Adaptive introgression: how polyploidy reshapes gene flow landscapes

. 2021 Apr ; 230 (2) : 457-461. [epub] 20210219

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid33454987

Rare yet accumulating evidence in both plants and animals shows that whole genome duplication (WGD, leading to polyploidy) can break down reproductive barriers, facilitating gene flow between otherwise isolated species. Recent population genomic studies in wild, outcrossing Arabidopsis arenosa and Arabidopsis lyrata indicate that this WGD-potentiated gene flow can be adaptive and highly specific in response to particular environmental and intracellular challenges. The mechanistic basis of WGD-mediated easing of species barrier strength seems to primarily lie in the relative dosage of each parental genome in the endosperm. While generalisations about polyploids can be fraught, this evidence indicates that the breakdown of these barriers, combined with diploid to polyploid gene flow and gene flow between polyploids, allows some polyploids to act as adaptable 'allelic sponges', enjoying increased potential to respond to challenging environments.

Zobrazit více v PubMed

Arnold BJ, Lahner B, DaCosta JM, Weisman CM, Hollister JD, Salt DE, Bomblies K, Yant L. 2016. Borrowed alleles and convergence in serpentine adaptation. Proceedings of the National Academy of Sciences, USA 113: 8320-8325.

Baduel P, Hunter B, Yeola S, Bomblies K. 2018. Genetic basis and evolution of rapid cycling in railway populations of tetraploid Arabidopsis arenosa. PLoS Genetics 14: e1007510.

Baduel P, Quadrana L, Hunter B, Bomblies K, Colot V. 2019. Relaxed purifying selection in autopolyploids drives transposable element over-accumulation which provides variants for local adaptation. Nature Communications 10: 1-10.

Baniaga AE, Marx HE, Arrigo N, Barker MS. 2020. Polyploid plants have faster rates of multivariate niche differentiation than their diploid relatives. Ecology Letters 23: 68-78.

Bomblies K, Jones G, Franklin C, Zickler D, Kleckner N. 2016. The challenge of evolving stable polyploidy: could an increase in “crossover interference distance” play a central role? Chromosoma 125: 287-300.

De Queiroz K. 2007. Species concepts and species delimitation. Systematic Biology 56: 879-886.

De Storme N, Mason A. 2014. Plant speciation through chromosome instability and ploidy change: cellular mechanisms, molecular factors and evolutionary relevance. Current Plant Biology 1: 10-33.

Feder JL, Egan SP, Nosil P. 2012. The genomics of speciation-with-gene-flow. Trends in Genetics 28: 342-350.

Fort A, Ryder P, McKeown PC, Wijnen C, Aarts MG, Sulpice R, Spillane C. 2016. Disaggregating polyploidy, parental genome dosage and hybridity contributions to heterosis in Arabidopsis thaliana. New Phytologist 209: 590-599.

Harlan JR, de Wet JMJ. 1963. The compilospecies concept. Evolution 17: 497-501.

Harris K, Nielsen R. 2016. The genetic cost of Neanderthal introgression. Genetics 203: 881-891.

He Z, Li X, Yang M, Wang X, Zhong C, Duke NC, Wu C-I, Shi S. 2019. Speciation with gene flow via cycles of isolation and migration: insights from multiple mangrove taxa. National Science Review 6: 275-288.

Husband BC, Sabara HA. 2004. Reproductive isolation between autotetraploids and their diploid progenitors in fireweed, Chamerion angustifolium (Onagraceae). New Phytologist 161: 703-713.

Husband BCH, Schemske DW. 2000. Ecological mechanisms of reproductive isolation between diploid and tetraploid Chamerion angustifolium. Journal of Ecology 88: 689-701.

Johnston SA, Hanneman RE. 1982. Manipulations of endosperm balance number overcome crossing barriers between diploid Solanum species. Science 217: 446-448.

Kearns AM, Restani M, Szabo I, Schrøder-Nielsen A, Kim JA, Richardson HM, Marzluff JM, Fleischer RC, Johnsen A, Omland KE. 2018. Genomic evidence of speciation reversal in ravens. Nature Communications 9: 1-13.

Kulmuni J, Pamilo P. 2014. Introgression in hybrid ants is favored in females but selected against in males. Proceedings of the National Academy of Sciences, USA 111: 12805-12810.

Lafon-Placette C, Hatorangan MR, Steige KA, Cornille A, Lascoux M, Slotte T, Köhler C. 2018. Paternally expressed imprinted genes associate with hybridization barriers in Capsella. Nature Plants 4: 352-357.

Lafon-Placette C, Johannessen IM, Hornslien KS, Ali MF, Bjerkan KN, Bramsiepe J, Glöckle BM, Rebernig CA, Brysting AK, Grini PE et al. 2017. Endosperm-based hybridization barriers explain the pattern of gene flow between Arabidopsis lyrata and Arabidopsis arenosa in Central Europe. Proceedings of the National Academy of Sciences, USA 114: E1027-E1035.

