A reduced vector model predictive controller for a three-level neutral point clamped inverter with common-mode voltage suppression
Status PubMed-not-MEDLINE Language English Country England, Great Britain Media electronic
Document type Journal Article
PubMed
38956412
PubMed Central
PMC11219768
DOI
10.1038/s41598-024-66013-0
PII: 10.1038/s41598-024-66013-0
Knihovny.cz E-resources
- Keywords
- Common mode voltage reduction, Grid-connected PV power generation system, Inverter NPC, Model predictive control, Renewable energy integration, Voltage vectors,
- Publication type
- Journal Article MeSH
This paper presents a novel, state-of-the-art predictive control architecture that addresses the computational complexity and limitations of conventional predictive control methodologies while enhancing the performance efficacy of predictive control techniques applied to three-level voltage source converters (NPC inverters). This framework's main goal is to decrease the number of filtered voltage lifespan vectors in each sector, which will increase the overall efficiency of the control system and allow for common mode voltage reduction in three-level voltage source converters. Two particular tactics are described in order to accomplish this. First, a statistical approach is presented for the proactive detection of potential voltage vectors, with an emphasis on selecting and including the vectors that are most frequently used. This method lowers the computational load by limiting the search space needed to find the best voltage vectors. Then, using statistical analysis, a plan is presented to split the sectors into two separate parts, so greatly limiting the number of voltage vectors. The goal of this improved predictive control methodology is to reduce computing demands and mitigate common mode voltage. The suggested strategy's resilience is confirmed in a range of operational scenarios using simulations and empirical evaluation. The findings indicate a pronounced enhancement in computational efficiency and a notable diminution in common mode voltage, thereby underscoring the efficacy of the proposed methodology. This increases their ability to incorporate renewable energy sources into the electrical grid.
Department of Electrical Engineering Graphic Era Dehradun 248002 India
Department of Electrical Engineering Port Said University Port Said 42526 Egypt
Department of Electrical Engineering University of Malaya Kuala Lumpur Malaysia
Electrical Engineering Department Faculty of Technology University of El Oued 39000 El Oued Algeria
Graphic Era Hill University Dehradun 248002 India
Hourani Center for Applied Scientific Research Al Ahliyya Amman University Amman Jordan
See more in PubMed
Zhang X, Ma Z, Niu H, Huang J, Lin G. Finite-control-set model-predictive control with data-driven switching frequency control for single-phase three-level NPC rectifiers. IEEE Trans. Ind. Electron. 2023 doi: 10.1109/TIE.2023.3310035. DOI
Bebboukha, A., Chouaib, L., Meneceur, R. and Harbi, I. Experimental evaluation of dead time performance in single-phase inverter MOSFETs and IGBTs under varying loads. In 2023 International Conference on Decision Aid Sciences and Applications (DASA), pp. 635-640 (IEEE, 2023).
El Ouanjli N, et al. Direct torque control of doubly fed induction motor using three-level NPC inverter. Prot. Control Mod. Power Syst. 2019;4:1–9. doi: 10.1186/s41601-019-0131-7. DOI
Babaie M, Sharifzadeh M, Mehrasa M, Chouinard G, Al-Haddad K. Supervised learning model predictive control trained by ABC algorithm for common-mode voltage suppression in NPC inverter. IEEE J. Emerg. Sel. Topics Power Electron. 2020;9(3):3446–3456. doi: 10.1109/JESTPE.2020.2984674. DOI
Ouari K, Belkhier Y, Djouadi H, Kasri A, Bajaj M, Alsharef M, Elattar EE, Kamel S. Improved nonlinear generalized model predictive control for robustness and power enhancement of DFIG-based wind energy converter. Front. Energy Res. 2022 doi: 10.3389/fenrg.2022.996206. DOI
Djouadi H, Ouari K, Belkhier Y, Lehouche H, Ibaouene C, Bajaj M, AboRas KM, Khan B, Kamel S. Non-linear multivariable permanent magnet synchronous machine control: A robust non-linear generalized predictive controller approach. IET Control Theory Appl. 2023;17:1688–1702. doi: 10.1049/cth2.12509. DOI
Barros JD, Silva JFA, Jesus ÉG. Fast-predictive optimal control of NPC multilevel converters. IEEE Trans. Ind. Electron. 2012;60(2):619–627. doi: 10.1109/TIE.2012.2206352. DOI
Chowdhury MR, Chowdhury S, Rahman MA, Islam MR. Advanced switching sequences based model-predictive control for single-phase NPC converters. IEEE Trans. Ind. Electron. 2021;69(4):3515–3526. doi: 10.1109/TIE.2021.3071697. DOI
Calle-Prado A, Alepuz S, Bordonau J, Cortes P, Rodriguez J. Predictive control of a back-to-back NPC converter-based wind power system. IEEE Trans. Ind. Electron. 2016;63(7):4615–4627. doi: 10.1109/TIE.2016.2529564. DOI
Kanouni B, Mekhilef S. A multi-objective model predictive current control with two-step horizon for double-stage grid-connected inverter PEMFC system. Int. J. Hydrogen Energy. 2022;47(4):2685–2707. doi: 10.1016/j.ijhydene.2021.10.182. DOI
Ezhilarasan G, Mohanraj K, Vishnuram P, Bajaj M, Blazek V, Prokop L, Misak S. An empirical survey of topologies, evolution, and current developments in multilevel inverters. Alex. Eng. J. 2023;83:148–194. doi: 10.1016/j.aej.2023.10.049. DOI
Liu Z, Xia Z, Li D, Wang Y, Li F. An optimal model predictive control method for five-level active NPC inverter. IEEE Access. 2020;8:221414–221423. doi: 10.1109/ACCESS.2020.3043604. DOI
Zhang Z, et al. Advances and opportunities in the model predictive control of microgrids: Part I–primary layer. Int. J. Electr. Power Energy Syst. 2022;134:107411. doi: 10.1016/j.ijepes.2021.107411. DOI
Mahdavi Aghdam, M. An improved finite control set model predictive control for power converters in distributed generations/microgrids (2019).
