Rapid large-scale genomic introgression in Arabidopsis suecica via an autoallohexaploid bridge

. 2023 Feb 09 ; 223 (2) : .

Jazyk angličtina Země Spojené státy americké Médium print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid36124968

Gene flow between species in the genus Arabidopsis occurs in significant amounts, but how exactly gene flow is achieved is not well understood. Polyploidization may be one avenue to explain gene flow between species. One problem, however, with polyploidization as a satisfying explanation is the occurrence of lethal genomic instabilities in neopolyploids as a result of genomic exchange, erratic meiotic behavior, and genomic shock. We have created an autoallohexaploid by pollinating naturally co-occurring diploid Arabidopsis thaliana with allotetraploid Arabidopsis suecica (an allotetraploid composed of A. thaliana and Arabidopsis arenosa). Its triploid offspring underwent spontaneous genome duplication and was used to generate a multigenerational pedigree. Using genome resequencing, we show that 2 major mechanisms promote stable genomic exchange in this population. Legitimate meiotic recombination and chromosome segregation between the autopolyploid chromosomes of the 2 A. thaliana genomes occur without any obvious bias for the parental origin and combine the A. thaliana haplotypes from the A. thaliana parent with the A. thaliana haplotypes from A. suecica similar to purely autopolyploid plants. In addition, we repeatedly observed that occasional exchanges between regions of the homoeologous chromosomes are tolerated. The combination of these mechanisms may result in gene flow leading to stable introgression in natural populations. Unlike the previously reported resynthesized neoallotetraploid A. suecica, this population of autoallohexaploids contains mostly vigorous, and genetically, cytotypically, and phenotypically variable individuals. We propose that naturally formed autoallohexaploid populations might serve as an intermediate bridge between diploid and polyploid species, which can facilitate gene flow rapidly and efficiently.

Zobrazit více v PubMed

Baduel P, Bray S, Vallejo-Marin M, Kolář F, Yant L.. The “Polyploid Hop”: shifting challenges and opportunities over the evolutionary lifespan of genome duplications. Front Ecol Evol. 2018;6:117. doi:10.3389/fevo.2018.00117. DOI

Bohutínská M, Alston M, Monnahan P, Mandáková T, Bray S, Paajanen P, Kolář F, Yant L.. Novelty and convergence in adaptation to whole genome duplication. Mol Biol Evol. 2021;38(9):3910–3924. doi:10.1093/molbev/msab096. PubMed DOI PMC

Bomblies K, Jones G, Franklin C, Zickler D, Kleckner N.. The challenge of evolving stable polyploidy: could an increase in “crossover interference distance” play a central role? Chromosoma. 2016;125(2):287–300. doi:10.1007/s00412-015-0571-4. PubMed DOI PMC

Burns R, Mandáková T, Gunis J, Soto-Jiménez LM, Liu C, Lysak MA, Novikova PY, Nordborg M.. Gradual evolution of allopolyploidy in Arabidopsis suecica. Nat Ecol Evol. 2021;5(10):1367–1381. doi:10.1038/s41559-021-01525-w. PubMed DOI PMC

Carlson KD, Fernandez-Pozo N, Bombarely A, Pisupati R, Mueller LA, Madlung A.. Natural variation in stress response gene activity in the allopolyploid Arabidopsis suecica. BMC Genomics. 2017;18(1):653. doi:10.1186/s12864-017-4067-x. PubMed DOI PMC

Chen Z. Genetic and epigenetic mechanisms for gene expression and phenotypic variation in plant polyploids. Annu Rev Plant Biol. 2007;58:377–406. doi:10.1146/annurev.arplant.58.032806.103835. PubMed DOI PMC

Chester M, Gallagher JP, Symonds VV, Cruz da Silva AV, Mavrodiev EV, Leitch AR, Soltis PS, Soltis DE.. Extensive chromosomal variation in a recently formed natural allopolyploid species, Tragopogon miscellus (Asteraceae). Proc Natl Acad Sci U S A. 2012;109(4):1176–1181. doi:10.1073/pnas.1112041109. PubMed DOI PMC

Comai L. The advantages and disadvantages of being polyploid. Nat Rev Genet. 2005;6(11):836–846. doi:10.1038/nrg1711. PubMed DOI

Comai L, Tyagi AP, Winter K, Holmes-Davis R, Reynolds SH, Stevens Y, Byers B.. Phenotypic instability and rapid gene silencing in newly formed Arabidopsis allotetraploids. Plant Cell. 2000;12(9):1551–1568. PubMed PMC