López-Jurado J, Mateos-Naranjo E, Balao F. 2019. Niche divergence and limits to expansion in the high polyploid Dianthus broteri complex. New Phytologist 222: 1076-1087.

Lumaret R, Bowman CM, Dyer TA. 1989. Autopolyploidy in Dactylis glomerata L.: further evidence from studies of chloroplast DNA variation. Theoretical and Applied Genetics 78: 393-399.

Marburger S, Monnahan P, Seear PJ, Martin SH, Koch J, Paajanen P, Bohutínská M, Higgins JD, Schmickl R, Yant L. 2019. Interspecific introgression mediates adaptation to whole genome duplication. Nature Communications 10: 1-11.

Martin SH, Davey JW, Salazar C, Jiggins CD. 2019. Recombination rate variation shapes barriers to introgression across butterfly genomes. PLoS Biology 17: e2006288.

Martin SH, Jiggins CD. 2017. Interpreting the genomic landscape of introgression. Current Opinion in Genetics & Development 47: 69-74.

Molina-Henao YF, Hopkins R. 2019. Autopolyploid lineage shows climatic niche expansion but not divergence in Arabidopsis arenosa. American Journal of Botany 106: 61-70.

Monnahan P, Kolář F, Baduel P, Sailer C, Koch J, Horvath R, Laenen B, Schmickl R, Paajanen P, Šrámková G et al. 2019. Pervasive population genomic consequences of genome duplication in Arabidopsis arenosa. Nature Ecology & Evolution 3: 457-468.

Novikova PY, Brennan IG, Booker W, Mahony M, Doughty P, Lemmon AR, Lemmon EM, Roberts JD, Yant L, de Peer YV et al. 2020. Polyploidy breaks speciation barriers in Australian burrowing frogs Neobatrachus. PLoS Genetics 16: e1008769.

Otto SP. 2007. The evolutionary consequences of polyploidy. Cell 131: 452-462.

Pecinka A, Fang W, Rehmsmeier M, Levy AA, Mittelsten SO. 2011. Polyploidization increases meiotic recombination frequency in Arabidopsis. BMC Biology 9: 24.

Peris D, Alexander WG, Fisher KJ, Moriarty RV, Basuino MG, Ubbelohde EJ, Wrobel RL, Hittinger CT. 2020. Synthetic hybrids of six yeast species. Nature Communications 11: 1-11.

Povilus RA, Diggle PK, Friedman WE. 2018. Evidence for parent-of-origin effects and interparental conflict in seeds of an ancient flowering plant lineage. Proceedings of the Royal Society B: Biological Sciences 285: 20172491.

Pyšek P, Richardson DM. 2007. Traits associated with invasiveness in alien plants: where do we stand? In: Nentwig W, ed. Ecological studies. Biological invasions. Berlin/Heidelberg, Germany: Springer, 97-125.

Ramsey J. 2011. Polyploidy and ecological adaptation in wild yarrow. Proceedings of the National Academy of Sciences, USA 108: 7096-7101.

Ronfort J, Jenczewski E, Bataillon T, Rousset F. 1998. Analysis of population structure in autotetraploid species. Genetics 150: 921-930.

Schmickl R, Koch MA. 2011. Arabidopsis hybrid speciation processes. Proceedings of the National Academy of Sciences, USA 108: 14192-14197.

Seear P, France M, Gregory C, Heavens D, Schmickl R, Yant L, Higgins J. 2019. A novel allele of ASY3 promotes meiotic stability in autotetraploid Arabidopsis lyrata. PLoS Genetics 16: e1008900.

Selmecki AM, Maruvka YE, Richmond PA, Guillet M, Shoresh N, Sorenson AL, De S, Kishony R, Michor F, Dowell R et al. 2015. Polyploidy can drive rapid adaptation in yeast. Nature 519: 349-352.

Stebbins GL. 1956. Cytogenetics and evolution of the grass family. American Journal of Botany 43: 890-905.

Suarez-Gonzalez A, Lexer C, Cronk QCB. 2018. Adaptive introgression: a plant perspective. Biology Letters 14: 20170688.

Sutherland BL, Galloway LF. 2017. Postzygotic isolation varies by ploidy level within a polyploid complex. New Phytologist 213: 404-412.

Todesco M, Owens GL, Bercovich N, Légaré J-S, Soudi S, Burge DO, Huang K, Ostevik KL, Drummond EBM, Imerovski I et al. 2020. Massive haplotypes underlie ecotypic differentiation in sunflowers. Nature 584: 602-607.

Van Drunen WE, Husband BC. 2019. Evolutionary associations between polyploidy, clonal reproduction, and perenniality in the angiosperms. New Phytologist 224: 1266-1277.

Wei N, Cronn R, Liston A, Ashman T-L. 2019. Functional trait divergence and trait plasticity confer polyploid advantage in heterogeneous environments. New Phytologist 221: 2286-2297.

Yao Y, Carretero-Paulet L, Van de Peer Y. 2019. Using digital organisms to study the evolutionary consequences of whole genome duplication and polyploidy. PLoS ONE 14: e0220257.

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace