Taming the wild: resolving the gene pools of non-model Arabidopsis lineages

. 2014 Oct 27 ; 14 () : 224. [epub] 20141027

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid25344686

BACKGROUND: Wild relatives in the genus Arabidopsis are recognized as useful model systems to study traits and evolutionary processes in outcrossing species, which are often difficult or even impossible to investigate in the selfing and annual Arabidopsis thaliana. However, Arabidopsis as a genus is littered with sub-species and ecotypes which make realizing the potential of these non-model Arabidopsis lineages problematic. There are relatively few evolutionary studies which comprehensively characterize the gene pools across all of the Arabidopsis supra-groups and hypothesized evolutionary lineages and none include sampling at a world-wide scale. Here we explore the gene pools of these various taxa using various molecular markers and cytological analyses. RESULTS: Based on ITS, microsatellite, chloroplast and nuclear DNA content data we demonstrate the presence of three major evolutionary groups broadly characterized as A. lyrata group, A. halleri group and A. arenosa group. All are composed of further species and sub-species forming larger aggregates. Depending on the resolution of the marker, a few closely related taxa such as A. pedemontana, A. cebennensis and A. croatica are also clearly distinct evolutionary lineages. ITS sequences and a population-based screen based on microsatellites were highly concordant. The major gene pools identified by ITS sequences were also significantly differentiated by their homoploid nuclear DNA content estimated by flow cytometry. The chloroplast genome provided less resolution than the nuclear data, and it remains unclear whether the extensive haplotype sharing apparent between taxa results from gene flow or incomplete lineage sorting in this relatively young group of species with Pleistocene origins. CONCLUSIONS: Our study provides a comprehensive overview of the genetic variation within and among the various taxa of the genus Arabidopsis. The resolved gene pools and evolutionary lineages will set the framework for future comparative studies on genetic diversity. Extensive population-based phylogeographic studies will also be required, however, in particular for A. arenosa and their affiliated taxa and cytotypes.

Zobrazit více v PubMed

Clauss M, Koch MA. Arabidopsis and its poorly known relatives. Trends Pl Sci. 2006;11:449–459. doi: 10.1016/j.tplants.2006.07.005. PubMed DOI

Al-Shehbaz IA, O’Kane SL, Price RA. Generic placement of species excluded from Arabidopsis. Novon. 1999;9:296–307. doi: 10.2307/3391724. DOI

Al-Shehbaz IA, O’Kane SL: Taxonomy and phylogeny ofArabidopsis(Brassicaceae). In The Arabidopsis Book 2002, Volume 1. Edited by Torii K. The American Society of Plant Biologists; 2002:e0001. doi:10.1199/tab.0001. PubMed PMC

Koch M, Bishop J, Mitchell-Olds T. Molecular systematics and evolution of Arabidopsis and Arabis. Pl Biol. 1999;1:529–537. doi: 10.1111/j.1438-8677.1999.tb00779.x. DOI

Koch MA, Haubold B, Mitchell-Olds T. Comparative evolutionary analysis of chalcone synthase and alcohol dehydrogenase loci in Arabidopsis, Arabis, and related genera (Brassicaceae) Mol Biol Evol. 2000;17:1483–1498. doi: 10.1093/oxfordjournals.molbev.a026248. PubMed DOI

Koch MA, Haubold B, Mitchell-Olds T. Molecular systematics of the Brassicaceae: evidence from coding plastidic MATK and nuclear CHS sequences. Am J Bot. 2001;88:534–544. doi: 10.2307/2657117. PubMed DOI

Karl R, Koch MA. A world-wide perspective on crucifer speciation and evolution: phylogeny, biogeography and trait evolution in tribe Arabideae. Ann Bot. 2013;112:983–1001. doi: 10.1093/aob/mct165. PubMed DOI PMC

O’Kane SL, Al-Shehbaz IA. A synopsis of Arabidopsis (Brassicaceae) Novon. 1997;7:323–327. doi: 10.2307/3391949. DOI

