Enhanced photovoltaic panel diagnostics through AI integration with experimental DC to DC Buck Boost converter implementation
Status PubMed-not-MEDLINE Language English Country England, Great Britain Media electronic
Document type Journal Article
PubMed
39748058
PubMed Central
PMC11697571
DOI
10.1038/s41598-024-84365-5
PII: 10.1038/s41598-024-84365-5
Knihovny.cz E-resources
- Keywords
- Artificial Intelligence, DC/DC Buck-Boost Converter, Fault Detection, Feature selection, Harris Hawks optimization, I-V characteristics, Machine learning, Photovoltaic System, Real-Time Data Monitoring, XGBoost,
- Publication type
- Journal Article MeSH
Health monitoring and analysis of photovoltaic (PV) systems are critical for optimizing energy efficiency, improving reliability, and extending the operational lifespan of PV power plants. Effective fault detection and monitoring are vital for ensuring the proper functioning and maintenance of these systems. PV power plants operating under fault conditions show significant deviations in current-voltage (I-V) characteristics compared to those under normal conditions. This paper introduces a diagnostic methodology for photovoltaic panels using I-V curves, enhanced by new techniques combining optimization and classification-based artificial intelligence. The research is organized into two key sections. The first section outlines the implementation of a DC/DC buck-boost converter, which is designed to extract and display real-time data from the PV system based on actual (I-V) measurements. The second section focuses on the comprehensive processing of the experimental dataset, where the Harris Hawks Optimization (HHO) algorithm is combined with machine learning methods to identify the most critical features. The HHO algorithm is combined with an advanced machine learning model, XGBoost, to accurately detect faults within the PV system. The proposed HHO-XGBoost algorithm achieves an impressive accuracy of 99.49%, outperforming other classification-based artificial intelligence methods in fault detection. In validation and comparison with previous approaches, the HHO-XGBoost model consistently outperforms established methods such as GADF-ANN, PCA-SVM, PNN, and Fuzzy Logic, achieving an overall accuracy of 98.48%. This outstanding performance confirms the model's effectiveness in accurately diagnosing PV system conditions, further validating its robustness and reliability in fault detection and classification.
College of Engineering University of Business and Technology Jeddah 21448 Saudi Arabia
Department of Electrical Engineering Graphic Era Dehradun 248002 India
Department of Mechanical Engineering University of El Oued El Oued 39000 Algeria
Hourani Center for Applied Scientific Research Al Ahliyya Amman University Amman Jordan
LGMM Laboratory Faculty of Technology University of 20 August 1955 Skikda Algeria
UDERZA Unit Faculty of Technology University of El Oued El Oued 39000 Algeria
See more in PubMed
Triki-Lahiani, A., Abdelghani, A. B. B. & Slama-Belkhodja, I. Fault detection and monitoring systems for photovoltaic installations: a review. Renew. Sustain. Energy Rev.82, 2680–2692 (2018).
Alam, M. K., Khan, F., Johnson, J. & Flicker, J. A comprehensive review of catastrophic faults in PV arrays: types, detection, and mitigation techniques. IEEE J. Photovolt.5(3), 982–997 (2015).
Di Lorenzo, G., Araneo, R., Mitolo, M., Niccolai, A. & Grimaccia, F. Review of O&M practices in PV plants: failures, solutions, remote control, and monitoring tools. IEEE J. Photovolt.10(4), 914–926 (2020).
Köntges, M. et al. Rev. Failures Photovolt. Modules. (2014).
Pillai, D. S. & Rajasekar, N. A comprehensive review on protection challenges and fault diagnosis in PV systems. Renew. Sustain. Energy Rev.91, 18–40 (2018).
Collier, D. E. & Key, T. S. Electrical fault protection for a large photovoltaic power plant inverter, in Conference Record of the Twentieth IEEE Photovoltaic Specialists Conference. pp. 1035–1042. (IEEE, 1996).
Bebboukha, A. et al. Finite control set model predictive current control for three phase grid connected inverter with common mode voltage suppression. Sci. Rep.14(1), 19832 (2024). PubMed PMC
Daliento, S. et al. Monitoring, diagnosis, and power forecasting for photovoltaic fields: A review, International Journal of Photoenergy, vol. no. 1, p. 1356851, 2017. (2017).