Fransz PF, Armstrong S, de Jong JH, Parnell LD, van Drunen C, Dean C, Zabel P, Bisseling T, Jones GH.. Integrated cytogenetic map of chromosome arm 4S of A. thaliana: structural organization of heterochromatic knob and centromere region. Cell. 2000;100(3):367–376. PubMed

Gaeta RT, Pires JC.. Homoeologous recombination in allopolyploids: the polyploid ratchet. New Phytol. 2010;186(1):18–28. doi:10.1111/j.1469–8137.2009.03089.x. PubMed

Gaeta RT, Pires JC, Iniguez-Luy F, Leon E, Osborn TC.. Genomic changes in resynthesized Brassica napus and their effect on gene expression and phenotype. Plant Cell. 2007;19(11):3403–3417. PubMed PMC

Goel M, Schneeberger K.. plotsr: visualizing structural similarities and rearrangements between multiple genomes. Bioinformatics. 2022;38(10):2922–2926. doi:10.1093/bioinformatics/btac196. PubMed DOI PMC

Goel M, Sun H, Jiao W-B, Schneeberger K.. SyRI: finding genomic rearrangements and local sequence differences from whole-genome assemblies. Genome Biol. 2019;20(1):277. doi:10.1186/s13059-019–1911-0. PubMed PMC

Griffiths S, Sharp R, Foote TN, Bertin I, Wanous M, Reader S, Colas I, Moore G.. Molecular characterization of Ph1 as a major chromosome pairing locus in polyploid wheat. Nature. 2006;439(7077):749–752. PubMed

Haas BJ, Delcher AL, Mount SM, Wortman JR, Smith RK, Hannick LI, Maiti R, Ronning CM, Rusch DB, Town CD, et al. . Improving the Arabidopsis genome annotation using maximal transcript alignment assemblies. Nucleic Acids Res. 2003;31(19):5654–5666. doi:10.1093/nar/gkg770. PubMed DOI PMC

Haas BJ, Salzberg SL, Zhu W, Pertea M, Allen JE, Orvis J, White O, Buell CR, Wortman JR.. Automated eukaryotic gene structure annotation using EVidenceModeler and the Program to Assemble Spliced Alignments. Genome Biol. 2008;9(1):R7. doi:10.1186/gb-2008-9-1-r7. PubMed DOI PMC

Harmaja H, Pellinen K.. Three different chromosome numbers from Finnish Arabidopsis suecica (Brassicaceae). Annales Botanici Fennici. 1990;27(4).

Hegarty M, Coate J, Sherman-Broyles S, Abbott R, Hiscock S, Doyle J.. Lessons from natural and artificial polyploids in higher plants. Cytogenet Genome Res. 2013;140(2–4):204–225. doi:10.1159/000353361. PubMed

Henry IM, Dilkes BP, Tyagi A, Gao J, Christensen B, Comai L.. The BOY NAMED SUE quantitative trait locus confers increased meiotic stability to an adapted natural allopolyploid of Arabidopsis. Plant Cell. 2014;26(1):181–194. doi:10.1105/tpc.113.120626. PubMed DOI PMC

Hollister JD, Arnold BJ, Svedin E, Xue KS, Dilkes BP, Bomblies K.. Genetic adaptation associated with genome-doubling in autotetraploid Arabidopsis arenosa. PLoS Genet. 2012;8(12):e1003093. doi:10.1371/journal.pgen.1003093. PubMed DOI PMC

Hu TT, Pattyn P, Bakker EG, Cao J, Cheng J-F, Clark RM, Fahlgren N, Fawcett JA, Grimwood J, Gundlach H, et al. . The Arabidopsis lyrata genome sequence and the basis of rapid genome size change. Nat Genet. 2011;43(5):476–481. doi:10.1038/ng.807. PubMed DOI PMC

Jenczewski E, Eber F, Grimaud A, Huet S, Lucas MO, Monod H, Chèvre AM.. PrBn, a major gene controlling homeologous pairing in oilseed rape (Brassica napus) haploids. Genetics. 2003;164(2):645–653. PubMed PMC

Jiang X, Song Q, Ye W, Chen ZJ.. Concerted genomic and epigenomic changes accompany stabilization of Arabidopsis allopolyploids. Nat Ecol Evol. 2021;5(10):1382–1393. doi:10.1038/s41559-021-01523-y. PubMed DOI PMC

Johnson AD, Handsaker RE, Pulit SL, Nizzari MM, O'Donnell CJ, de Bakker PIW.. SNAP: a web-based tool for identification and annotation of proxy SNPs using HapMap. Bioinformatics. 2008;24(24):2938–2939. doi:10.1093/bioinformatics/btn564. PubMed DOI PMC

Kim D, Paggi JM, Park C, Bennett C, Salzberg SL.. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat Biotechnol. 2019;37(8):907–915. doi:10.1038/s41587-019-0201-4. PubMed DOI PMC

Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH, Phillippy AM.. Canu: scalable and accurate long- read assembly via adaptive k-mer weighting and repeat separation. Genome Res. 2017;27(5):722–736. doi:10.1101/gr.215087.116. PubMed DOI PMC

Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M, Antonescu C, Salzberg SL.. Versatile and open software for comparing large genomes. Genome Biol. 2004;5(2):R12. doi:10.1186/gb-2004-5-2-r12. PubMed DOI PMC

Langmead B, Salzberg SL.. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9(4):357–359. doi:10.1038/nmeth.1923. PubMed DOI PMC

Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R; 1000 Genome Project Data Processing Subgroup . The Sequence Alignment/Map format and SAMtools. Bioinformatics. 2009;25(16):2078–2079. doi:10.1093/bioinformatics/btp352. PubMed DOI PMC

Linder CR, Rieseberg LH.. Reconstructing patterns of reticulate evolution in plants. Am J Bot. 2004;91:1700–1708. doi:10.3732/ajb.91.10.1700. PubMed DOI PMC

Lloyd A, Bomblies K.. Meiosis in autopolyploid and allopolyploid Arabidopsis. Curr Opin Plant Biol. 2016;30:116–122. doi:10.1016/j.pbi.2016.02.004. PubMed

Madlung A, Wendel JF.. Genetic and epigenetic aspects of polyploid evolution in plants. Cytogenet Genome Res. 2013;140(2–4):270–285. doi:10.1159/000351430. PubMed DOI

Majoros WH, Pertea M, Salzberg SL.. TigrScan and GlimmerHMM: two open source ab initio eukaryotic gene-finders. Bioinformatics. 2004;20(16):2878–2879. doi:10.1093/bioinformatics/bth315. PubMed DOI

Mallet J. Hybrid speciation. Nature. 2007;446(7133):279–283. doi:10.1038/nature05706. PubMed DOI

Matsushita SC, Tyagi AP, Thornton GM, Pires JC, Madlung A.. Allopolyploidization lays the foundation for evolution of distinct populations: evidence from analysis of synthetic Arabidopsis allohexaploids. Genetics. 2012;191(2):535–547. doi:10.1534/genetics.112.139295. PubMed DOI PMC

Mayrose I, Zhan SH, Rothfels CJ, Magnuson-Ford K, Barker MS, Rieseberg LH, Otto SP.. Recently formed polyploid plants diversify at lower rates. Science. 2011;333(6047):1257. doi:10.1126/science.1207205. PubMed DOI

Novikova PY, Tsuchimatsu T, Simon S, Nizhynska V, Voronin V, Burns R, Fedorenko OM, Holm S, Säll T, Prat E, et al. . Genome Sequencing Reveals the Origin of the Allotetraploid Arabidopsis suecica. Mol Biol Evol. 2017;34(4):957–968. PubMed PMC

Novikova PY, Hohmann N, Nizhynska V, Tsuchimatsu T, Ali J, Muir G, Guggisberg A, Paape T, Schmid K, Fedorenko OM, et al. . Sequencing of the genus Arabidopsis identifies a complex history of nonbifurcating speciation and abundant trans-specific polymorphism. Nat Genet. 2016;48(9):1077–1082. doi:10.1038/ng.3617. PubMed

Pearse IS, Krügel T, Baldwin IT.. Innovation in anti-herbivore defense systems during neopolypoloidy—the functional consequences of instantaneous speciation. Plant J. 2006;47(2):196–210. doi:10.1111/j.1365-313X.2006.02776.x. PubMed

Pertea M, Pertea GM, Antonescu CM, Chang T-C, Mendell JT, Salzberg SL.. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat Biotechnol. 2015;33(3):290–295. doi:10.1038/nbt.3122. PubMed DOI PMC

Quinlan AR, Hall IM.. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics. 2010;26(6):841–842. doi:10.1093/bioinformatics/btq033. PubMed DOI PMC

Ramsey J, Schemske DW.. Pathways, mechanisms, and rates of polyploid formation in flowering plants. Annu Rev Ecol Syst. 1998;29(1):467–501.

Robinson JT, Thorvaldsdóttir H, Winckler W, Guttman M, Lander ES, Getz G, Mesirov JP.. Integrative genomics viewer. Nat Biotechnol. 2011;29(1):24–26. doi:10.1038/nbt.1754. PubMed DOI PMC

Schatlowski N, Köhler C.. Tearing down barriers: understanding the molecular mechanisms of interploidy hybridizations. J Exp Bot. 2012;63(17):6059–6067. doi:10.1093/jxb/ers288. PubMed DOI

Schmickl R, Koch MA.. Arabidopsis hybrid speciation processes. Proc Natl Acad Sci U S A. 2011;108(34):14192–14197. doi:10.1073/pnas.1104212108. PubMed PMC

Schmickl R, Yant L.. Adaptive introgression: how polyploidy reshapes gene flow landscapes. New Phytol. 2021;230(2):457–461. doi:10.1111/nph.17204. PubMed DOI

Shumate A, Salzberg SL.. Liftoff: accurate mapping of gene annotations. Bioinformatics. 2021;37(12):1639–1643. doi:10.1093/bioinformatics/btaa1016. PubMed DOI PMC

Slater GSC, Birney E.. Automated generation of heuristics for biological sequence comparison. BMC Bioinformatics. 2005;6:31. doi:10.1186/1471-2105-6-31. PubMed DOI PMC

Soltis DE, Segovia-Salcedo MC, Jordon-Thaden I, Majure L, Miles NM, Mavrodiev EV, Mei W, Cortez MB, Soltis PS, Gitzendanner MA.. Are polyploids really evolutionary dead-ends (again)? A critical reappraisal of Mayrose et al. (2011). New Phytol. 2014;202(4):1105–1117. doi:10.1111/nph.12756. PubMed DOI

Soltis PS, Marchant DB, Van de Peer Y, Soltis DE.. Polyploidy and genome evolution in plants. Curr Opin Genet Dev. 2015;35:119–125. doi:10.1016/j.gde.2015.11.003. PubMed DOI

Stanke M, Keller O, Gunduz I, Hayes A, Waack S, Morgenstern B.. AUGUSTUS: ab initio prediction of alternative transcripts. Nucleic Acids Res. 2006;34(Web Server issue):W435–W439. PubMed PMC

Tate JA, Soltis DE, Soltis PS.. Chapter 7—polyploidy in plants. In: The Evolution of the Genome, Gregory TR, editor. Burlington: Academic Press; 2005. p. 371–426.

Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A, Sakthikumar S, Cuomo CA, Zeng Q, Wortman J, Young SK, et al. . Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One. 2014;9(11):e112963. doi:10.1371/journal.pone.0112963. PubMed DOI PMC

Wang J, Tian L, Lee HS, Chen ZJ.. Nonadditive regulation of FRI and FLC loci mediates flowering-time variation in Arabidopsis allopolyploids. Genetics. 2006;173(2):965–974. PubMed PMC

Wendel JF, Jackson SA, Meyers BC, Wing RA.. Evolution of plant genome architecture. Genome Biol. 2016;17:37. doi:10.1186/s13059-016–0908-1. PubMed PMC

Wendel JF, Lisch D, Hu G, Mason AS.. The long and short of doubling down: polyploidy, epigenetics, and the temporal dynamics of genome fractionation. Curr Opin Genet Dev. 2018;49:1–7. doi:10.1016/j.gde.2018.01.004. PubMed DOI

Xiong Z, Gaeta RT, Pires JC.. Homoeologous shuffling and chromosome compensation maintain genome balance in resynthesized allopolyploid Brassica napus. Proc Natl Acad Sci U S A. 2011;108(19):7908–7913. doi:10.1073/pnas.1014138108. PubMed DOI PMC

Yant L, Hollister JD, Wright KM, Arnold BJ, Higgins JD, Franklin FCH, Bomblies K.. Meiotic adaptation to genome duplication in Arabidopsis arenosa. Curr Biol. 2013;23(21):2151–2156. doi:10.1016/j.cub.2013.08.059. PubMed DOI PMC

Zapata L, Ding J, Willing E-M, Hartwig B, Bezdan D, Jiao W-B, Patel V, Velikkakam James G, Koornneef M, Ossowski S, et al. . Chromosome-level assembly of Arabidopsis thaliana Ler reveals the extent of translocation and inversion polymorphisms. Proc Natl Acad Sci U S A. 2016;113(28):E4052–E4060. doi:10.1073/pnas.1607532113. PubMed PMC

Zhang H, Bian Y, Gou X, Zhu B, Xu C, Qi B, Li N, Rustgi S, Zhou H, Han F, et al. . Persistent whole-chromosome aneuploidy is generally associated with nascent allohexaploid wheat. Proc Natl Acad Sci U S A. 2013;110(9):3447–3452. doi:10.1073/pnas.1300153110. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...