O’Kane SL, Al-Shehbaz IA. Phylogenetic position and generic limits of Arabidopsis (Brassicaceae) based on sequences of nuclear ribosomal DNA. Ann Missouri Bot Gard. 2003;90:603–612. doi: 10.2307/3298545. DOI

Warwick SI, Al-Shehbaz IA, Sauder CA. Phylogenetic position of Arabis arenicola and generic limits of Aphragmus and Eutrema (Brassicaceae) based on sequences of nuclear ribosomal DNA. Can J Bot. 2006;84:269–281. doi: 10.1139/b05-161. DOI

Kadota Y. Arabidopsis umezawana (Brassicaceae), a new species from Mt. Rishirizan, Rishiri Island, Hokkaido, Northern Japan. J Jpn Bot. 2007;82:232–237.

Dorofeyev VI. Cruciferae of European Russia. Turczaninowia. 2002;5:5–114.

Marhold K, Perný M, Kolník M. Miscellaneous validations in Cruciferae and Crassulaceae. Willdenowia. 2003;33:69–70.

Shimizu KK, Fujii S, Marhold K, Watanabe K, Kudoh H. Arabidopsis kamchatica (Fisch. ex DC.) K. Shimizu & Kudoh and A. kamchatica subsp. kawasakiana (Makino) K. Shimizu & Kudoh, new combinations. Acta Phytotax Geobot. 2005;56:163–172.

Kolnik M, Marhold K. Distribution, chromosome numbers and nomenclature conspect of Arabidopsis halleri (Brassicaceae) in theCarpathians. Biologia (Bratislava) 2006;61:41–50. doi: 10.2478/s11756-006-0007-y. DOI

Iljinska A, Didukh Y, Burda R, Korotschenko I. Ecoflora of Ukraine. Kyiv: Phytosociocentre Press; 2007.

Elven DR, Murray J. New combinations in the Panarctic vascular plant flora. J Bot Res Inst Texas. 2008;2:433–438.

Koch MA, Wernisch M, Schmickl R. Arabidopsis thaliana’s wild relatives: an updated overview on systematics, taxonomy and evolution. Taxon. 2008;57:933–943.

Schmickl R, Paule J, Klein J, Marhold K, Koch MA. The evolutionary history of the Arabidopsis arenosa species complex: Highly diverse tetraploids mask that the Western Carpathians are the center of species and genetic diversity. PLoS One. 2012;7:e42691. doi: 10.1371/journal.pone.0042691. PubMed DOI PMC

Koch MA, Kiefer M, German D, Al-Shehbaz IA, Franzke A, Mummenhoff K. BrassiBase: tools and biological resources to study characters and traits in the Brassicaceae – version 1.1. TAXON. 2012;61:1001–1009.

Koch MA, German D. Taxonomy and systematics are key to biological information: Arabidopsis, Eutrema (Thellungiella), Noccaea and Schrenkiella (Brassicaceae) as examples. Frontiers Pl Science. 2013;4:e267. PubMed PMC

Koch MA, Matschinger M. Evolution and genetic differentiation among relatives of Arabidopsis thaliana. Proc Natl Acad Sci U S A. 2007;104:6272–6277. doi: 10.1073/pnas.0701338104. PubMed DOI PMC

Castric V, Bechsgaard J, Schierup MH, Vekemans X. Repeated adaptive introgression at a gene under multiallelic balancing selection. PLoS Genet. 2008;4:e1000168. doi: 10.1371/journal.pgen.1000168. PubMed DOI PMC

Säll T, Jakobsson M, Lind-Halldén C, Halldén C. Chloroplast DNA indicates a single origin of the allotetraploid Arabidopsis suecica. J Evol Biol. 2003;16:1019–1029. doi: 10.1046/j.1420-9101.2003.00554.x. PubMed DOI

