Fluorescence to measure light intensity
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
France BioImaging - ANR-10-INBS-04
Agence Nationale de la Recherche (French National Research Agency)
IPGG - ANR-10-IDEX-0001-02 PSL
Agence Nationale de la Recherche (French National Research Agency)
ANR-10-LABX-31
Agence Nationale de la Recherche (French National Research Agency)
PubMed
37996751
PubMed Central
PMC10703675
DOI
10.1038/s41592-023-02063-y
PII: 10.1038/s41592-023-02063-y
Knihovny.cz E-zdroje
- MeSH
- fluorescence MeSH
- fluorescenční barviva * chemie MeSH
- fluorescenční mikroskopie metody MeSH
- fluorescenční spektrometrie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- fluorescenční barviva * MeSH
Despite the need for quantitative measurements of light intensity across many scientific disciplines, existing technologies for measuring light dose at the sample of a fluorescence microscope cannot simultaneously retrieve light intensity along with spatial distribution over a wide range of wavelengths and intensities. To address this limitation, we developed two rapid and straightforward protocols that use organic dyes and fluorescent proteins as actinometers. The first protocol relies on molecular systems whose fluorescence intensity decays and/or rises in a monoexponential fashion when constant light is applied. The second protocol relies on a broad-absorbing photochemically inert fluorophore to back-calculate the light intensity from one wavelength to another. As a demonstration of their use, the protocols are applied to quantitatively characterize the spatial distribution of light of various fluorescence imaging systems, and to calibrate illumination of commercially available instruments and light sources.
Department of Biophysics Faculty of Science Palacký University Olomouc Czech Republic
Institute of Bio and Geosciences Plant Sciences Forschungszentrum Jülich Jülich Germany
Institute of Biology of ENS École Normale Supérieure CNRS INSERM University of PSL Paris France
Laboratory for Optics and Biosciences Ecole Polytechnique CNRS INSERM IP Paris Palaiseau France
Zobrazit více v PubMed
Cambié D, et al. Applications of continuous-flow photochemistry in organic synthesis, material science, and water treatment. Chem. Rev. 2016;116:10276–10341. PubMed
Dougherty TJ, et al. Photodynamic therapy. J. Nat. Can. Inst. 1998;90:889–905. PubMed PMC
Gautier A, et al. How to control proteins with light in living systems. Nat. Chem. Biol. 2014;10:533–541. PubMed
Ravelli D, Dondi D, Fagnoni M, Albini A. Photocatalysis. A multi-faceted concept for green chemistry. Chem. Soc. Rev. 2009;38:1999–2011. PubMed
Ariful Hoque M, Guzman I. Photocatalytic activity: experimental features to report in heterogeneous photocatalysis. Materials. 2018;11:1990. PubMed PMC
Boehm U, et al. QUAREP-LiMi: a community endeavor to advance quality assessment and reproducibility in light microscopy. Nat. Methods. 2021;18:1423–1426. PubMed PMC
Faklaris O, et al. Quality assessment in light microscopy for routine use through simple tools and robust metrics. J. Cell Biol. 2022;221:e202107093. PubMed PMC
Megerle U, Lechner R, König B, Riedle E. Laboratory apparatus for the accurate, facile and rapid determination of visible light photoreaction quantum yields. Photochem. Photobiol. Sci. 2010;9:1400–1406. PubMed
Grünwald D, Shenoy SM, Burke S, Singer RH. Calibrating excitation light fluxes for quantitative light microscopy in cell biology. Nat. Protocols. 2008;3:1809–1814. PubMed PMC
Kuhn HJ, Braslavsky SE, Schmidt R. Chemical actinometry (IUPAC Technical Report) Pure Appl. Chem. 2004;76:2105–2146.
Reinfelds M, et al. A robust, broadly absorbing fulgide derivative as a universal chemical actinometer for the UV to NIR region. Chem. Photo. Chem. 2019;3:441–449.
Roibu A, et al. An accessible visible-light actinometer for the determination of photon flux and optical pathlength in flow photo microreactors. Sci. Rep. 2018;8:5421. PubMed PMC
Valeur, B. & Berberan-Santos, M.-N. Molecular Fluorescence: Principles and Applications 2nd edn (Wiley, 2012).
Zwier JM, et al. Image calibration in fluorescence microscopy. J. Microsc. 2004;216:15–24. PubMed
Gagey N, et al. Two-photon uncaging with fluorescence reporting: evaluation of the o-hydroxycinnamic platform. J. Am. Chem. Soc. 2007;129:9986–9998. PubMed
Chouket R, et al. Extra kinetic dimensions for label discrimination. Nat. Commun. 2022;13:1482. PubMed PMC
Shpinov Y, et al. Unexpected acid-triggered formation of reversibly photoswitchable Stenhouse salts from donor-acceptor Stenhouse adducts. Chem. Eur. J. 2022;28:e202200497. PubMed
Emond M, et al. 2-Hydroxy-azobenzenes to tailor pH pulses and oscillations with light. Chem. Eur. J. 2010;16:8822–8831. PubMed
Wang PF, et al. Multichromophoric cyclodextrins. 5. Antenna-induced unimolecular photoreactions. photoisomerization of a nitrone. New J. Chem. 1996;20:895–907.