Bekhoucha N, Kermadi M, Mesbahi N, Mekhilef S. Performance investigation of deadbeat predictive controllers for three-level neutral point clamped inverter. IEEE J. Emerg. Sel. Top. Power Electron. 2021;10(1):1165–1177. doi: 10.1109/JESTPE.2021.3092057. DOI
Alsofyani IM, Halabi LM. Unidirectional finite control set-predictive torque control of IPMSM fed by three-level NPC inverter with simplified voltage-vector lookup table. Electronics. 2023;12(1):252. doi: 10.3390/electronics12010252. DOI
Medekhel L, Hettiri M, Labiod C, Srairi K, Benbouzid M. Enhancing the performance and efficiency of two-level voltage source inverters: A modified model predictive control approach for common-mode voltage suppression. Energies. 2023;16(21):7305. doi: 10.3390/en16217305. DOI
Jena K, Kumar D, Janardhan K, Kumar BH, Singh AR, Nikolovski S, Bajaj M. A novel three-phase switched-capacitor five-level multilevel inverter with reduced components and self-balancing ability. Appl. Sci. 2023;13:1713. doi: 10.3390/app13031713. DOI
Jayakumar V, Chokkalingam B, Munda JL. A comprehensive review on space vector modulation techniques for neutral point clamped multi-level inverters. IEEE Access. 2021;9:112104–112144. doi: 10.1109/ACCESS.2021.3100346. DOI
Guo F, Yang T, Diab AM, Yeoh SS, Bozhko S, Wheeler P. An enhanced virtual space vector modulation scheme of three-level NPC converters for more-electric-aircraft applications. IEEE Trans. Ind. Appl. 2021;57(5):5239–5251. doi: 10.1109/TIA.2021.3085798. DOI
Guo L, Jin N, Gan C, Xu L, Wang Q. An improved model predictive control strategy to reduce common-mode voltage for two-level voltage source inverters considering dead-time effects. IEEE Trans. Ind. Electron. 2018;66(5):3561–3572. doi: 10.1109/TIE.2018.2856194. DOI
Choudhury S, Bajaj M, Dash T, Kamel S, Jurado F. Multilevel inverter: A survey on classical and advanced topologies, control schemes, applications to power system and future prospects. Energies. 2021;14:5773. doi: 10.3390/en14185773. DOI
Pou J, Pindado R, Boroyevich D, Rodríguez P. Evaluation of the low-frequency neutral-point voltage oscillations in the three-level inverter. IEEE Trans. Ind. Electron. 2005;52(6):1582–1588. doi: 10.1109/TIE.2005.858723. DOI
Wu M, Li YW, Konstantinou G. A comprehensive review of capacitor voltage balancing strategies for multilevel converters under selective harmonic elimination PWM. IEEE Trans. Power Electron. 2020;36(3):2748–2767. doi: 10.1109/TPEL.2020.3012915. DOI
Wang J, Yuan X, Jin B. Carrier-based closed-loop DC-link voltage balancing algorithm for four level NPC converters based on redundant level modulation. IEEE Trans. Ind. Electron. 2020;68(12):11707–11718. doi: 10.1109/TIE.2020.3039225. DOI
Mora A, Cárdenas-Dobson R, Aguilera RP, Angulo A, Donoso F, Rodriguez J. Computationally efficient cascaded optimal switching sequence MPC for grid-connected three-level NPC converters. IEEE Trans. Power Electron. 2019;34(12):12464–12475. doi: 10.1109/TPEL.2019.2906805. DOI
Tayebi SM, Batarseh I. Mitigation of current distortion in a three-phase microinverter with phase skipping using a synchronous sampling DC-link voltage control. IEEE Trans. Ind. Electron. 2017;65(5):3910–3920. doi: 10.1109/TIE.2017.2760864. DOI
Karamanakos P, Liegmann E, Geyer T, Kennel R. Model predictive control of power electronic systems: Methods, results, and challenges. IEEE Open J. Ind. Appl. 2020;1:95–114. doi: 10.1109/OJIA.2020.3020184. DOI
Easley M, Shadmand MB, Abu-Rub H. Hierarchical model predictive control of grid-connected cascaded multilevel inverter. IEEE J. Emerg. Sel. Top Power Electron. 2020;9(3):3137–3149. doi: 10.1109/JESTPE.2020.3015128. DOI
Campanhol, L. B., da Silva, S. A. and Azauri, A. A three-phase four-wire grid-connected photovoltaic system using a dual unified power quality conditioner. In 2015 IEEE 13th Brazilian Power Electronics Conference and 1st Southern Power Electronics Conference (COBEP/SPEC), pp. 1–6 (IEEE, 2015).
Xia S, Wu X, Zheng J, Li X, Wang K. A virtual space vector PWM with active neutral point voltage control and common mode voltage suppression for three-level NPC converters. IEEE Trans. Ind. Electron. 2021;68(12):11761–11771. doi: 10.1109/TIE.2020.3048292. DOI