Jakobsson M, Hagenblad J, Tavaré S, Säll T, Halldén C, Lind-Halldén C, Nordborg M. A unique recent origin of the allotetraploid species Arabidopsis suecica: evidence from nuclear DNA markers. Mol Biol Evol. 2006;23:1217–1231. doi: 10.1093/molbev/msk006. PubMed DOI

Schmickl R, Jørgensen MH, Brysting AK, Koch MA. Phylogeographic implications for the North American boreal-arctic Arabidopsis lyrata complex. Plant Ecol Div. 2008;1:245–254. doi: 10.1080/17550870802349138. DOI

Schmickl R, Jorgenson M, Brysting A, Koch MA. The evolutionary history of the Arabidopsis lyrata complex: a hybrid in the amphi-Beringian area closes a large distribution gap and builds up a genetic barrier. BMC Evol Biol. 2010;10:e98. doi: 10.1186/1471-2148-10-98. PubMed DOI PMC

Shimizu-Inatsugi R, Lihová J, Iwanaga H, Kudoh H, Marhold K, Savolainen O, Watanabe K, Yakubov VV, Shimizu KK. The allopolyploid Arabidopsis kamchatica originated from multiple individuals of Arabidopsis lyrata and Arabidopsis halleri. Mol Ecol. 2009;18:4024–4048. doi: 10.1111/j.1365-294X.2009.04329.x. PubMed DOI

Schmickl R, Koch MA. Arabidopsis hybrid speciation processes. Proc Natl Acad Sci U S A. 2011;108:14192–14197. doi: 10.1073/pnas.1104212108. PubMed DOI PMC

Pauwels M, Saumitou-Laprade P, Holl AC, Petit D, Bonnin I. Multiple origin of metallicolous populations of the pseudometallophyte Arabidopsis halleri (Brassicaceae) in Central Europe: the cpDNA testimony. Molec Ecol. 2005;14:4403–4414. doi: 10.1111/j.1365-294X.2005.02739.x. PubMed DOI

Pauwels M, Vekemans X, Godé C, Frérot H, Castric V, Saimitou-Laprade P. Nuclear and chloroplast DNA phy logeography reveals vicariance among European popula tions of the model species for the study of metal tolerance, Arabidopsis halleri (Brassicaceae) New Phytol. 2012;193:916–928. doi: 10.1111/j.1469-8137.2011.04003.x. PubMed DOI

Tedder A, Hoebe PN, Ansell SK, Mable BK. Using chloroplast genes for phylogeography in Arabidopsis lyrata. Diversity. 2010;2:653–678. doi: 10.3390/d2040653. DOI

Hoebe PN, Stift M, Tedder A, Mable BK. Multiple losses of self-incompatibility in North-American Arabidopsis lyrata? Phylogeographic context and population genetic consequences. Mol Ecol. 2009;18:4294–4939. doi: 10.1111/j.1365-294X.2009.04400.x. PubMed DOI

Clauss M, Mitchell-Olds T. Population genetic structure of Arabidopsis lyrata in Europe. Mol Ecol. 2006;15:2753–2766. doi: 10.1111/j.1365-294X.2006.02973.x. PubMed DOI

Kuittinen H, Niittyvuopio A, Rinne P, Savolainen O. Natural variation in Arabidopsis lyrata vernalization requirement conferred by a FRIGIDA indel polymorphism. Mol Biol Evol. 2008;25:319–329. doi: 10.1093/molbev/msm257. PubMed DOI

Muller MH, Leppälä J, Savolainen O. Genome-wide effects of postglacial colonization in Arabidopsis lyrata. Heredity. 2008;100:47–58. doi: 10.1038/sj.hdy.6801057. PubMed DOI

Riihimäki M, Podolsky R, Kuittinen H, Koelewijn H, Savolainen O. Studying genetics of adaptive variation in model organisms: flowering time variation in Arabidopsis lyrata. Genetica. 2005;123:63–74. doi: 10.1007/s10709-003-2711-7. PubMed DOI

Leinonen PH, Sandring S, Quilot B, Clauss MJ, Mitchell-Olds T, Agren J, Savolainen O. Local adaptation in European populations of Arabidopsis lyrata (Brassicaceae) Am J Bot. 2009;96:1129–1137. doi: 10.3732/ajb.0800080. PubMed DOI

Turner TL, Von Wettberg EJ, Nuzhdin SV. Genomic analysis of differentiation between soil types reveals candidate genes for local adaptation in Arabidopsis lyrata. PLoS One. 2008;3:e3183. doi: 10.1371/journal.pone.0003183. PubMed DOI PMC

Savolainen O, Kuittinen H: Arabidopsis lyratagenetics. In Genetics and Genomics of the Brassicaceae. Edited by Bancroft I, Schmidt R. New York: Springer Verlag; 2011:347–372.

Comai L, Tyagi AP, Winter K, Holmes-Davis R, Reynolds SH, Stevens Y, Byers B. Phenotypic instability and rapid gene silencing in newly formed Arabidopsis allotetraploids. Plant Cell. 2000;12:1551–1568. doi: 10.1105/tpc.12.9.1551. PubMed DOI PMC

Madlung A, Tyagi AP, Watson B, Jiang H, Kagochi T, Doerge RW, Martienssen R, Comai L. Genomic changes in synthetic Arabidopsis polyploids. Plant J. 2005;41:221–230. doi: 10.1111/j.1365-313X.2004.02297.x. PubMed DOI

Hollister J, Arnold B, Svedin E, Xue K, Dilkes B, Bomblies K. Genetic adaptation associated with genome-doubling in autotetraploid Arabidopsis arenosa. PLoS Genet. 2012;8:e1003093. doi: 10.1371/journal.pgen.1003093. PubMed DOI PMC

Yant L, Hollister JD, Wright KM, Arnold BJ, Higgins JD, Franklin FCH, Bomblies K. Meiotic adaptation to genome duplication in Arabidopsis arenosa. Curr Biol. 2013;23:2151–2156. doi: 10.1016/j.cub.2013.08.059. PubMed DOI PMC

Hunter B, Bomblies K: Progress and promise in usingArabidopsisto study adaptation, divergence and speciation. In The Arabidopsis Book 2010, Volume 8. Edited by Torii K. Rockville, MD: American Society of Plant Biologists; 2010:e0138. PubMed PMC

Hu TT, Pattyn P, Bakker EG, Cao J, Cheng JF, Clark RM, Fahlgren N, Fawcett JA, Grimwood J, Gundlach H, Haberer G, Hollister JD, Ossowski S, Ottilar RP, Salamov AA, Schneeberger K, Spannagl M, Wang X, Nasrallah ME, Bergelson J, Carrington JC, Gaut BS, Schmutz J, Mayer KFX, Van de Peer Y, Grigoriev IV, Nordborg M, Weigel D, Guo YL. The Arabidopsis lyrata genome sequence and the basis of rapid genome size change. Nat Genet. 2011;43:476–481. doi: 10.1038/ng.807. PubMed DOI PMC

Koch M, Dobes C, Mitchell-Olds T. Multiple hybrid formation in natural populations: concerted evolution of the internal transcribed spacer of nuclear ribosomal DNA (ITS) in North American Arabis divaricarpa (Brassicaceae) Mol Biol Evol. 2003;20:338–350. doi: 10.1093/molbev/msg046. PubMed DOI

Jorgensen MH, Ehrich D, Schmickl R, Koch MA, Brysting A. Interspecific and interploidal gene flow in Central European Arabidopsis (Brassicaceae) BMC Evol Biol. 2011;11:e346. doi: 10.1186/1471-2148-11-346. PubMed DOI PMC

Ross-Ibarra J, Wright SI, Foxe JP, Kawabe A, DeRose-Wilson L, Gos G, Charlesworth D, Gaut BS. Patterns of polymorphism and demographic history in natural populations of Arabidopsis lyrata. PLoS One. 2008;3:e2411. doi: 10.1371/journal.pone.0002411. PubMed DOI PMC

