Rapid large-scale genomic introgression in Arabidopsis suecica via an autoallohexaploid bridge
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
36124968
PubMed Central
PMC9910397
DOI
10.1093/genetics/iyac132
PII: 6705236
Knihovny.cz E-zdroje
- Klíčová slova
- Arabidopsis, aneuploidy, autoallopolyploidy, evolution, gene flow, hexaploid, homoeologous exchange, introgression, polyploidy,
- MeSH
- Arabidopsis * genetika MeSH
- chromozomy MeSH
- genom rostlinný MeSH
- genomika MeSH
- genová introgrese * MeSH
- polyploidie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Gene flow between species in the genus Arabidopsis occurs in significant amounts, but how exactly gene flow is achieved is not well understood. Polyploidization may be one avenue to explain gene flow between species. One problem, however, with polyploidization as a satisfying explanation is the occurrence of lethal genomic instabilities in neopolyploids as a result of genomic exchange, erratic meiotic behavior, and genomic shock. We have created an autoallohexaploid by pollinating naturally co-occurring diploid Arabidopsis thaliana with allotetraploid Arabidopsis suecica (an allotetraploid composed of A. thaliana and Arabidopsis arenosa). Its triploid offspring underwent spontaneous genome duplication and was used to generate a multigenerational pedigree. Using genome resequencing, we show that 2 major mechanisms promote stable genomic exchange in this population. Legitimate meiotic recombination and chromosome segregation between the autopolyploid chromosomes of the 2 A. thaliana genomes occur without any obvious bias for the parental origin and combine the A. thaliana haplotypes from the A. thaliana parent with the A. thaliana haplotypes from A. suecica similar to purely autopolyploid plants. In addition, we repeatedly observed that occasional exchanges between regions of the homoeologous chromosomes are tolerated. The combination of these mechanisms may result in gene flow leading to stable introgression in natural populations. Unlike the previously reported resynthesized neoallotetraploid A. suecica, this population of autoallohexaploids contains mostly vigorous, and genetically, cytotypically, and phenotypically variable individuals. We propose that naturally formed autoallohexaploid populations might serve as an intermediate bridge between diploid and polyploid species, which can facilitate gene flow rapidly and efficiently.
Cluster of Excellence on Plant Sciences Heinrich Heine University Düsseldorf Germany
Department of Biology University of Puget Sound Tacoma WA 98416 USA
Institute of Experimental Botany of the Czech Academy of Sciences 77900 Olomouc Czech Republic
Zobrazit více v PubMed
Baduel P, Bray S, Vallejo-Marin M, Kolář F, Yant L.. The “Polyploid Hop”: shifting challenges and opportunities over the evolutionary lifespan of genome duplications. Front Ecol Evol. 2018;6:117. doi:10.3389/fevo.2018.00117. DOI
Bohutínská M, Alston M, Monnahan P, Mandáková T, Bray S, Paajanen P, Kolář F, Yant L.. Novelty and convergence in adaptation to whole genome duplication. Mol Biol Evol. 2021;38(9):3910–3924. doi:10.1093/molbev/msab096. PubMed DOI PMC
Bomblies K, Jones G, Franklin C, Zickler D, Kleckner N.. The challenge of evolving stable polyploidy: could an increase in “crossover interference distance” play a central role? Chromosoma. 2016;125(2):287–300. doi:10.1007/s00412-015-0571-4. PubMed DOI PMC
Burns R, Mandáková T, Gunis J, Soto-Jiménez LM, Liu C, Lysak MA, Novikova PY, Nordborg M.. Gradual evolution of allopolyploidy in Arabidopsis suecica. Nat Ecol Evol. 2021;5(10):1367–1381. doi:10.1038/s41559-021-01525-w. PubMed DOI PMC
Carlson KD, Fernandez-Pozo N, Bombarely A, Pisupati R, Mueller LA, Madlung A.. Natural variation in stress response gene activity in the allopolyploid Arabidopsis suecica. BMC Genomics. 2017;18(1):653. doi:10.1186/s12864-017-4067-x. PubMed DOI PMC
