A novel allele of ASY3 is associated with greater meiotic stability in autotetraploid Arabidopsis lyrata
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
BB/M01973X/1
Biotechnology and Biological Sciences Research Council - United Kingdom
BB/P013511/1
Biotechnology and Biological Sciences Research Council - United Kingdom
PubMed
32667955
PubMed Central
PMC7392332
DOI
10.1371/journal.pgen.1008900
PII: PGENETICS-D-19-01978
Knihovny.cz E-zdroje
- MeSH
- alely MeSH
- Arabidopsis genetika růst a vývoj MeSH
- chromozomální proteiny, nehistonové genetika MeSH
- chromozomy rostlin genetika MeSH
- diploidie MeSH
- DNA vazebné proteiny genetika MeSH
- meióza genetika MeSH
- párování chromozomů genetika MeSH
- proteiny huseníčku genetika MeSH
- segregace chromozomů MeSH
- tetraploidie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- ASY3 protein, Arabidopsis MeSH Prohlížeč
- chromozomální proteiny, nehistonové MeSH
- DNA vazebné proteiny MeSH
- HEI10 protein, Arabidopsis MeSH Prohlížeč
- proteiny huseníčku MeSH
In this study we performed a genotype-phenotype association analysis of meiotic stability in 10 autotetraploid Arabidopsis lyrata and A. lyrata/A. arenosa hybrid populations collected from the Wachau region and East Austrian Forealps. The aim was to determine the effect of eight meiosis genes under extreme selection upon adaptation to whole genome duplication. Individual plants were genotyped by high-throughput sequencing of the eight meiosis genes (ASY1, ASY3, PDS5b, PRD3, REC8, SMC3, ZYP1a/b) implicated in synaptonemal complex formation and phenotyped by assessing meiotic metaphase I chromosome configurations. Our results reveal that meiotic stability varied greatly (20-100%) between individual tetraploid plants and associated with segregation of a novel ASYNAPSIS3 (ASY3) allele derived from A. lyrata. The ASY3 allele that associates with meiotic stability possesses a putative in-frame tandem duplication (TD) of a serine-rich region upstream of the coiled-coil domain that appears to have arisen at sites of DNA microhomology. The frequency of multivalents observed in plants homozygous for the ASY3 TD haplotype was significantly lower than in plants heterozygous for ASY3 TD/ND (non-duplicated) haplotypes. The chiasma distribution was significantly altered in the stable plants compared to the unstable plants with a shift from proximal and interstitial to predominantly distal locations. The number of HEI10 foci at pachytene that mark class I crossovers was significantly reduced in a plant homozygous for ASY3 TD compared to a plant heterozygous for ASY3 ND/TD. Fifty-eight alleles of the 8 meiosis genes were identified from the 10 populations analysed, demonstrating dynamic population variability at these loci. Widespread chimerism between alleles originating from A. lyrata/A. arenosa and diploid/tetraploids indicates that this group of rapidly evolving genes may provide precise adaptive control over meiotic recombination in the tetraploids, the very process that gave rise to them.
Department of Botany Faculty of Science Charles University Prague Czech Republic
Department of Genetics and Genome Biology University of Leicester Leicester United Kingdom
Earlham Institute Norwich Research Park Innovation Centre Norwich United Kingdom
Institute of Botany The Czech Academy of Sciences Průhonice Czech Republic
Zobrazit více v PubMed
Alix K, Gerard PR, Schwarzacher T, Heslop-Harrison JSP. Polyploidy and interspecific hybridization: partners for adaptation, speciation and evolution in plants. Ann Bot. 2017;120(2):183–94. 10.1093/aob/mcx079 . PubMed DOI PMC
Selmecki AM, Maruvka YE, Richmond PA, Guillet M, Shoresh N, Sorenson AL, et al. Polyploidy can drive rapid adaptation in yeast. Nature. 2015;519(7543):349–52. 10.1038/nature14187 . PubMed DOI PMC
Baduel P, Bray S, Vallejo-Marin M, Kolar F, Yant L. The "Polyploid Hop": Shifting Challenges and Opportunities Over the Evolutionary Lifespan of Genome Duplications. Front Ecol Evol. 2018;6 ARTN 117 10.3389/fevo.2018.00117 DOI
Rey MD, Martin AC, Higgins J, Swarbreck D, Uauy C, Shaw P, et al. Exploiting the ZIP4 homologue within the wheat Ph1 locus has identified two lines exhibiting homoeologous crossover in wheat-wild relative hybrids. Mol Breed. 2017;37(8):95 10.1007/s11032-017-0700-2 . PubMed DOI PMC
Gonzalo A, Lucas MO, Charpentier C, Sandmann G, Lloyd A, Jenczewski E. Reducing MSH4 copy number prevents meiotic crossovers between non-homologous chromosomes in Brassica napus. Nat Commun. 2019;10(1):2354 10.1038/s41467-019-10010-9 . PubMed DOI PMC
Jenczewski E, Eber F, Grimaud A, Huet S, Lucas MO, Monod H, et al. PrBn, a major gene controlling homeologous pairing in oilseed rape (Brassica napus) haploids. Genetics. 2003;164(2):645–53. . PubMed PMC
Henry IM, Dilkes BP, Tyagi A, Gao J, Christensen B, Comai L. The BOY NAMED SUE quantitative trait locus confers increased meiotic stability to an adapted natural allopolyploid of Arabidopsis. Plant Cell. 2014;26(1):181–94. 10.1105/tpc.113.120626 . PubMed DOI PMC
Yant L, Hollister JD, Wright KM, Arnold BJ, Higgins JD, Franklin FCH, et al. Meiotic adaptation to genome duplication in Arabidopsis arenosa. Curr Biol. 2013;23(21):2151–6. Epub 2013/10/22. 10.1016/j.cub.2013.08.059 . PubMed DOI PMC
Page SL, Hawley RS. The genetics and molecular biology of the synaptonemal complex. Annu Rev Cell Dev Biol. 2004;20:525–58. 10.1146/annurev.cellbio.19.111301.155141 . PubMed DOI
Lam WS, Yang X, Makaroff CA. Characterization of Arabidopsis thaliana SMC1 and SMC3: evidence that AtSMC3 may function beyond chromosome cohesion. J Cell Sci. 2005;118(Pt 14):3037–48. 10.1242/jcs.02443 . PubMed DOI
Pradillo M, Knoll A, Oliver C, Varas J, Corredor E, Puchta H, et al. Involvement of the Cohesin Cofactor PDS5 (SPO76) During Meiosis and DNA Repair in Arabidopsis thaliana. Front Plant Sci. 2015;6:1034 10.3389/fpls.2015.01034 . PubMed DOI PMC
Bhatt AM, Lister C, Page T, Fransz P, Findlay K, Jones GH, et al. The DIF1 gene of Arabidopsis is required for meiotic chromosome segregation and belongs to the REC8/RAD21 cohesin gene family. Plant J. 1999;19(4):463–72. 10.1046/j.1365-313x.1999.00548.x PubMed DOI
Cai X, Dong F, Edelmann RE, Makaroff CA. The Arabidopsis SYN1 cohesin protein is required for sister chromatid arm cohesion and homologous chromosome pairing. J Cell Sci. 2003;116(Pt 14):2999–3007. 10.1242/jcs.00601 . PubMed DOI
Chelysheva L, Diallo S, Vezon D, Gendrot G, Vrielynck N, Belcram K, et al. AtREC8 and AtSCC3 are essential to the monopolar orientation of the kinetochores during meiosis. J Cell Sci. 2005;118(Pt 20):4621–32. 10.1242/jcs.02583 . PubMed DOI
Lambing C, Tock AJ, Topp SD, Choi K, Kuo PC, Zhao X, et al. Interacting genomic landscapes of REC8-cohesin, chromatin and meiotic recombination in Arabidopsis thaliana. Plant Cell. 2020. Epub 2020/02/07. 10.1105/tpc.19.00866 . PubMed DOI PMC
Tesse S, Bourbon HM, Debuchy R, Budin K, Dubois E, Liangran Z, et al. Asy2/Mer2: an evolutionarily conserved mediator of meiotic recombination, pairing, and global chromosome compaction. Genes Dev. 2017;31(18):1880–93. Epub 2017/10/13. 10.1101/gad.304543.117 . PubMed DOI PMC
De Muyt A, Pereira L, Vezon D, Chelysheva L, Gendrot G, Chambon A, et al. A high throughput genetic screen identifies new early meiotic recombination functions in Arabidopsis thaliana. Plos Genet. 2009;5(9):e1000654 10.1371/journal.pgen.1000654 . PubMed DOI PMC
Armstrong SJ, Caryl AP, Jones GH, Franklin FC. Asy1, a protein required for meiotic chromosome synapsis, localizes to axis-associated chromatin in Arabidopsis and Brassica. J Cell Sci. 2002;115(Pt 18):3645–55. 10.1242/jcs.00048 . PubMed DOI
Ferdous M, Higgins JD, Osman K, Lambing C, Roitinger E, Mechtler K, et al. Inter-homolog crossing-over and synapsis in Arabidopsis meiosis are dependent on the chromosome axis protein AtASY3. Plos Genet. 2012;8(2):e1002507 10.1371/journal.pgen.1002507 . PubMed DOI PMC
Chambon A, West A, Vezon D, Horlow C, De Muyt A, Chelysheva L, et al. Identification of ASYNAPTIC4, a Component of the Meiotic Chromosome Axis. Plant Physiol. 2018;178(1):233–46. 10.1104/pp.17.01725 . PubMed DOI PMC
Caryl AP, Armstrong SJ, Jones GH, Franklin FC. A homologue of the yeast HOP1 gene is inactivated in the Arabidopsis meiotic mutant asy1. Chromosoma. 2000;109(1–2):62–71. Epub 2000/06/16. 10.1007/s004120050413 . PubMed DOI
West AMV, Rosenbereg SC, Ur SN, Lehmern MK, Ye QZ, Hagemann G, et al. A conserved filamentous assembly underlies the structure of the meiotic chromosome axis. Elife. 2019;8 ARTN e40372 10.7554/eLife.40372 PubMed DOI PMC
Higgins JD, Sanchez-Moran E, Armstrong SJ, Jones GH, Franklin FC. The Arabidopsis synaptonemal complex protein ZYP1 is required for chromosome synapsis and normal fidelity of crossing over. Genes Dev. 2005;19(20):2488–500. 10.1101/gad.354705 . PubMed DOI PMC
Schmickl R, Koch MA. Arabidopsis hybrid speciation processes. Proc Natl Acad Sci U S A. 2011;108(34):14192–7. Epub 2011/08/10. 10.1073/pnas.1104212108 . PubMed DOI PMC
Marburger S, Monnahan P, Seear PJ, Martin SH, Koch J, Paajanen P, et al. Interspecific introgression mediates adaptation to whole genome duplication. Nat Commun. 2019;10(1):5218 Epub 2019/11/20. 10.1038/s41467-019-13159-5 . PubMed DOI PMC
Hohmann N, Koch MA. An Arabidopsis introgression zone studied at high spatio-temporal resolution: interglacial and multiple genetic contact exemplified using whole nuclear and plastid genomes. BMC Genomics. 2017;18(1):810 Epub 2017/10/24. 10.1186/s12864-017-4220-6 . PubMed DOI PMC
Arnold B, Kim ST, Bomblies K. Single Geographic Origin of a Widespread Autotetraploid Arabidopsis arenosa Lineage Followed by Interploidy Admixture. Mol Biol Evol. 2015;32(6):1382–95. Epub 2015/04/12. 10.1093/molbev/msv089 . PubMed DOI
Lafon-Placette C, Köhler C. Endosperm-based postzygotic hybridization barriers: developmental mechanisms and evolutionary drivers. Molecular Ecology. 2016;25(11):2620–9. 10.1111/mec.13552 PubMed DOI
Morgan C, Zhang H, Henry CE, Franklin FCH, Bomblies K. Derived alleles of two axis proteins affect meiotic traits in autotetraploid Arabidopsis arenosa. Proceedings of the National Academy of Sciences. 2020;117(16):8980–8. 10.1073/pnas.1919459117 PubMed DOI PMC
Chelysheva L, Vezon D, Chambon A, Gendrot G, Pereira L, Lemhemdi A, et al. The Arabidopsis HEI10 is a new ZMM protein related to Zip3. Plos Genet. 2012;8(7):e1002799 Epub 2012/07/31. 10.1371/journal.pgen.1002799 . PubMed DOI PMC
Wright KM, Arnold B, Xue K, Surinova M, O'Connell J, Bomblies K. Selection on meiosis genes in diploid and tetraploid Arabidopsis arenosa. Mol Biol Evol. 2015;32(4):944–55. 10.1093/molbev/msu398 . PubMed DOI PMC
Grishaeva TM, Bogdanov YF. Conservation and variability of synaptonemal complex proteins in phylogenesis of eukaryotes. Int J Evol Biol. 2014;2014:856230 Epub 2014/08/26. 10.1155/2014/856230 . PubMed DOI PMC
Yang C, Sofroni K, Wijnker E, Hamamura Y, Carstens L, Harashima H, et al. The Arabidopsis Cdk1/Cdk2 homolog CDKA;1 controls chromosome axis assembly during plant meiosis. The EMBO Journal. 2020;39(3):e101625 10.15252/embj.2019101625 PubMed DOI PMC
Osman K, Yang J, Roitinger E, Lambing C, Heckmann S, Howell E, et al. Affinity proteomics reveals extensive phosphorylation of the Brassica chromosome axis protein ASY1 and a network of associated proteins at prophase I of meiosis. Plant J. 2018;93(1):17–33. 10.1111/tpj.13752 . PubMed DOI PMC
Brakenhoff RH, Schoenmakers JG, Lubsen NH. Chimeric cDNA clones: a novel PCR artifact. Nucleic Acids Res. 1991;19(8):1949 Epub 1991/04/25. 10.1093/nar/19.8.1949 . PubMed DOI PMC
Chen JM, Cooper DN, Chuzhanova N, Ferec C, Patrinos GP. Gene conversion: mechanisms, evolution and human disease. Nat Rev Genet. 2007;8(10):762–75. Epub 2007/09/12. 10.1038/nrg2193 . PubMed DOI
Hazarika MH, Rees H. Genotypic control of chromosome behaviour in rye X. Chromosome pairing and fertility in autotetraploids. Heredity. 1967;22(3):317–32. 10.1038/hdy.1967.44 DOI
He W, Rao H, Tang S, Bhagwat N, Kulkarni DS, Ma Y, et al. Regulated Proteolysis of MutSgamma Controls Meiotic Crossing Over. Mol Cell. 2020. Epub 2020/03/05. 10.1016/j.molcel.2020.02.001 . PubMed DOI PMC
Mergner J, Frejno M, List M, Papacek M, Chen X, Chaudhary A, et al. Mass-spectrometry-based draft of the Arabidopsis proteome. Nature. 2020. 10.1038/s41586-020-2094-2 PubMed DOI
Sanchez-Moran E, Santos JL, Jones GH, Franklin FC. ASY1 mediates AtDMC1-dependent interhomolog recombination during meiosis in Arabidopsis. Genes Dev. 2007;21(17):2220–33. 10.1101/gad.439007 . PubMed DOI PMC
Jorgensen MH, Ehrich D, Schmickl R, Koch MA, Brysting AK. Interspecific and interploidal gene flow in Central European Arabidopsis (Brassicaceae). BMC Evol Biol. 2011;11:346 10.1186/1471-2148-11-346 . PubMed DOI PMC
Bomblies K, Higgins JD, Yant L. Meiosis evolves: adaptation to external and internal environments. The New phytologist. 2015;208(2):306–23. 10.1111/nph.13499 . PubMed DOI
Giraut L, Falque M, Drouaud J, Pereira L, Martin OC, Mezard C. Genome-Wide Crossover Distribution in Arabidopsis thaliana Meiosis Reveals Sex-Specific Patterns along Chromosomes. Plos Genet. 2011;7(11). ARTN e1002354 10.1371/journal.pgen.1002354 PubMed DOI PMC
Otto SP. The evolutionary consequences of polyploidy. Cell. 2007;131(3):452–62. 10.1016/j.cell.2007.10.022 . PubMed DOI
Monnahan P, Kolar F, Baduel P, Sailer C, Koch J, Horvath R, et al. Pervasive population genomic consequences of genome duplication in Arabidopsis arenosa. Nat Ecol Evol. 2019;3(3):457–68. 10.1038/s41559-019-0807-4 . PubMed DOI
Hu TT, Pattyn P, Bakker EG, Cao J, Cheng JF, Clark RM, et al. The Arabidopsis lyrata genome sequence and the basis of rapid genome size change. Nat Genet. 2011;43(5):476–+. 10.1038/ng.807 PubMed DOI PMC
Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32(5):1792–7. 10.1093/nar/gkh340 . PubMed DOI PMC
Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol. 2010;59(3):307–21. Epub 2010/06/09. 10.1093/sysbio/syq010 . PubMed DOI
Huelsenbeck JP, Ronquist F. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics. 2001;17(8):754–5. Epub 2001/08/29. 10.1093/bioinformatics/17.8.754 . PubMed DOI
Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol Biol Evol. 2018;35(6):1547–9. Epub 2018/05/04. 10.1093/molbev/msy096 . PubMed DOI PMC
Mascher M, Gundlach H, Himmelbach A, Beier S, Twardziok SO, Wicker T, et al. A chromosome conformation capture ordered sequence of the barley genome. Nature. 2017;544(7651):427–33. 10.1038/nature22043 . PubMed DOI
Higgins JD, Wright KM, Bomblies K, Franklin FC. Cytological techniques to analyze meiosis in Arabidopsis arenosa for investigating adaptation to polyploidy. Front Plant Sci. 2014;4:546 10.3389/fpls.2013.00546 . PubMed DOI PMC
Chelysheva L, Grandont L, Vrielynck N, le Guin S, Mercier R, Grelon M. An easy protocol for studying chromatin and recombination protein dynamics during Arabidopsis thaliana meiosis: immunodetection of cohesins, histones and MLH1. Cytogenet Genome Res. 2010;129(1–3):143–53. Epub 2010/07/16. 10.1159/000314096 . PubMed DOI
Lambing C, Osman K, Nuntasoontorn K, West A, Higgins JD, Copenhaver GP, et al. Arabidopsis PCH2 Mediates Meiotic Chromosome Remodeling and Maturation of Crossovers. Plos Genet. 2015;11(7):e1005372 10.1371/journal.pgen.1005372 . PubMed DOI PMC
Wong YH, Lee TY, Liang HK, Huang CM, Wang TY, Yang YH, et al. KinasePhos 2.0: a web server for identifying protein kinase-specific phosphorylation sites based on sequences and coupling patterns. Nucleic Acids Research. 2007;35:W588–W94. 10.1093/nar/gkm322 PubMed DOI PMC
Blom N, Sicheritz-Ponten T, Gupta R, Gammeltoft S, Brunak S. Prediction of post-translational glycosylation and phosphorylation of proteins from the amino acid sequence. Proteomics. 2004;4(6):1633–49. 10.1002/pmic.200300771 . PubMed DOI
Zhao Q, Xie YB, Zheng YY, Jiang S, Liu WZ, Mu WP, et al. GPS-SUMO: a tool for the prediction of sumoylation sites and SUMO-interaction motifs. Nucleic Acids Research. 2014;42(W1):W325–W30. 10.1093/nar/gku383 PubMed DOI PMC
Complex Polyploids: Origins, Genomic Composition, and Role of Introgressed Alleles
Novelty and Convergence in Adaptation to Whole Genome Duplication