Mable BK, Schierup MH, Charlesworth D. Estimating the number, frequency, and dominance of S-alleles in a natural population of Arabidopsis lyrata (Brassicaceae) with sporophytic control of self-incompatibility. Heredity. 2003;90:422–431. doi: 10.1038/sj.hdy.6800261. PubMed DOI

Mable BK, Robertson AV, Dart S, DiBerardo C, Witham L. Breakdown of self-incompatibility in the perennial Arabidopsis lyrata (Brassicaceae) and its genetic consequences. Evolution. 2005;59:1437–1448. doi: 10.1111/j.0014-3820.2005.tb01794.x. PubMed DOI

Roux C, Pauwels M, Ruggiero MV, Charlesworth D, Castric V, Vekemans X. Recent and ancient signature of balancing selection around the S-locus in Arabidopsis halleri and Arabidopsis lyrata. Mol Biol Evol. 2013;30:435–447. doi: 10.1093/molbev/mss246. PubMed DOI PMC

Měsíček J. Chromosome counts in Cardaminopsis arenosa agg. (Cruciferae) Preslia. 1970;42:225–248.

Tsuchimatsu T, Kaiser P, Yew CL, Bachelier JB, Shimizu KK. Recent loss of self-incompatibility by degradation of the male component in allotetraploid Arabidopsis kamchatica. PLoS Genet. 2012;8:e1002838. doi: 10.1371/journal.pgen.1002838. PubMed DOI PMC

Koch M, Mummenhoff K, Hurka H. Systematics and evolutionary history of heavy metal tolerant Thlaspi caerulescens in Western Europe: evidence from genetic studies based on isozyme analysis. Biochem Syst Ecol. 1998;26:823–838. doi: 10.1016/S0305-1978(98)00057-X. DOI

Roux C, Castric V, Pauwels M, Wright SI, Saumitou-Laprade P, Vekemans X. Does speciation between Arabidopsis halleri and Arabidopsis lyrata coincide with major changes in a molecular target of adaptation? PLoS One. 2011;6:e26872. doi: 10.1371/journal.pone.0026872. PubMed DOI PMC

Hayek A: Flora von Steiermark. Berlin: Verlag von Gebrüder Bornträger; 1908–1914

Měsíček J. Cardaminopsis. In: Marhold K, Hindák F, editors. Zoznam nižších a vyšších rastlín Slovenska – Checklist of non-vascular and vascular plants of Slovakia. Bratislava: VEDA; 1998. pp. 395–396.

Kolník M. Arabidopsis. In: Marhold K, Mártonfi P, Mereda P Jr, Mráz P, editors. Chromosome number Survey of The Ferns and Flowering Plants of Slovakia. Bratislava: VEDA; 2012. pp. 94–102.

Jakobsson M, Hagenblad J, Tavaré S, Säll T, Halldén C, Lind-Halldén C, Nordborg M. A unique recent origin of the allotetraploid species Arabidopsis suecica: evidence from nuclear DNA markers. Molec Biol Evol. 2006;23:1217–1231. doi: 10.1093/molbev/msk006. PubMed DOI

Schmuths H, Meister A, Horres R, Bachmann K. Genome size variation among accessions of Arabidopsis thaliana. Ann Bot. 2004;93:317–321. doi: 10.1093/aob/mch037. PubMed DOI PMC

Johnston SP, Pepper AE, Hall AE, Chen ZF, Hodnett G, Drabek J, Lopez R, Price HJ. Evolution of genome size in Brassicaceae. Ann Bot. 2005;95:229–235. doi: 10.1093/aob/mci016. PubMed DOI PMC

Lysak MA, Koch MA, Leitch IJ, Beaulieau JM, Meister A. The dynamic ups and downs of genome size evolution in Brassicaceae. Mol Biol Evol. 2009;26:85–98. doi: 10.1093/molbev/msn223. PubMed DOI