Su A, Grist S, Geldert A, Gopal A, Herr A. Quantitative UV-C dose validation with photochromic indicators for informed N95 emergency decontamination. PLoS ONE. 2021;16:e024355. PubMed PMC
Berces A, et al. Biological UV dosimeters in the assessment of the biological hazard from environmental radiation. Photochem. Photobiol. B. 1999;53:36–43. PubMed
Klan P, et al. Photoremovable protecting groups in chemistry and biology: reaction mechanisms and efficacy. Chem. Rev. 2013;113:119–191. PubMed PMC
Gagey N, Neveu P, Jullien L. Reporting two-photon uncaging with the efficient 3,5-dibromo-2,4-dihydroxycinnamic caging group. Angew. Chem. Intl. Ed. 2007;46:2467–2469. PubMed
West PR, Davis GC. The synthesis of diarylnitrones. J. Org. Chem. 1989;54:5176–5180.
Maxwell K, Johnson GN. Chlorophyll fluorescence—a practical guide. J. Exp. Bot. 2000;51:659–668. PubMed
Stiel AC, et al. 1.8 Å bright-state structure of the reversibly switchable fluorescent protein Dronpa guides the generation of fast switching variants. Biochem. J. 2007;402:35–42. PubMed PMC
Mirkovic T, et al. Light absorption and energy transfer in the antenna complexes of photosynthetic organisms. Chem. Rev. 2017;117:249–293. PubMed
Lazar D. The polyphasic chlorophyll a fluorescence rise measured under high intensity of exciting light. Funct. Plant Biol. 2006;33:9–30. PubMed
Stirbet A, Govindjee G. On the relation between the Kautsky effect (chlorophyll a fluorescence induction) and photosystem II: basics and applications of the OJIP fluorescence transient. J. Photochem. Photobiol. B: Biol. 2011;104:236–257. PubMed
Delosme R. Étude de l’induction de fluorescence des algues vertes et des chloroplastes au début d’une illumination intense. Biochim. Biophys. Act. 1967;143:108–128. PubMed
Strasser RJ, Srivastava A, Govindjee G. Polyphasic chlorophyll a fluorescence transient in plants and cyanobacteria. Photochem. Photobiol. 1995;61:32–42.
Joly D, Carpentier R. Sigmoidal reduction kinetics of the photosystem II acceptor side in intact photosynthetic materials during fluorescence induction. Photochem. Photobiol. Sci. 2009;8:167–173. PubMed
Warther D, et al. Live-cell one- and two-photon uncaging of a far-red emitting acridinone fluorophore. J. Am. Chem. Soc. 2010;132:2585–2590. PubMed
Labruère R, et al. Self-immolation for uncaging with fluorescence reporting. Angew. Chem. Int. Ed. 2012;51:9344–9347. PubMed
Icha J, Weber M, Waters JC, Norden C. Phototoxicity in live fluorescence microscopy, and how to avoid it. Bioessays. 2017;39:1700003. PubMed
Coutu DL, Schroeder T. Probing cellular processes by long-term live imaging–historic problems and current solutions. J. Cell Sci. 2013;126:3805–3815. PubMed
Piston DW, Kremers G-J. Fluorescent protein FRET: the good, the bad and the ugly. Trends Biochem. Sci. 2007;32:407–414. PubMed
Lelek M, et al. Single-molecule localization microscopy. Nat. Rev., Methods Primers. 2021;1:39. PubMed PMC
Quérard J, et al. Resonant out-of-phase fluorescence microscopy and remote imaging overcome spectral limitations. Nat. Commun. 2017;8:969. PubMed PMC
Brown CM, et al. Raster image correlation spectroscopy (RICS) for measuring fast protein dynamics and concentrations with a commercial laser scanning confocal microscope. J. Microscopy. 2008;229:78–91. PubMed PMC
Querard J, et al. Photoswitching kinetics and phase sensitive detection add discriminative dimensions for selective fluorescence imaging. Angew. Chem. Int. Ed. 2015;54:2633–2637. PubMed
Zhang R, et al. Simple imaging protocol for autofluorescence elimination and optical sectioning in fluorescence endomicroscopy. Optica. 2019;6:972–980.
Resch-Genger U, DeRose PC. Fluorescence standards: classification, terminology, and recommendations on their selection, use, and production (IUPAC Technical Report) Pure Appl. Chem. 2010;82:2315–2335.
Resch-Genger U, DeRose PC. Characterization of photoluminescence measuring systems (IUPAC Technical Report) Pure Appl. Chem. 2012;84:1815–1835.
Ross D, Gaitan M, Locascio LE. Temperature measurement in microfluidic systems using a temperature-dependent fluorescent dye. Anal. Chem. 2001;73:4117–4123. PubMed
Leaves to Measure Light Intensity