Polyploids broadly generate novel haplotypes from trans-specific variation in Arabidopsis arenosa and Arabidopsis lyrata
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
39715277
PubMed Central
PMC11706510
DOI
10.1371/journal.pgen.1011521
PII: PGENETICS-D-24-00791
Knihovny.cz E-zdroje
- MeSH
- Arabidopsis * genetika MeSH
- diploidie MeSH
- genetická variace MeSH
- genom rostlinný MeSH
- haplotypy * genetika MeSH
- meióza genetika MeSH
- molekulární evoluce MeSH
- polyploidie * MeSH
- selekce (genetika) genetika MeSH
- tetraploidie MeSH
- Publikační typ
- časopisecké články MeSH
Polyploidy, the result of whole genome duplication (WGD), is widespread across the tree of life and is often associated with speciation and adaptability. It is thought that adaptation in autopolyploids (within-species polyploids) may be facilitated by increased access to genetic variation. This variation may be sourced from gene flow with sister diploids and new access to other tetraploid lineages, as well as from increased mutational targets provided by doubled DNA content. Here, we deconstruct in detail the origins of haplotypes displaying the strongest selection signals in established, successful autopolyploids, Arabidopsis lyrata and Arabidopsis arenosa. We see strong signatures of selection in 17 genes implied in meiosis, cell cycle, and transcription across all four autotetraploid lineages present in our expanded sampling of 983 sequenced genomes. Most prominent in our results is the finding that the tetraploid-characteristic haplotypes with the most robust signals of selection were completely absent in all diploid sisters. In contrast, the fine-scaled variant 'mosaics' in the tetraploids originated from highly diverse evolutionary sources. These include widespread novel reassortments of trans-specific polymorphism from diploids, new mutations, and tetraploid-specific inter-species hybridization-a pattern that is in line with the broad-scale acquisition and reshuffling of potentially adaptive variation in tetraploids.
Biology Centre Czech Academy of Sciences České Budějovice Czech Republic
Department of Botany Faculty of Science Charles University Prague Czech Republic
Department of Life Sciences University of Nottingham Nottingham United Kingdom
Institute of Botany Czech Academy of Sciences Průhonice Czech Republic
Institute of Ecology and Evolution University of Bern Bern Switzerland
Zobrazit více v PubMed
Doyle JJ, Coate JE. Polyploidy, the nucleotype, and novelty: the impact of genome doubling on the biology of the cell. Int J Plant Sci. 2019;180(1): 1–52.
Bomblies K. When everything changes at once: finding a new normal after genome duplication. Proc R Soc Lond B Biol Sci. 2020;287(1939): 20202154. doi: 10.1098/rspb.2020.2154 PubMed DOI PMC
Bomblies K. Learning to tango with four (or more): the molecular basis of adaptation to polyploid meiosis. Plant Reprod. 2023;36(1): 107–24. doi: 10.1007/s00497-022-00448-1 PubMed DOI PMC
Lv Z, Addo Nyarko C, Ramtekey V, Behn H, Mason AS. Defining autopolyploidy: cytology, genetics, and taxonomy. Am J Bot. 2024;111(8): e16292. doi: 10.1002/ajb2.16292 PubMed DOI
Yant L, Hollister JD, Wright KM, Arnold BJ, Higgins JD, Franklin FCH, et al.. Meiotic adaptation to genome duplication in Arabidopsis arenosa. Curr Biol. 2013;23(21): 2151–6. doi: 10.1016/j.cub.2013.08.059 PubMed DOI PMC
Bray SM, Hämälä T, Zhou M, Busoms S, Fischer S, Desjardins SD, et al.. Kinetochore and ionomic adaptation to whole-genome duplication in Cochlearia shows evolutionary convergence in three autopolyploids. Cell Rep. 2024;43(8): 114576. doi: 10.1016/j.celrep.2024.114576 PubMed DOI
Bohutínská M, Handrick V, Yant L, Schmickl R, Kolář F, Bomblies K, et al.. De novo mutation and rapid protein (co-)evolution during meiotic adaptation in Arabidopsis arenosa. Mol Biol Evol. 2021;38(5): 1980–94. doi: 10.1093/molbev/msab001 PubMed DOI PMC
Bohutínská M, Alston M, Monnahan P, Mandáková T, Bray S, Paajanen P, et al.. Novelty and convergence in adaptation to whole genome duplication. Mol Biol Evol. 2021;38(9): 3910–24. doi: 10.1093/molbev/msab096 PubMed DOI PMC
Imai KK, Ohashi Y, Tsuge T, Yoshizumi T, Matsui M, Oka A, et al.. The A-type cyclin CYCA2;3 is a key regulator of ploidy levels in Arabidopsis endoreduplication. Plant Cell. 2006;18(2): 382–96. doi: 10.1105/tpc.105.037309 PubMed DOI PMC
Sterken R, Kiekens R, Boruc J, Zhang F, Vercauteren A, Vercauteren I, et al.. Combined linkage and association mapping reveals CYCD5;1 as a quantitative trait gene for endoreduplication in Arabidopsis. Proc Natl Acad Sci U S A. 2012;109(12): 4678–83. doi: 10.1073/pnas.1120811109 PubMed DOI PMC
Potapova TA, Seidel CW, Box AC, Rancati G, Li R. Transcriptome analysis of tetraploid cells identifies cyclin D2 as a facilitator of adaptation to genome doubling in the presence of p53. Mol Biol Cell. 2016;27(20): 3065–84. doi: 10.1091/mbc.E16-05-0268 PubMed DOI PMC
Crockford A, Zalmas LP, Grönroos E, Dewhurst SM, McGranahan N, Cuomo ME, et al.. Cyclin D mediates tolerance of genome-doubling in cancers with functional p53. Ann Oncol. 2017;28(1): 149–56. doi: 10.1093/annonc/mdw612 PubMed DOI PMC
Morgan C, Zhang H, Henry CE, Franklin FCH, Bomblies K. Derived alleles of two axis proteins affect meiotic traits in autotetraploid Arabidopsis arenosa. Proc Natl Acad Sci U S A. 2020;117(16): 8980–88. doi: 10.1073/pnas.1919459117 PubMed DOI PMC
Morgan C, Knight E, Bomblies K. The meiotic cohesin subunit REC8 contributes to multigenic adaptive evolution of autopolyploid meiosis in Arabidopsis arenosa. PLoS Genet. 2022;18(7): e1010304. doi: 10.1371/journal.pgen.1010304 PubMed DOI PMC
Westermann J, Srikant T, Gonzalo A, Tan HS, Bomblies K. Defective pollen tube tip growth induces neo-polyploid infertility. Science. 2024;383(6686): eadh0755. doi: 10.1126/science.adh0755 PubMed DOI
Marhold K, Lihová J. Polyploidy, hybridization and reticulate evolution: lessons from the Brassicaceae. Pl Syst Evol. 2006;259: 143–74.
Lafon-Placette C, Johannessen IM, Hornslien KS, Ali MF, Bjerkan KN, Bramsiepe J, et al.. Endosperm-based hybridization barriers explain the pattern of gene flow between Arabidopsis lyrata and Arabidopsis arenosa in Central Europe. Proc Natl Acad Sci U S A. 2017;114(6): E1027–35. doi: 10.1073/pnas.1615123114 PubMed DOI PMC
Schmickl R, Yant L. Adaptive introgression: how polyploidy reshapes gene flow landscapes. New Phytol. 2021;230(2): 457–61. doi: 10.1111/nph.17204 PubMed DOI
Arnold BJ, Lahner B, DaCosta JM, Weisman CM, Hollister JD, Salt DE, et al.. Borrowed alleles and convergence in serpentine adaptation. Proc Natl Acad Sci U S A. 2016;113(29): 8320–25. doi: 10.1073/pnas.1600405113 PubMed DOI PMC
Marburger S, Monnahan P, Seear PJ, Martin SH, Koch J, Paajanen P, et al.. Interspecific introgression mediates adaptation to whole genome duplication. Nat Commun. 2019;10(1): 5218. doi: 10.1038/s41467-019-13159-5 PubMed DOI PMC
Slotte T, Huang H, Lascoux M, Ceplitis A. Polyploid speciation did not confer instant reproductive isolation in Capsella (Brassicaceae). Mol Biol Evol. 2008;25(7): 1472–81. doi: 10.1093/molbev/msn092 PubMed DOI
Te Beest M, Le Roux JJ, Richardson DM, Brysting AK, Suda J, Kubešová M, et al.. The more the better? The role of polyploidy in facilitating plant invasions. Ann Bot. 2012;109(1): 19–45. doi: 10.1093/aob/mcr277 PubMed DOI PMC
Baduel P, Bray S, Vallejo-Marin M, Kolář F, Yant L. The ‘Polyploid Hop’: shifting challenges and opportunities over the evolutionary lifespan of genome duplications. Front Ecol Evol. 2018;6: 117.