Wolf DE, Steets JA, Houliston GJ, Takebayashi N: Genome size variation and evolution in a allotetraploidArabidopsis kamchaticaand its parents,Arabidopsis lyrataandArabidopsis halleri.AoB PLANTS 2014, 6: doi:10.1093/aobpla/plu025. PubMed PMC

Dart S, Kron P, Mable BK. Characterizing polyploidy in Arabidopsis lyrata using chromosome counts and flow cytometry. Canad J Bot. 2004;82:185–197. doi: 10.1139/b03-134. DOI

Jørgensen MH, Ehrich D, Schmickl R, Koch MA, Brysting AK. Interspecific and interploidal gene flow in central european Arabidopsis (Brassicaceae) BMC Evol Biol. 2011;11:e346. doi: 10.1186/1471-2148-11-346. PubMed DOI PMC

Al-Shebaz IA. Flora of North America. Oxford: Oxford University Press; 2010. Arabidopsis; pp. 447–449.

Doyle JJ, Doyle JL. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull. 1987;19:11–15.

Dobeš CH, Mitchell-Olds T, Koch MA. Extensive chloroplast haplotype variation indicates Pleistocene hybridization and radiation of North American Arabis drummondii, A. x divaricarpa, and A. holboellii (Brassicaceae) Mol Ecol. 2004;13:349–370. doi: 10.1046/j.1365-294X.2003.02064.x. PubMed DOI

Dobes C, Mitchell-Olds T, Koch M. Intraspecific diversification in North American Arabis drummondii, A. ×divaricarpa, and A. holboellii (Brassicaceae) inferred from nuclear and chloroplast molecular markers – an integrative approach. Am J Bot. 2004;91:2087–2101. doi: 10.3732/ajb.91.12.2087. PubMed DOI

Clauss MJ, Cobban H, Mitchell-Olds T. Cross-species microsatellite markers for elucidating population genetic structure in Arabidopsis and Arabis (Brassicaeae) Mol Ecol. 2002;11:591–601. doi: 10.1046/j.0962-1083.2002.01465.x. PubMed DOI

Doležel J, Greilhuber J, Suda J. Estimation of nuclear DNA content in plants using flow cytometry. Nat Protoc. 2007;2:2233–2244. doi: 10.1038/nprot.2007.310. PubMed DOI

Temsch EM, Greilhuber J, Krisai R. Genome size in liverworts. Preslia. 2010;82:63–80.

Doležel J, Bartoš J. Plant DNA flow cytometry and estimation of nuclear genome size. Ann Bot. 2005;95:99–110. doi: 10.1093/aob/mci005. PubMed DOI PMC

R Development Core Team . R: A language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing; 2013.

Dolezel J, Sgorbati S, Lucretti S. Comparison of three fluorochromes for flow cytometric estimation of nuclear DNA content in plants. Physiol Plantarum. 1992;85:625–631. doi: 10.1111/j.1399-3054.1992.tb04764.x. DOI

Kiefer M, Schmickl R, German D, Lysak M, Al-Shehbaz IA, Franzke A, Mummenhoff K, Stamatakis A, Koch MA. BrassiBase: introduction to a novel knowledge database on Brassicaceae evolution. Plant Cell Physiol. 2014;55:e3. doi: 10.1093/pcp/pct158. PubMed DOI

Koch MA, Dobeš C, Matschinger M, Bleeker W, Vogel J, Kiefer M, Mitchell-Olds T. Evolution of the trnF(GAA) gene in Arabidopsis relatives and the Brassicaceae family: monophyletic origin and subsequent diversification of a plastidic pseudogene. Mol Biol Evol. 2005;22:1032–1043. doi: 10.1093/molbev/msi092. PubMed DOI

Dobeš C, Kiefer C, Kiefer M, Koch MA. Plastidic trnFUUC pseudogenes in North American genus Boechera (Brassicaceae): mechanistic aspects of evolution. Plant Biol. 2007;9:502–515. doi: 10.1055/s-2006-955978. PubMed DOI

Koch MA, Dobeš C, Kiefer C, Schmickl R, Klimeš L, Lysak MA. Supernetwork identifies multiple events of plastid trnF(GAA) pseudogene evolution in the Brassicaceae. Mol Biol Evol. 2007;24:63–73. doi: 10.1093/molbev/msl130. PubMed DOI

Schmickl R, Kiefer C, Dobeš C, Koch MA: Evolution oftrnF(GAA) pseudogenes in cruciferous plants.Plant Syst Evol 2008, [doi:10.1007/s00606-008-0030-2]

Müller K, Quandt D, Müller J, Neinhuis C. PhyDE, Version 0.92: Phylogenetic Data Editor. 2005.

Clement M, Posada D, Crandall KA. TCS: a computer program to estimate gene genealogies. Mol Ecol. 2000;9:1657–1659. doi: 10.1046/j.1365-294x.2000.01020.x. PubMed DOI

Templeton AR, Crandall KA, Sing CF. A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping and DNA sequence data. III. Cladogram estimation. Genetics. 1992;132:619–633. PubMed PMC

Stamatakis A: RAxML Version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies.Bioinformatics 2014, doi:10.1093/bioinformatics/btu033. PubMed PMC

Swofford DL. PAUP*: Phylogenetic Analysis Using Parsimony (*and other methods), Version 4. Sunderland, MA: Sinauer Associates; 2002.

Huson DH, Bryant D. Application of phylogenetic networks in evolutionary studies. Mol Biol Evol. 2006;23:254–267. doi: 10.1093/molbev/msj030. PubMed DOI

Excoffier L, Lischer HEL. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Eco Res. 2010;10:564–567. doi: 10.1111/j.1755-0998.2010.02847.x. PubMed DOI

Nei M. Molecular Evolutionary Genetics. New York: Columbia University Press; 1987.

Pritchard JK, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics. 2000;155:945–959. PubMed PMC

Hubisz M, Falush D, Stephens M, Pritchard JK. Inferring weak population structure with the assistance of sample group information. Molec Ecol Res. 2009;9:1322–1332. doi: 10.1111/j.1755-0998.2009.02591.x. PubMed DOI PMC

Ehrich D. AFLPdat: a collection of R functions for convenient handling of AFLP data. Mol Ecol Notes. 2006;6:603–604. doi: 10.1111/j.1471-8286.2006.01380.x. DOI

Rosenberg NA, Pritchard JK, Weber JL, Cann HM, Kidd KK, Zhivotovsky LA, Feldman MW. Genetic structure of human populations. Science. 2002;298:2381–2385. doi: 10.1126/science.1078311. PubMed DOI

Evanno G, Regnaut S, Goudet J. Detecting the number of clusters of individuals using the software structure: a simulation study. Mol Ecol. 2005;14:2611–2620. doi: 10.1111/j.1365-294X.2005.02553.x. PubMed DOI

Earl DA, vonHoldt BM. Structure harvester: a website and program for visualizing structure output and implementing the Evanno method. Cons Genet Res. 2012;4:359–361. doi: 10.1007/s12686-011-9548-7. DOI

Jakobsson M, Rosenberg NA. CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics. 2007;23:1801–1806. doi: 10.1093/bioinformatics/btm233. PubMed DOI

Rosenberg NA. Documentation for Distruct Software: Version 1.1. Michigan: University of Michigan; 2007.

Mable BK, Beland J, Di Berardo C. Inheritance and dominance of self-incompatibility alleles in polyploid Arabidopsis lyrata. Heredity. 2004;93:476–486. doi: 10.1038/sj.hdy.6800526. PubMed DOI

Säll T, Lind-Halldén C, Jakobsson M, Halldén C. Mode of reproduction in Arabidopsis suecica. Hereditas. 2004;141:313–317. doi: 10.1111/j.1601-5223.2004.01833.x. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace