The cell wall polysaccharides of a photosynthetic relative of apicomplexans, Chromera velia
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
34491587
PubMed Central
PMC9293442
DOI
10.1111/jpy.13211
Knihovny.cz E-zdroje
- Klíčová slova
- Chromera velia, Alveolata, calcofluor white, cell wall, cellulose, chromerids, monosaccharide linkage analysis,
- MeSH
- Alveolata * MeSH
- buněčná stěna MeSH
- fotosyntéza MeSH
- fylogeneze MeSH
- polysacharidy MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- polysacharidy MeSH
Chromerids are a group of alveolates, found in corals, that show peculiar morphological and genomic features. These organisms are evolutionary placed in-between symbiotic dinoflagellates and parasitic apicomplexans. There are two known species of chromerids: Chromera velia and Vitrella brassicaformis. Here, the biochemical composition of the C. velia cell wall was analyzed. Several polysaccharides adorn this structure, with glucose being the most abundant monosaccharide (approx. 80%) and predominantly 4-linked (approx. 60%), suggesting that the chromerids cell wall is mostly cellulosic. The presence of cellulose was cytochemically confirmed with calcofluor white staining of the algal cell. The remaining wall polysaccharides, assuming structures are similar to those of higher plants, are indicative of a mixture of galactans, xyloglucans, heteroxylans, and heteromannans. The present work provides, for the first time, insights into the outermost layers of the photosynthetic alveolate C. velia.
CSIRO Agriculture and Food Canberra 2601 Australian Capital Territory Australia
Faculty of Science University of South Bohemia 37005 České Budějovice Czech Republic
School of Biosciences The University of Melbourne Parkville 3010 Victoria Australia
Zobrazit více v PubMed
Cavalier‐Smith, T. 2018. Kingdom Chromista and its eight phyla: a new synthesis emphasising periplastid protein targeting, cyto‐skeletal and periplastid evolution, and ancient divergences. Protoplasma 255:297–357. PubMed PMC
Flegontov, P. , Michálek, J. , Janouškovec, J. , Lai, D. H. , Jirků, M. , Hajdušková, E. , Tomčala, A. et al. 2015. Divergent mitochondrial respiratory chains in phototrophic relatives of apicomplexan parasites. Mol. Biol. Evol. 32:1115–31. PubMed
Fritz, L. & Triemer, R. E. 1985. A rapid simple technique utilizing calcofluor white M2R for the visualization of dinoflagellate thecal plates. J. Phycol. 21:662–4.
Gould, S. B. , Tham, W. H. , Cowman, A. F. , McFadden, G. I. & Waller, R. F. 2008. Alveolins, a new family of cortical proteins that define the protist infrakingdom Alveolata. Mol. Biol. Evol. 25:1219–30. PubMed
Janouškovec, J. , Horák, A. , Oborník, M. , Lukeš, J. & Keeling, P. J. 2010. A common red algal origin of the apicomplexan, dinoflagellate, and heterokont plastids. Proc. Natl. Acad. Sci. USA 107:10949–54. PubMed PMC
Mathur, V. , Del Campo, J. , Kolisko, M. & Keeling, P. J. 2018. Global diversity and distribution of close relatives of apicomplexan parasites. Environ. Microbiol. 20:2824–33. PubMed
McFadden, G. I. & Waller, R. F. 1997. Plastids in parasites of humans. BioEssays 19:1033–40. PubMed
Moore, R. B. , Oborník, M. , Janouškovec, J. , Chrudimský, T. , Vancová, M. , Green, D. H. , Wright, S. W. et al. 2008. A photosynthetic alveolate closely related to apicomplexan parasites. Nature 451:959–63. PubMed
Oborník, M. , Kručinská, J. & Esson, H. 2016. Life cycles of chromerids resemble those of colpodellids and apicomplexan parasites. Perspect. Phycol. 3:21–7.
Oborník, M. & Lukeš, J. 2013. Cell biology of chromerids: autotrophic relatives to apicomplexan parasites. Int. Rev. Cell Mol. Biol. 306:333–69. PubMed
Oborník, M. , Modrý, D. , Lukeš, M. , Černotíková‐Stříbrná, E. , Cihlář, J. , Tesařová, M. , Kotabová, E. , Vancová, M. , Prášil, O. & Lukeš, J. 2012. Morphology, ultrastructure and life cycle of Vitrella brassicaformis n. sp., n. gen., a novel chromerid from the Great Barrier Reef. Protist 163:306–23. PubMed
Oborník, M. , Vancová, M. , Lai, D. H. , Janouškovec, J. , Keeling, P. J. & Lukeš, J. 2011. Morphology and ultrastructure of multiple life cycle stages of the photosynthetic relative of apicomplexa, Chromera velia . Protist 162:115–30. PubMed
Okamoto, N. & McFadden, G. I. 2008. The mother of all parasites. Future Microbiol. 3:391–5.
Pettolino, F. A. , Walsh, C. , Fincher, G. B. & Bacic, A. 2012. Determining the polysaccharide composition of plant cell walls. Nat. Protoc. 7:1590–607. PubMed
Popper, Z. A. , Michel, G. , Hervé, C. , Domozych, D. S. , Willats, W. G. , Tuohy, M. G. , Kloareg, B. & Stengel, D. B. 2011. Evolution and diversity of plant cell walls: from algae to flowering plants. Annu. Rev. Plant Biol. 62:567–90. PubMed
Synytsya, A. , Čopíková, J. , Kim, W. J. & Park, Y. I. 2015. Cell wall polysaccharides of marine algae. In Kim, S. K. [Ed.] Springer Handbook of Marine Biotechnology. New York, NY: Springer, pp. 543–90.
Weatherby, K. & Carter, D. 2013. Chromera velia: the missing link in the evolution of parasitism. Adv. Appl. Microbiol. 85:119–44. PubMed
Woo, Y. H. , Ansari, H. , Otto, T. D. , Klinger, C. M. , Kolisko, M. , Michálek, J. , Saxena, A. et al. 2015. Chromerid genomes reveal the evolutionary path from photosynthetic algae to obligate intracellular parasites. eLife 4:e06974. PubMed PMC