Sequencing of the genus Arabidopsis identifies a complex history of nonbifurcating speciation and abundant trans-specific polymorphism
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
W 1225
Austrian Science Fund FWF - Austria
PubMed
27428747
DOI
10.1038/ng.3617
PII: ng.3617
Knihovny.cz E-zdroje
- MeSH
- Arabidopsis klasifikace genetika MeSH
- polymorfismus genetický genetika MeSH
- rostlinné geny genetika MeSH
- tok genů genetika MeSH
- vznik druhů (genetika) * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The notion of species as reproductively isolated units related through a bifurcating tree implies that gene trees should generally agree with the species tree and that sister taxa should not share polymorphisms unless they diverged recently and should be equally closely related to outgroups. It is now possible to evaluate this model systematically. We sequenced multiple individuals from 27 described taxa representing the entire Arabidopsis genus. Cluster analysis identified seven groups, corresponding to described species that capture the structure of the genus. However, at the level of gene trees, only the separation of Arabidopsis thaliana from the remaining species was universally supported, and, overall, the amount of shared polymorphism demonstrated that reproductive isolation was considerably more recent than the estimated divergence times. We uncovered multiple cases of past gene flow that contradict a bifurcating species tree. Finally, we showed that the pattern of divergence differs between gene ontologies, suggesting a role for selection.
Centre for Organismal Studies Heidelberg University of Heidelberg Heidelberg Germany
Department of Biology Lund University Lund Sweden
Department of Botany Faculty of Science Charles University Prague Czech Republic
Department of Evolutionary Biology and Environmental Studies University of Zurich Zurich Switzerland
Department of Plant Physiology Ruhr Universität Bochum Bochum Germany
Gregor Mendel Institute Austrian Academy of Sciences Vienna Biocenter Vienna Austria
Institut für Populationsgenetik Vetmeduni Vienna Austria
Institute of Biology Karelian Research Center of the Russian Academy of Sciences Petrozavodsk Russia
Institute of Botany Slovak Academy of Sciences Bratislava Slovakia
Institute of Integrative Biology ETH Zurich Zurich Switzerland
Max Planck Institute for Developmental Biology Tübingen Germany
Zobrazit více v PubMed
Plant J. 2008 Sep;55(5):869-80 PubMed
Genetics. 1989 Nov;123(3):585-95 PubMed
Mol Biol Evol. 2000 Apr;17(4):540-52 PubMed
BMC Bioinformatics. 2014 Nov 25;15:356 PubMed
BMC Evol Biol. 2014 Apr 17;14:82 PubMed
Annu Rev Plant Biol. 2010;61:517-34 PubMed
Nucleic Acids Res. 2014 Apr;42(6):e46 PubMed
Plant Cell. 2015 Oct;27(10):2770-84 PubMed
New Phytol. 2009 Mar;181(4):759-76 PubMed
Nature. 2015 Feb 19;518(7539):371-5 PubMed
BMC Evol Biol. 2014 Oct 27;14:224 PubMed
Genome Res. 2013 Nov;23(11):1817-28 PubMed
Mol Biol Evol. 2013 Apr;30(4):772-80 PubMed
Bioinformatics. 2012 Aug 1;28(15):2084-5 PubMed
Proc Natl Acad Sci U S A. 2011 Aug 23;108(34):14192-7 PubMed
Am J Hum Genet. 2011 Oct 7;89(4):516-28 PubMed
Mol Biol Evol. 2012 Jun;29(6):1695-701 PubMed
Mol Ecol Resour. 2010 Jul;10(4):723-7 PubMed
Bioinformatics. 2010 Jun 15;26(12):1569-71 PubMed
Mol Ecol. 2014 Mar;23(5):1040-52 PubMed
Mol Biol Evol. 2006 Sep;23(9):1741-50 PubMed
Am J Bot. 2014 May;101(5):737-53 PubMed
Genome Res. 2010 Sep;20(9):1297-303 PubMed
Genome Res. 2012 Aug;22(8):1499-511 PubMed
Genetics. 1998 Mar;148(3):1325-32 PubMed
Science. 2010 May 7;328(5979):710-22 PubMed
Cell. 2016 Jul 14;166(2):481-91 PubMed
Bioinformatics. 2009 Aug 15;25(16):2078-9 PubMed
PLoS Biol. 2006 May;4(5):e88 PubMed
Mol Biol Evol. 2012 Aug;29(8):1969-73 PubMed
PLoS Genet. 2009 Oct;5(10):e1000695 PubMed
Genome Res. 2010 Mar;20(3):291-300 PubMed
Plant Cell. 2007 Apr;19(4):1388-402 PubMed
Nat Genet. 2013 Aug;45(8):884-90 PubMed
PLoS Biol. 2015 Aug 18;13(8):e1002224 PubMed
Genetics. 2013 Jun;194(2):459-71 PubMed
Bioinformatics. 2014 May 1;30(9):1312-3 PubMed
PLoS Genet. 2013;9(9):e1003754 PubMed
Mol Ecol. 2009 Oct;18(19):4024-48 PubMed
PLoS Biol. 2016 Feb 12;14(2):e1002379 PubMed
Nat Genet. 2011 May;43(5):491-8 PubMed
Proc Natl Acad Sci U S A. 1990 Dec;87(24):9732-5 PubMed
Proc Natl Acad Sci U S A. 2010 May 18;107(20):9452-7 PubMed
J Med Primatol. 1993 Jan;22(1):57-64 PubMed
Bioessays. 2016 Feb;38(2):140-9 PubMed
Proc Natl Acad Sci U S A. 2014 Dec 30;111(52):18655-60 PubMed
PLoS Biol. 2005 Jul;3(7):e196 PubMed
Mol Biol Evol. 2010 Dec;27(12):2804-16 PubMed
Plant Physiol. 2009 Jun;150(2):996-1005 PubMed
Fly (Austin). 2012 Apr-Jun;6(2):80-92 PubMed
Proc Natl Acad Sci U S A. 2009 Mar 31;106(13):5235-40 PubMed
Nat Genet. 2011 May;43(5):476-81 PubMed
Genetics. 2000 Feb;154(2):923-9 PubMed
Genetics. 2007 May;176(1):659-74 PubMed
Bioinformatics. 2009 Jul 15;25(14):1754-60 PubMed
Nat Rev Genet. 2002 May;3(5):380-90 PubMed
Genome Res. 2009 Sep;19(9):1655-64 PubMed
Mol Biol Evol. 2011 Aug;28(8):2239-52 PubMed
Science. 2015 Jan 2;347(6217):1258524 PubMed
Mol Biol Evol. 2008 Oct;25(10):2241-6 PubMed
Bioinformatics. 2004 Jan 22;20(2):289-90 PubMed
Science. 2013 Mar 29;339(6127):1578-82 PubMed
J Theor Biol. 2009 Nov 7;261(1):58-66 PubMed
Nature. 2013 Mar 14;495(7440):193-8 PubMed
Plant Physiol. 2011 Oct;157(2):757-69 PubMed
Genetics. 2004 Dec;168(4):2363-72 PubMed
Nat Genet. 2011 Aug 28;43(10):956-63 PubMed
Cycles of satellite and transposon evolution in Arabidopsis centromeres
Rapid large-scale genomic introgression in Arabidopsis suecica via an autoallohexaploid bridge
Gradual evolution of allopolyploidy in Arabidopsis suecica
Genomic basis of parallel adaptation varies with divergence in Arabidopsis and its relatives
Interspecific introgression mediates adaptation to whole genome duplication
STRUCTURE is more robust than other clustering methods in simulated mixed-ploidy populations