitation. Our results verify the hypothesized effect of P availability on the selection of polyploids and plants with increased genome sizes, although the relative contribution of increased P demands vs increased competitiveness as causes of the observed pattern requires further evaluation.

Zobrazit více v PubMed

Angiosperm Phylogeny Group. 2009. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Botanical Journal of the Linnean Society 161: 105-121.

Baquar SR. 1976. Polyploidy in the flora of Pakistan in relation to latitude, life form, and taxonomic groups. Taxon 25: 621-627.

Barringer BC. 2007. Polyploidy and self-fertilization in flowering plants. American Journal of Botany 94: 1527-1533.

Beaulieu JM, Leitch IJ, Patel S, Pendharkar A, Knight CA. 2008. Genome size is a strong predictor of cell size and stomatal density in angiosperms. New Phytologist 179: 975-986.

te Beest M, Le Roux JJ, Richardson DM, Brysting AK, Suda J, Kubešová M, Pyšek P. 2012. The more the better? The role of polyploidy in facilitating plant invasions. Annals of Botany 109: 19-45.

Begon M, Townsend CR, Harper JL. 2006. Ecology: from individuals to ecosystem. Oxford, UK: Blackwell.

Bennett MD, Leitch IJ. 2010. Plant DNA C-values Database (release 5.0). [WWW document] URL http://data.kew.org/cvalues/ [accessed in December 2011].

Benson DA, Karasch-Mizrachi I, Lipman DJ, Ostell J, Sayers EW. 2012. GenBank. Nucleic Acids Research 40: D48-D53.

Brochmann C, Brysting AK, Alsos IG, Borgen L, Grundt HH, Scheen AC, Elven R. 2004. Polyploidy in arctic plants. Biological Journal of the Linnean Society 82: 521-536.

Cavalier-Smith T. 2005. Economy, speed and size matter: evolutionary forces driving nuclear genome miniaturization and expansion. Annals of Botany 95: 147-175.

Cheng ZJ, Ha M, Soltis D. 2007. Polyploidy: genomic obesity and its consequences. New Phytologist 173: 717-720.

Chytrý M, Hejcman M, Hennekens SM, Schellberg J. 2009. Changes in vegetation types and Ellenberg indicator values after 65 years of fertilizer application in the Rengen Grassland Experiment, Germany. Applied Vegetation Science 12: 167-176.

Collins AR, Naderi R, Mueller-Schaerer H. 2011. Competition between cytotypes changes across a longitudinal gradient in Centaurea stoebe (Asteraceae). American Journal of Botany 98: 1935-1942.

Comai L. 2005. The advantages and disadvantages of being polyploid. Nature Reviews Genetics 6: 836-846.

Doležel J, Greilhuber J, Suda J. 2007. Estimation of nuclear DNA content in plants using flow cytometry. Nature Protocols 2: 2233-2244.

Elser JJ, Acharya K, Kyle M, Cotner J, Makino W, Markow T, Watts T, Hobbie S, Fagan W, Schade J, Hood J, Sterner RW. 2003. Growth rate-stoichiometry couplings in diverse biota. Ecology Letters 6: 936-943.

Elser JJ, Bracken MES, Cleland EE, Gruner DS, Harpole WS, Hillebrandt H, Ngai JT, Seabloom EW, Shurin JB, Smith JE. 2007. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecology Letters 10: 1135-1142.

Flagel LE, Wendel JF. 2009. Gene duplication and evolutionary novelty in plants. New Phytologist 183: 557-564.

Fowler NL, Levin DA. 1984. Ecological constraints on the establishment of a novel polyploid in competition with its diploid progenitor. American Naturalist 124: 703-711.

Franche C, Lindström K, Elmerich C. 2009. Nitrogen-fixing bacteria associated with leguminous and non-leguminous plants. Plant and Soil 321: 35-59.

Galka A, Zarzynski J, Kopec M. 2005. Effect of different fertilization regimes on species composition and habitat in a long-term grassland experiment. Grassland Science in Europe 10: 132-135.

Garland T Jr, Harvez PH, Ives AR. 1992. Procedures for the analysis of comparative data using phylogenetically independent contrasts. Systematic Biology 41: 18-32.

Goldblatt P. 1978. An analysis of the flora of southern Africa: its characteristics, relationships, and origins. Annals of the Missouri Botanical Garden 65: 369-436.

Grafen A. 1989. The phylogenetic regression. Philosophical Transactions of the Royal Society of London B, Biological Sciences 326: 119-157.

Grant V. 1981. Plant speciation. New York, NY, USA: Columbia University Press.

Greilhuber J, Leitch IJ. 2013. Genome size and the phenotype. In: Leitch I, Greilhuber J, Doležel J, Wendel J, eds. Plant genome diversity, vol 2. Wien, Austria: Springer, 323-344.

Gress SE, Nichols TD, Northcraft CC, Peterjohn WT. 2007. Nutrient limitation in soils exhibiting differing nitrogen availabilities: what lies beyond nitrogen saturation? Ecology 88: 119-130.

Grime JP. 1977. Evidence for existence of 3 primary strategies in plants and its relevance to ecological and evolutionary theory. American Naturalist 111: 1169-1194.

Grime JP. 2001. Plant strategies, vegetation processes, and ecosytem properties, 2nd edn. Chichester, UK: Wiley.

Gustafsson A. 1948. Polyploidy, life-form, and vegetative reproduction. Hereditas 34: 1-22.

Hautier Y, Niklaus PA, Hector A. 2009. Competition for light causes plant biodiversity loss after eutrophication. Science 324: 636-638.

Hejcman M, Češková M, Schellberg J, Pätzold S. 2010a. The Rengen Grassland Experiment: effect of soil chemical properties on biomass production, plant species composition and species richness. Folia Geobotanica 45: 125-142.

Hejcman M, Klaudisová M, Štursa J, Pavlů V, Schellberg J, Hejcmanová P, Hakl J, Rauch O, Vacek S. 2007. Revisiting a 37 years abandoned fertilizer experiment on Nardus grassland in the Czech Republic. Agriculture, Ecosystems & Environment 118: 231-236.

Hejcman M, Száková J, Schellberg J, Tlustoš P. 2010b. The Rengen Grassland Experiment: relationship between soil and biomass chemical properties, the amount of applied elements and their uptake. Plant and Soil 333: 163-179.

Hessen DO, Jeyasingh PD, Neiman M, Weider LJ. 2009. Genome streamlining and the elemental costs of growth. Trends in Ecology and Evolution 25: 75-80.

Hessen DO, Ventura M, Elser JJ. 2008. Do phosphorus requirements for RNA limit genome size in crustacean zooplankton? Genome 51: 685-691.

Hodgson JG. 1987. Why do so few plant species exploit productive habitats? An investigation into cytology, plant strategies and abundance within a local flora. Functional Ecology 1: 243-250.

Husband BC. 2000. Constraints on polyploid evolution: a test of the minority cytotype exclusion principle. Proceedings of the Royal Society B, Biological Sciences 267: 217-223.

Husband BC, Baldwin SJ, Suda J. 2013. The incidence of polyploidy in natural plant populations: major patterns and evolutionary processes. In: Leitch I, Greilhuber J, Doležel J, Wendel J, eds. Plant genome diversity, vol 2. Wien, Austria: Springer, 255-276.

Jiao Y, Wickett NJ, Ayyampalayam S, Chanderbali AS, Landherr L, Ralph PE, Tomsho LP, Hu Y, Liang H, Soltis PS, et al. 2011. Ancestral polyploidy in seed plants and angiosperms. Nature 473: 97-100.

Kembel SW, Cowan PD, Helmus MR, Cornwell WK, Morlon H, Ackerly DD, Blomberg SP, Webb CO. 2010. Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26: 1463-1464.

Klotz S, Kühn I, Durka W, eds. 2002. BIOLFLOR - Eine Datenbank zu biologisch-ökologischen Merkmalen der Gefäßpflanzen in Deutschland. Schriftenreihe für Vegetationskunde 38. Bonn, Germany: Bundesamt für Naturschutz.

Lambers H, Raven JA, Shaver GR, Smith SE. 2008. Plant nutrient-acquisition strategies change with soil age. Trends in Ecology and Evolution 23: 95-103.

Leitch AR, Leitch IJ. 2008. Genomic plasticity and the diversity of polyploid plants. Science 320: 481-483.

Leitch IJ, Bennett MD. 2004. Genome downsizing in polyploid plants. Biological Journal of the Linnean Society 82: 651-663.

Levin DA. 1975. Minority cytotype exclusion in local plant populations. Taxon 24: 35-43.

Lewis WM Jr. 1985. Nutrient scarcity as an evolutionary cause of haploidy. American Naturalist 125: 692-701.

Lipnerová I, Bureš P, Horová L, Šmarda P. 2013. Evolution of genome size in Carex (Cyperaceae) in relation to chromosome number and genomic base composition. Annals of Botany 111: 79-94.

Loytynoja A, Goldman N. 2005. An algorithm for progressive multiple alignment of sequences with insertions. Proceedings of the National Academy of Sciences, USA 102: 10557-10562.

Loytynoja A, Goldman N. 2008. Phylogeny-aware gap placement prevents errors in sequence alignment and evolutionary analysis. Science 320: 1632-1635.

Lynch M. 2007. The origins of genome architecture. Sunderland, MA, USA: Sinauer Associates Inc.

Maceira NO, Jacquard P, Lumaret R. 1993. Competition between diploid and derivative autotetraploid Dactylis glomerata L. from Galicia. Implications for the establishment of novel polyploid populations. New Phytologist 124: 321-328.

Morton JK. 1966. The role of polyploidy in the evolution of a tropical flora. Chromosomes Today 1: 73-76.

Neiman M, Kay AD, Krist AC. 2013. Can resource costs of polyploidy provide an advantage to sex? Heredity 110: 152-159.

Neiman N, Theisen KM, Mayry ME, Kay AD. 2009. Can phosphorus limitation contribute to the maintenance of sex? A test of a key assumption. Journal of Evolutionary Biology 22: 1359-1363.

Otto F. 1990. DAPI staining of fixed cells for high-resolution flow cytometry of nuclear DNA. In: Crissman HA, Darzynkiewicz Z, eds. Methods in Cell Biology, vol 33. New York, NY, USA: Academic Press, 105-110.

Otto SP. 2007. The evolutionary consequences of polyploidy. Cell 131: 452-462.

Otto SP, Whitton J. 2000. Polypoid incidence and evolution. Annual Reviews in Genetics 34: 401-437.

Pandit MK, Pocock MJO, Kunin WE. 2011. Ploidy influences rarity and invasiveness in plants. Journal of Ecology 99: 1108-1115.

Paradis E, Claude J, Strimmer K. 2004. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20: 289-290.

Parisod C. 2012. Polyploids integrate genomic changes and ecological shifts. New Phytologist 193: 297-300.

Penn O, Privman E, Ashkenazy H, Landan G, Graur D, et al. 2010a. GUIDANCE: a web server for assessing alignment confidence scores. Nucleic Acids Reserch 38: W23-W28.

Penn O, Privman E, Landan G, Graur D, Pupko T. 2010b. An alignment confidence score capturing robustness to guide tree uncertainty. Molecular Biology and Evolution 27: 1759-1767.

Pinheiro J, Bates D, DebRoy S, Sarkar D, R Development Core Team. 2012. nlme: Linear and nonlinear mixed effects models. R package version 3.1-104. [WWW document] URL http://cran.r-project.org/web/packages/nlme/index.html

Porder S, Vitousek PM, Chadwick OA, Chamberlain CP, Hilley GE. 2007. Uplift, erosion, and phosphorus limitation in terrestrial ecosystems. Ecosystems 10: 158-170.

R Development Core Team. 2012. R: a language and environment for statistical computing. Wien, Austria: R Foundation for Statistical Computing.

Ramsey J, Schemske DW. 1998. Pathways, mechanisms, and rates of polyploid formation in flowering plants. Annual Review of Ecology, Evolution, and Systematics 29: 467-501.

Ramsey J, Schemske DW. 2002. Neopolyploidy in flowering plants. Annual Review of Ecology, Evolution, and Systematics 33: 589-639.

Rieseberg LH, Willis JH. 2007. Plant speciation. Science 317: 910-914.

Rodriguez DJ. 1996. A model for the establishment of polyploidy in plants. American Naturalist 147: 33-46.

Schellberg J, Möseler BM, Kühbauch W, Rademacher IF. 1999. Long-term effects of fertilizer on soil nutrient concentration, yield, forage quality and floristic composition of a hay meadow in the Eifel Mountains, Germany. Grass and Forage Science 54: 195-207.

Semelová V, Hejcman M, Pavlů V, Vacek S, Podrázský V. 2008. The Grass Garden in the Giant Mts. (Czech Republic): residual effect of long-term fertilization after 62 years. Agriculture, Ecosystems & Environment 123: 337-342.

Silvertown J, Poulton P, Johnston E, Grant E, Heard M, Biss PM. 2006. The Park Grass Experiment 1856-2006: its contribution to ecology. Journal of Ecology 94: 801-814.

Šmarda P, Müller J, Vrána J, Kočí K. 2005. Ploidy level variability of some Central European fescues (Festuca subg. Festuca, Poaceae). Biologia (Bratislava) 60: 25-36.

Soltis DE, Soltis PS, Tate JA. 2003. Advances in the study of polyploidy since Plant speciation. New Phytologist 161: 173-191.

Soltis PS, Soltis DE. 2000. The role of genetic and genomic attributes in the success of polyploids. Proceedings of the National Academy of Sciences, USA 97: 7051-7057.

Stebbins GL. 1938. Cytological characteristics associated with different growth habits in dicotyledons. American Journal of Botany 25: 189-198.

Stebbins GL. 1971. Chromosomal evolution in higher plants. London, UK: Edward Arnold.

Sterner RW, Elser JJ. 2002. Ecological stoichiometry. The biology of elements from molecules to biosphere. Princeton and Oxford, UK: Princeton University Press.

Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. 2011. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution 28: 2731-2739.

Van de Peer Y, Fawcett JA, Proost S, Sterck L, Vandepoele K. 2009. The flowering world: a tale of duplications. Trends in Plant Science 14: 680-688.

Veselý P, Bureš P, Šmarda P, Pavlíček T. 2012. Genome size and DNA base composition of geophytes: the mirror of phenology and ecology? Annals of Botany 109: 65-75.

Vitousek PM, Porder S, Houlton BZ, Chadwick OA. 2010. Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen-phosphorus interactions. Ecological Applications 20: 5-15.

Wassen MJ, Venterink HO, Lapshina ED, Tanneberger F. 2005. Endangered plants persist under phosphorus limitation. Nature 437: 547-550.

Wendel JF. 2000. Genome evolution in polyploids. Plant Molecular Biology 42: 225-249.

Wisskirchen R, Haeupler H, eds. 1998. Standardliste der Farn- und Blütenpflanzen Deutschlands (mit Chromosomenatlas von Focke Albers). Stuttgart, Germany: Eugen Ulmer.

Witkowski ETF, Mitchell DT. 1987. Variation in soil phosphorus in the fynbos biome, South Africa. Journal of Ecology 75: 1159-1171.

Wood TE, Takebayashi N, Barker MS, Mayrose I, Greenspoon B, Rieseberg LH. 2009. The frequency of speciation in vascular plants. Proceedings of the National Academy of Sciences, USA 106: 13875-13879.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...