Morgan EJ, Čertner M, Lučanová M, Deniz U, Kubíková K, Venon A, et al.. Disentangling the components of triploid block and its fitness consequences in natural diploid-tetraploid contact zones of Arabidopsis arenosa. New Phytol. 2021;232(3): 1449–62. PubMed
Ronfort J. The mutation load under tetrasomic inheritance and its consequences for the evolution of the selfing rate in autotetraploid species. Genet Res (Camb). 1999;74(1): 31–42.
Monnahan P, Kolář F, Baduel P, Sailer C, Koch J, Horvath R, et al.. Pervasive population genomic consequences of genome duplication in Arabidopsis arenosa. Nat Ecol Evol. 2019;3(3): 457–68. doi: 10.1038/s41559-019-0807-4 PubMed DOI
Hämälä T, Moore C, Cowan L, Carlile M, Gopaulchan D, Brandrud MK, et al.. Impact of whole-genome duplications on structural variant evolution in Cochlearia. Nat Commun. 2024;15: 5377. PubMed PMC
Selmecki AM, Maruvka YE, Richmond PA, Guillet M, Shoresh N, Sorenson AL, et al.. Polyploidy can drive rapid adaptation in yeast. Nature. 2015;519(7543): 349–52. doi: 10.1038/nature14187 PubMed DOI PMC
Oziolor EM, Reid NM, Yair S, Lee KM, Guberman VerPloeg S, Bruns PC, et al.. Adaptive introgression enables evolutionary rescue from extreme environmental pollution. Science. 2019;364(6439): 455–57. doi: 10.1126/science.aav4155 PubMed DOI
Lee KM, Coop G. Population genomics perspectives on convergent adaptation. Philos Trans R Soc Lond B Biol Sci. 2019;374: 20180236. doi: 10.1098/rstb.2018.0236 PubMed DOI PMC
Bohutínská M, Vlček J, Yair S, Laenen B, Konečná V, Fracassetti M, et al.. Genomic basis of parallel adaptation varies with divergence in Arabidopsis and its relatives. Proc Natl Acad Sci U S A. 2021;118(21): e2022713118. doi: 10.1073/pnas.2022713118 PubMed DOI PMC
Konečná V, Bray S, Vlček J, Bohutínská M, Požárová D, Roy Choudhury R, et al.. Parallel adaptation in autopolyploid Arabidopsis arenosa is dominated by repeated recruitment of shared alleles. Nat Commun. 2021;12(4979): 1–13. doi: 10.1038/s41467-021-25256-5 PubMed DOI PMC
Wang L, Josephs EB, Lee KM, Roberts LM, Rellán-Álvarez R, Ross-Ibarra J, et al.. Molecular parallelism underlies convergent highland adaptation of maize landraces. Mol Biol Evol. 2021;38(9): 3567–80. doi: 10.1093/molbev/msab119 PubMed DOI PMC
Archambeault SL, Bärtschi LR, Merminod AD, Peichel CL. Adaptation via pleiotropy and linkage: association mapping reveals a complex genetic architecture within the stickleback Eda locus. Evol Lett. 2020;4(4): 282–301. doi: 10.1002/evl3.175 PubMed DOI PMC
Seear PJ, France MG, Gregory CL, Heavens D, Schmickl R, Yant L, et al.. A novel allele of ASY3 is associated with greater meiotic stability in autotetraploid Arabidopsis lyrata. PLoS Genet. 2020;16(7): e1008900. doi: 10.1371/journal.pgen.1008900 PubMed DOI PMC
Roberts Kingman GA, Vyas DN, Jones FC, Brady SD, Chen HI, Reid K, et al.. Predicting future from past: the genomic basis of recurrent and rapid stickleback evolution. Sci Adv. 2021;7(25): 5285–303. doi: 10.1126/sciadv.abg5285 PubMed DOI PMC
Yant L, Bomblies K. Genomic studies of adaptive evolution in outcrossing Arabidopsis species. Curr Opin Plant Biol. 2017;36: 9–14. doi: 10.1016/j.pbi.2016.11.018 PubMed DOI
Schmickl R, Koch MA. Arabidopsis hybrid speciation processes. Proc Natl Acad Sci U S A. 2011;108(34): 14192–97. doi: 10.1073/pnas.1104212108 PubMed DOI PMC
Arnold B, Kim S-T, Bomblies K. Single geographic origin of a widespread autotetraploid Arabidopsis arenosa lineage followed by interploidy admixture. Mol Biol Evol. 2015;32(6): 1382–95. doi: 10.1093/molbev/msv089 PubMed DOI
Pickrell JK, Pritchard JK. Inference of population splits and mixtures from genome-wide allele frequency data. PLoS Genet. 2012;8(11): e1002967. doi: 10.1371/journal.pgen.1002967 PubMed DOI PMC
Huson DH, Bryant D. Application of phylogenetic networks in evolutionary studies. Mol Biol Evol. 2006;23(2): 254–67. doi: 10.1093/molbev/msj030 PubMed DOI
Raj A, Stephens M, Pritchard JK. fastSTRUCTURE: variational inference of population structure in large SNP data sets. Genetics. 2014;197(2): 573–89. doi: 10.1534/genetics.114.164350 PubMed DOI PMC
Martin SH, Dasmahapatra KK, Nadeau NJ, Salazar C, Walters JR, Simpson F, et al.. Genome-wide evidence for speciation with gene flow in Heliconius butterflies. Genome Res. 2013;23(11): 1817–28. doi: 10.1101/gr.159426.113 PubMed DOI PMC
Booker TR, Yeaman S, Whitlock MC. Using genome scans to identify genes used repeatedly for adaptation. Evolution. 2023;77(3): 801–11. doi: 10.1093/evolut/qpac063 PubMed DOI
Burri R. Interpreting differentiation landscapes in the light of long-term linked selection. Evol Lett. 2017;1(3): 118–31.
Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J, et al.. STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 2015;43(D1): D447–52. doi: 10.1093/nar/gku1003 PubMed DOI PMC
Berardini TZ, Reiser L, Li D, Mezheritsky Y, Muller R, Strait E, et al.. The Arabidopsis Information Resource: making and mining the ‘gold standard’ annotated reference plant genome. Genesis. 2015;53(8): 474–85. doi: 10.1002/dvg.22877 PubMed DOI PMC
De Rocher EJ, Harkins KR, Galbraith DW, Bohnert HJ. Developmentally regulated systemic endopolyploid in succulents with small genomes. Science. 1990;250(4977): 99–101. doi: 10.1126/science.250.4977.99 PubMed DOI
Barow M. Endopolyploidy in seed plants. BioEssays. 2006;28(3): 271–81. doi: 10.1002/bies.20371 PubMed DOI
Novikova PY, Hohmann N, Nizhynska V, Tsuchimatsu T, Ali J, Muir G, et al.. Sequencing of the genus Arabidopsis identifies a complex history of nonbifurcating speciation and abundant trans-specific polymorphism. Nat Genet. 2016;48(9): 1077–82. doi: 10.1038/ng.3617 PubMed DOI
Novikova PY, Hohmann N, Van de Peer Y. Polyploid Arabidopsis species originated around recent glaciation maxima. Curr Opin Plant Biol. 2018;42: 8–15. doi: 10.1016/j.pbi.2018.01.005 PubMed DOI
Ansell SW, Stenøien HK, Grundmann M, Schneider H, Hemp A, Bauer N, et al.. Population structure and historical biogeography of European Arabidopsis lyrata. Heredity. 2010;105(6): 543–53. doi: 10.1038/hdy.2010.10 PubMed DOI
Guggisberg A, Liu X, Suter L, Mansion G, Fischer MC, Fior S, et al.. The genomic basis of adaptation to calcareous and siliceous soils in Arabidopsis lyrata. Mol Ecol. 2018;27(24): 5088–103. doi: 10.1111/mec.14930 PubMed DOI
Marques DA, Meier JI, Seehausen O. A combinatorial view on speciation and adaptive radiation. Trends Ecol Evol. 2019;34(6): 531–44. doi: 10.1016/j.tree.2019.02.008 PubMed DOI
Leal JL, Milesi P, Hodková E, Zhou Q, James J, Eklund DM, et al.. Complex polyploids: origins, genomic composition, and role of introgressed alleles. Syst Biol. 2024;syae012: doi: 10.1093/sysbio/syae012 PubMed DOI PMC
Hämälä T, Savolainen O. Genomic patterns of local adaptation under gene flow in Arabidopsis lyrata. Mol Biol Evol. 2019;36(11): 2557–71. doi: 10.1093/molbev/msz149 PubMed DOI
Dukić M, Bomblies K. Male and female recombination landscapes of diploid Arabidopsis arenosa. Genetics. 2022;220(3): iyab236. doi: 10.1093/genetics/iyab236 PubMed DOI PMC
Pecinka A, Fang W, Rehmsmeier M, Levy AA, Mittelsten Scheid O. Polyploidization increases meiotic recombination frequency in Arabidopsis. BMC Biol. 2011;9: 24. doi: 10.1186/1741-7007-9-24 PubMed DOI PMC
McGregor AP, Orgogozo V, Delon I, Zanet J, Srinivasan DG, Payre F, et al.. Morphological evolution through multiple cis-regulatory mutations at a single gene. Nature. 2007;448(7153): 587–90. doi: 10.1038/nature05988 PubMed DOI
Moran RL, Richards EJ, Ornelas-García CP, Gross JB, Donny A, Wiese J, et al.. Selection-driven trait loss in independently evolved cavefish populations. Nat Commun. 2023;14: 2557. doi: 10.1038/s41467-023-37909-8 PubMed DOI PMC
Novikova PY, Tsuchimatsu T, Simon S, Nizhynska V, Voronin V, Burns R, et al.. Genome sequencing reveals the origin of the allotetraploid Arabidopsis suecica. Mol Biol Evol. 2017;34(4): 957–68. doi: 10.1093/molbev/msw299 PubMed DOI PMC