Chen Z. Genetic and epigenetic mechanisms for gene expression and phenotypic variation in plant polyploids. Annu Rev Plant Biol. 2007;58:377–406. doi:10.1146/annurev.arplant.58.032806.103835. PubMed DOI PMC
Chester M, Gallagher JP, Symonds VV, Cruz da Silva AV, Mavrodiev EV, Leitch AR, Soltis PS, Soltis DE.. Extensive chromosomal variation in a recently formed natural allopolyploid species, Tragopogon miscellus (Asteraceae). Proc Natl Acad Sci U S A. 2012;109(4):1176–1181. doi:10.1073/pnas.1112041109. PubMed DOI PMC
Comai L. The advantages and disadvantages of being polyploid. Nat Rev Genet. 2005;6(11):836–846. doi:10.1038/nrg1711. PubMed DOI
Comai L, Tyagi AP, Winter K, Holmes-Davis R, Reynolds SH, Stevens Y, Byers B.. Phenotypic instability and rapid gene silencing in newly formed Arabidopsis allotetraploids. Plant Cell. 2000;12(9):1551–1568. PubMed PMC
Fransz PF, Armstrong S, de Jong JH, Parnell LD, van Drunen C, Dean C, Zabel P, Bisseling T, Jones GH.. Integrated cytogenetic map of chromosome arm 4S of A. thaliana: structural organization of heterochromatic knob and centromere region. Cell. 2000;100(3):367–376. PubMed
Gaeta RT, Pires JC.. Homoeologous recombination in allopolyploids: the polyploid ratchet. New Phytol. 2010;186(1):18–28. doi:10.1111/j.1469–8137.2009.03089.x. PubMed
Gaeta RT, Pires JC, Iniguez-Luy F, Leon E, Osborn TC.. Genomic changes in resynthesized Brassica napus and their effect on gene expression and phenotype. Plant Cell. 2007;19(11):3403–3417. PubMed PMC
Goel M, Schneeberger K.. plotsr: visualizing structural similarities and rearrangements between multiple genomes. Bioinformatics. 2022;38(10):2922–2926. doi:10.1093/bioinformatics/btac196. PubMed DOI PMC
Goel M, Sun H, Jiao W-B, Schneeberger K.. SyRI: finding genomic rearrangements and local sequence differences from whole-genome assemblies. Genome Biol. 2019;20(1):277. doi:10.1186/s13059-019–1911-0. PubMed PMC
Griffiths S, Sharp R, Foote TN, Bertin I, Wanous M, Reader S, Colas I, Moore G.. Molecular characterization of Ph1 as a major chromosome pairing locus in polyploid wheat. Nature. 2006;439(7077):749–752. PubMed
Haas BJ, Delcher AL, Mount SM, Wortman JR, Smith RK, Hannick LI, Maiti R, Ronning CM, Rusch DB, Town CD, et al. . Improving the Arabidopsis genome annotation using maximal transcript alignment assemblies. Nucleic Acids Res. 2003;31(19):5654–5666. doi:10.1093/nar/gkg770. PubMed DOI PMC
Haas BJ, Salzberg SL, Zhu W, Pertea M, Allen JE, Orvis J, White O, Buell CR, Wortman JR.. Automated eukaryotic gene structure annotation using EVidenceModeler and the Program to Assemble Spliced Alignments. Genome Biol. 2008;9(1):R7. doi:10.1186/gb-2008-9-1-r7. PubMed DOI PMC
Harmaja H, Pellinen K.. Three different chromosome numbers from Finnish Arabidopsis suecica (Brassicaceae). Annales Botanici Fennici. 1990;27(4).
Hegarty M, Coate J, Sherman-Broyles S, Abbott R, Hiscock S, Doyle J.. Lessons from natural and artificial polyploids in higher plants. Cytogenet Genome Res. 2013;140(2–4):204–225. doi:10.1159/000353361. PubMed
Henry IM, Dilkes BP, Tyagi A, Gao J, Christensen B, Comai L.. The BOY NAMED SUE quantitative trait locus confers increased meiotic stability to an adapted natural allopolyploid of Arabidopsis. Plant Cell. 2014;26(1):181–194. doi:10.1105/tpc.113.120626. PubMed DOI PMC
Hollister JD, Arnold BJ, Svedin E, Xue KS, Dilkes BP, Bomblies K.. Genetic adaptation associated with genome-doubling in autotetraploid Arabidopsis arenosa. PLoS Genet. 2012;8(12):e1003093. doi:10.1371/journal.pgen.1003093. PubMed DOI PMC
Hu TT, Pattyn P, Bakker EG, Cao J, Cheng J-F, Clark RM, Fahlgren N, Fawcett JA, Grimwood J, Gundlach H, et al. . The Arabidopsis lyrata genome sequence and the basis of rapid genome size change. Nat Genet. 2011;43(5):476–481. doi:10.1038/ng.807. PubMed DOI PMC
Jenczewski E, Eber F, Grimaud A, Huet S, Lucas MO, Monod H, Chèvre AM.. PrBn, a major gene controlling homeologous pairing in oilseed rape (Brassica napus) haploids. Genetics. 2003;164(2):645–653. PubMed PMC
Jiang X, Song Q, Ye W, Chen ZJ.. Concerted genomic and epigenomic changes accompany stabilization of Arabidopsis allopolyploids. Nat Ecol Evol. 2021;5(10):1382–1393. doi:10.1038/s41559-021-01523-y. PubMed DOI PMC
Johnson AD, Handsaker RE, Pulit SL, Nizzari MM, O'Donnell CJ, de Bakker PIW.. SNAP: a web-based tool for identification and annotation of proxy SNPs using HapMap. Bioinformatics. 2008;24(24):2938–2939. doi:10.1093/bioinformatics/btn564. PubMed DOI PMC
Kim D, Paggi JM, Park C, Bennett C, Salzberg SL.. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat Biotechnol. 2019;37(8):907–915. doi:10.1038/s41587-019-0201-4. PubMed DOI PMC
Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH, Phillippy AM.. Canu: scalable and accurate long- read assembly via adaptive k-mer weighting and repeat separation. Genome Res. 2017;27(5):722–736. doi:10.1101/gr.215087.116. PubMed DOI PMC
Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M, Antonescu C, Salzberg SL.. Versatile and open software for comparing large genomes. Genome Biol. 2004;5(2):R12. doi:10.1186/gb-2004-5-2-r12. PubMed DOI PMC
Langmead B, Salzberg SL.. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9(4):357–359. doi:10.1038/nmeth.1923. PubMed DOI PMC
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R; 1000 Genome Project Data Processing Subgroup . The Sequence Alignment/Map format and SAMtools. Bioinformatics. 2009;25(16):2078–2079. doi:10.1093/bioinformatics/btp352. PubMed DOI PMC
Linder CR, Rieseberg LH.. Reconstructing patterns of reticulate evolution in plants. Am J Bot. 2004;91:1700–1708. doi:10.3732/ajb.91.10.1700. PubMed DOI PMC
Lloyd A, Bomblies K.. Meiosis in autopolyploid and allopolyploid Arabidopsis. Curr Opin Plant Biol. 2016;30:116–122. doi:10.1016/j.pbi.2016.02.004. PubMed
Madlung A, Wendel JF.. Genetic and epigenetic aspects of polyploid evolution in plants. Cytogenet Genome Res. 2013;140(2–4):270–285. doi:10.1159/000351430. PubMed DOI
Majoros WH, Pertea M, Salzberg SL.. TigrScan and GlimmerHMM: two open source ab initio eukaryotic gene-finders. Bioinformatics. 2004;20(16):2878–2879. doi:10.1093/bioinformatics/bth315. PubMed DOI
Mallet J. Hybrid speciation. Nature. 2007;446(7133):279–283. doi:10.1038/nature05706. PubMed DOI
Matsushita SC, Tyagi AP, Thornton GM, Pires JC, Madlung A.. Allopolyploidization lays the foundation for evolution of distinct populations: evidence from analysis of synthetic Arabidopsis allohexaploids. Genetics. 2012;191(2):535–547. doi:10.1534/genetics.112.139295. PubMed DOI PMC
Mayrose I, Zhan SH, Rothfels CJ, Magnuson-Ford K, Barker MS, Rieseberg LH, Otto SP.. Recently formed polyploid plants diversify at lower rates. Science. 2011;333(6047):1257. doi:10.1126/science.1207205. PubMed DOI
Novikova PY, Tsuchimatsu T, Simon S, Nizhynska V, Voronin V, Burns R, Fedorenko OM, Holm S, Säll T, Prat E, et al. . Genome Sequencing Reveals the Origin of the Allotetraploid Arabidopsis suecica. Mol Biol Evol. 2017;34(4):957–968. PubMed PMC
Novikova PY, Hohmann N, Nizhynska V, Tsuchimatsu T, Ali J, Muir G, Guggisberg A, Paape T, Schmid K, Fedorenko OM, et al. . Sequencing of the genus Arabidopsis identifies a complex history of nonbifurcating speciation and abundant trans-specific polymorphism. Nat Genet. 2016;48(9):1077–1082. doi:10.1038/ng.3617. PubMed
Pearse IS, Krügel T, Baldwin IT.. Innovation in anti-herbivore defense systems during neopolypoloidy—the functional consequences of instantaneous speciation. Plant J. 2006;47(2):196–210. doi:10.1111/j.1365-313X.2006.02776.x. PubMed
Pertea M, Pertea GM, Antonescu CM, Chang T-C, Mendell JT, Salzberg SL.. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat Biotechnol. 2015;33(3):290–295. doi:10.1038/nbt.3122. PubMed DOI PMC
Quinlan AR, Hall IM.. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics. 2010;26(6):841–842. doi:10.1093/bioinformatics/btq033. PubMed DOI PMC
Ramsey J, Schemske DW.. Pathways, mechanisms, and rates of polyploid formation in flowering plants. Annu Rev Ecol Syst. 1998;29(1):467–501.
Robinson JT, Thorvaldsdóttir H, Winckler W, Guttman M, Lander ES, Getz G, Mesirov JP.. Integrative genomics viewer. Nat Biotechnol. 2011;29(1):24–26. doi:10.1038/nbt.1754. PubMed DOI PMC
Schatlowski N, Köhler C.. Tearing down barriers: understanding the molecular mechanisms of interploidy hybridizations. J Exp Bot. 2012;63(17):6059–6067. doi:10.1093/jxb/ers288. PubMed DOI
Schmickl R, Koch MA.. Arabidopsis hybrid speciation processes. Proc Natl Acad Sci U S A. 2011;108(34):14192–14197. doi:10.1073/pnas.1104212108. PubMed PMC
Schmickl R, Yant L.. Adaptive introgression: how polyploidy reshapes gene flow landscapes. New Phytol. 2021;230(2):457–461. doi:10.1111/nph.17204. PubMed DOI
Shumate A, Salzberg SL.. Liftoff: accurate mapping of gene annotations. Bioinformatics. 2021;37(12):1639–1643. doi:10.1093/bioinformatics/btaa1016. PubMed DOI PMC
Slater GSC, Birney E.. Automated generation of heuristics for biological sequence comparison. BMC Bioinformatics. 2005;6:31. doi:10.1186/1471-2105-6-31. PubMed DOI PMC
Soltis DE, Segovia-Salcedo MC, Jordon-Thaden I, Majure L, Miles NM, Mavrodiev EV, Mei W, Cortez MB, Soltis PS, Gitzendanner MA.. Are polyploids really evolutionary dead-ends (again)? A critical reappraisal of Mayrose et al. (2011). New Phytol. 2014;202(4):1105–1117. doi:10.1111/nph.12756. PubMed DOI
Soltis PS, Marchant DB, Van de Peer Y, Soltis DE.. Polyploidy and genome evolution in plants. Curr Opin Genet Dev. 2015;35:119–125. doi:10.1016/j.gde.2015.11.003. PubMed DOI
Stanke M, Keller O, Gunduz I, Hayes A, Waack S, Morgenstern B.. AUGUSTUS: ab initio prediction of alternative transcripts. Nucleic Acids Res. 2006;34(Web Server issue):W435–W439. PubMed PMC
Tate JA, Soltis DE, Soltis PS.. Chapter 7—polyploidy in plants. In: The Evolution of the Genome, Gregory TR, editor. Burlington: Academic Press; 2005. p. 371–426.
Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A, Sakthikumar S, Cuomo CA, Zeng Q, Wortman J, Young SK, et al. . Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One. 2014;9(11):e112963. doi:10.1371/journal.pone.0112963. PubMed DOI PMC
Wang J, Tian L, Lee HS, Chen ZJ.. Nonadditive regulation of FRI and FLC loci mediates flowering-time variation in Arabidopsis allopolyploids. Genetics. 2006;173(2):965–974. PubMed PMC
Wendel JF, Jackson SA, Meyers BC, Wing RA.. Evolution of plant genome architecture. Genome Biol. 2016;17:37. doi:10.1186/s13059-016–0908-1. PubMed PMC
Wendel JF, Lisch D, Hu G, Mason AS.. The long and short of doubling down: polyploidy, epigenetics, and the temporal dynamics of genome fractionation. Curr Opin Genet Dev. 2018;49:1–7. doi:10.1016/j.gde.2018.01.004. PubMed DOI
Xiong Z, Gaeta RT, Pires JC.. Homoeologous shuffling and chromosome compensation maintain genome balance in resynthesized allopolyploid Brassica napus. Proc Natl Acad Sci U S A. 2011;108(19):7908–7913. doi:10.1073/pnas.1014138108. PubMed DOI PMC
Yant L, Hollister JD, Wright KM, Arnold BJ, Higgins JD, Franklin FCH, Bomblies K.. Meiotic adaptation to genome duplication in Arabidopsis arenosa. Curr Biol. 2013;23(21):2151–2156. doi:10.1016/j.cub.2013.08.059. PubMed DOI PMC
Zapata L, Ding J, Willing E-M, Hartwig B, Bezdan D, Jiao W-B, Patel V, Velikkakam James G, Koornneef M, Ossowski S, et al. . Chromosome-level assembly of Arabidopsis thaliana Ler reveals the extent of translocation and inversion polymorphisms. Proc Natl Acad Sci U S A. 2016;113(28):E4052–E4060. doi:10.1073/pnas.1607532113. PubMed PMC
Zhang H, Bian Y, Gou X, Zhu B, Xu C, Qi B, Li N, Rustgi S, Zhou H, Han F, et al. . Persistent whole-chromosome aneuploidy is generally associated with nascent allohexaploid wheat. Proc Natl Acad Sci U S A. 2013;110(9):3447–3452. doi:10.1073/pnas.1300153110. PubMed DOI PMC