Hämälä T, Mattila TM, Leinonen PH, Kuittinen H, Savolainen O. Role of seed germination in adaptation and reproductive isolation in Arabidopsis lyrata. Mol Ecol. 2017;26(13): 3484–96. doi: 10.1111/mec.14135 PubMed DOI
Mattila TM, Tyrmi J, Pyhäjärvi T, Savolainen O. Genome-wide analysis of colonization history and concomitant selection in Arabidopsis lyrata. Mol Biol Evol. 2017;34(10): 2665–77. doi: 10.1093/molbev/msx193 PubMed DOI
Hämälä T, Mattila TM, Savolainen O. Local adaptation and ecological differentiation under selection, migration, and drift in Arabidopsis lyrata. Evolution. 2018;72(7): 1373–86. doi: 10.1111/evo.13502 PubMed DOI
Preite V, Sailer C, Syllwasschy L, Bray S, Ahmadi H, Krämer U, et al.. Convergent evolution in Arabidopsis halleri and Arabidopsis arenosa on calamine metalliferous soils. Philos Trans R Soc Lond B Biol Sci. 2019;374(1777): 20180243. doi: 10.1098/rstb.2018.0243 PubMed DOI PMC
Kolář F, Lučanová M, Záveská E, Fuxová G, Mandáková T, Španiel S, et al.. Ecological segregation does not drive the intricate parapatric distribution of diploid and tetraploid cytotypes of the Arabidopsis arenosa group (Brassicaceae). Biol J Linn Soc. 2016;119(3): 673–88.
Meirmans PG, Liu S, van Tienderen PH. The analysis of polyploid genetic data. J Hered. 2018;109(3): 283–96. doi: 10.1093/jhered/esy006 PubMed DOI
Bohutínská M, Vlček J, Monnahan P, Kolář F. Population genomic analysis of diploid-autopolyploid species. Methods Mol Biol. 2023;2545: 297–324. doi: 10.1007/978-1-0716-2561-3_16 PubMed DOI
Stift M, Kolář F, Meirmans PG. STRUCTURE is more robust than other clustering methods in simulated mixed-ploidy populations. Heredity. 2019;123(4): 429–41. doi: 10.1038/s41437-019-0247-6 PubMed DOI PMC
Jombart T. adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics. 2008;24(11): 1403–05. doi: 10.1093/bioinformatics/btn129 PubMed DOI
Tajima F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics. 1989;123(3): 585–95. doi: 10.1093/genetics/123.3.585 PubMed DOI PMC
Kolář F, Fuxová G, Záveská E, Nagano AJ, Hyklová L, Lučanová M, et al.. Northern glacial refugia and altitudinal niche divergence shape genome-wide differentiation in the emerging plant model Arabidopsis arenosa. Mol Ecol. 2016;25(16): 3929–49. doi: 10.1111/mec.13721 PubMed DOI
Hudson RR, Slatkin M, Maddison WP. Estimation of levels of gene flow from DNA sequence data. Genetics. 1992;132(2): 583–9. doi: 10.1093/genetics/132.2.583 PubMed DOI PMC
Rawat V, Abdelsamad A, Pietzenuk B, Seymour DK, Koenig D, Weigel D, et al.. Improving the annotation of Arabidopsis lyrata using RNA-Seq data. PLoS One. 2015;10(9): e0137391. doi: 10.1371/journal.pone.0137391 PubMed DOI PMC
Wang M, Zhao Y, Zhang B. Efficient test and visualization of multi-set intersections. Sci Rep. 2015;5: 16923. doi: 10.1038/srep16923 PubMed DOI PMC
Kyriakidou M, Tai HH, Anglin NL, Ellis D, Strömvik MV. Current strategies of polyploid plant genome sequence assembly. Front Plant Sci. 2018;9: 1660. doi: 10.3389/fpls.2018.01660 PubMed DOI PMC
Nei M. Genetic distance between populations. Am Nat. 1972;106(949): 283–92.