He, W., Yin, D., Zhang, K., Zhang, X. & Zheng, J. Fault detection and diagnosis method of distributed photovoltaic array based on fine-tuning naive bayesian model, Energies, vol. 14, no. 14, p. 4140, (2021).
Mansouri, M., Trabelsi, M., Nounou, H. & Nounou, M. Deep learning-based fault diagnosis of photovoltaic systems: a comprehensive review and enhancement prospects. IEEE Access.9, 126286–126306 (2021).
Huang, J. M., Wai, R. J. & Gao, W. Newly-designed fault diagnostic method for solar photovoltaic generation system based on IV-curve measurement. IEEE Access.7, 70919–70932 (2019).
Mellit, A., Tina, G. M. & Kalogirou, S. A. Fault detection and diagnosis methods for photovoltaic systems: a review. Renew. Sustain. Energy Rev.91, 1–17 (2018).
Kongphet, V., Migan-Dubois, A., Delpha, C., Lechenadec, J. Y. & Diallo, D. Low-Cost I–V tracer for PV fault diagnosis using single-diode model parameters and I–V curve characteristics, Energies, vol. 15, no. 15, p. 5350, (2022).
Badr, B. E., Altawil, I., Almomani, M., Al-Saadi, M. & Alkhurainej, M. Fault diagnosis of three-phase induction motors using Convolutional neural networks. Math. Modelling Eng. Probl., 10(5). (2023).
Zhao, D., Cui, L. & Liu, D. Bearing weak Fault feature extraction under time-varying speed conditions based on frequency matching demodulation transform. IEEE/ASME Trans. Mechatron.28(3), 1627–1637. 10.1109/TMECH.2022.3215545 (2023).
Zhang, J. et al. A novel multiple-Medium-AC-Port Power Electronic Transformer. IEEE Trans. Industr. Electron.71(7), 6568–6578. 10.1109/TIE.2023.3301550 (2024).
Miaofen, L., Youmin, L., Tianyang, W., Fulei, C. & Zhike, P. Adaptive synchronous demodulation transform with application to analyzing multicomponent signals for machinery fault diagnostics. Mech. Syst. Signal Process.191, 110208. 10.1016/j.ymssp.2023.110208 (2023).
Wang, T., Liang, M., Li, J. & Cheng, W. Rolling element bearing fault diagnosis via fault characteristic order (FCO) analysis. Mech. Syst. Signal Process.45(1), 139–153. 10.1016/j.ymssp.2013.11.011 (2014).
Wang, T., Han, Q., Chu, F. & Feng, Z. A new SKRgram based demodulation technique for planet bearing fault detection. J. Sound Vib.385, 330–349. 10.1016/j.jsv.2016.08.026 (2016).
Hang, J., Qiu, G., Hao, M. & Ding, S. Improved Fault Diagnosis Method for Permanent Magnet Synchronous Machine System Based on Lightweight Multisource Information Data Layer Fusion. IEEE Trans. Power Electron.39(10), 13808–13817. 10.1109/TPEL.2024.3432163 (2024).
He, W., Hang, J., Ding, S., Sun, L. & Hua, W. Robust diagnosis of partial demagnetization Fault in PMSMs using Radial Air-Gap Flux Density under Complex Working conditions. IEEE Trans. Industr. Electron.71(10), 12001–12010. 10.1109/TIE.2024.3349520 (2024).
Meng, Q. et al. Revolutionizing photovoltaic consumption and electric vehicle charging: a novel approach for residential distribution systems. IET Generation Transmission Distribution. 18(17), 2822–2833. 10.1049/gtd2.13232 (2024).
Yang, J. et al. A data-driven structural damage detection framework based on parallel convolutional neural network and bidirectional gated recurrent unit. Inf. Sci.566, 103–117. 10.1016/j.ins.2021.02.064 (2021).
Li, X. et al. Deep dynamic high-order graph convolutional network for wear fault diagnosis of hydrodynamic mechanical seal. Reliab. Eng. Syst. Saf.247, 110117. 10.1016/j.ress.2024.110117 (2024).
Bebboukha, A. et al. A reduced vector model predictive controller for a three-level neutral point clamped inverter with common-mode voltage suppression. Sci. Rep.14(1), 15180 (2024). PubMed PMC
Li, B., Delpha, C., Diallo, D. & Migan-Dubois, A. Application of Artificial neural networks to photovoltaic fault detection and diagnosis: a review. Renew. Sustain. Energy Rev.138, 110512 (2021).
Sharma, N. et al. Solar power forecasting beneath diverse weather conditions using GD and LM-artificial neural networks. Sci. Rep.13(1), 8517 (2023). PubMed PMC
Harrou, F., Dairi, A., Taghezouit, B. & Sun, Y. An unsupervised monitoring procedure for detecting anomalies in photovoltaic systems using a one-class support vector machine. Sol. Energy179, 48–58 (2019).
Khalil, I. U., Haq, A. U. & ul Islam, N. A deep learning-based transformer model for photovoltaic fault forecasting and classification. Electr. Power Syst. Res.228, 110063 (2024).
Khalil, I. U., Haq, A. & ul Islam, N. A novel procedure for photovoltaic fault forecasting. Electr. Power Syst. Res.226, 109881 (2024).
Madeti, S. R. & Singh, S. Modeling of PV system based on experimental data for fault detection using kNN method. Sol. Energy173, 139–151 (2018).
Chine, W. et al. A novel fault diagnosis technique for photovoltaic systems based on artificial neural networks. Renew. Energy90, 501–512 (2016).
Chen, Z. et al. Intelligent fault diagnosis of photovoltaic arrays based on optimized kernel extreme learning machine and IV characteristics. Appl. Energy204, 912–931 (2017).
Zhu, H., Lu, L., Yao, J., Dai, S. & Hu, Y. Fault diagnosis approach for photovoltaic arrays based on unsupervised sample clustering and probabilistic neural network model. Sol. Energy. 176, 395–405 (2018).
Dhimish, M., Holmes, V., Mehrdadi, B., Dales, M. & Mather, P. Photovoltaic fault detection algorithm based on theoretical curves modelling and fuzzy classification system, Energy, vol. 140, pp. 276–290, (2017).
Trinh, N. T. N., Dat, N. H. T. & Dung, P. Q. Application of Artificial Intelligence in Detecting and Classifying Faults of Solar Panels, in IEEE Ninth International Conference on Communications and Electronics (ICCE), 2022. pp. 513–518. (IEEE, 2022).
Li, B., Delpha, C., Migan-Dubois, A. & Diallo, D. Fault diagnosis of photovoltaic panels using full I–V characteristics and machine learning techniques. Energy. Conv. Manag.248, 114785 (2021).
Sayyad, J. & Nasikkar, P. Design and development of low cost, portable, on-field IV curve tracer based on capacitor loading for high power rated solar photovoltaic modules. IEEE Access.9, 70715–70731 (2021).
Dunna, V. K. et al. Super-twisting MPPT control for grid-connected PV/battery system using higher order sliding mode observer. Sci. Rep.14(1), 16597 (2024). PubMed PMC
Deghfel, N. et al. A new intelligently optimized model reference adaptive controller using GA and WOA-based MPPT techniques for photovoltaic systems. Sci. Rep.14, 6827. 10.1038/s41598-024-57610-0 (2024). PubMed PMC
Premkumar, M. et al. A reliable optimization framework for parameter identification of single-diode solar photovoltaic model using weighted velocity-guided grey wolf optimization algorithm and Lambert-W function. IET Renewable Power Gener. 17 (11), 2711–2732 (2023). (2023).
Ravi, S., Premkumar, M. & Abualigah, L. Comparative analysis of recent metaheuristic algorithms for maximum power point tracking of solar photovoltaic systems under partial shading conditions. Int. J. Appl. Power Eng.12(2), 196–217 (2023).
Medekhel, L., Hettiri, M., Labiod, C., Srairi, K. & Benbouzid, M. Enhancing the Performance and Efficiency of Two-Level Voltage Source Inverters: A Modified Model Predictive Control Approach for Common-Mode Voltage Suppression. Energies vol. 16, p. 7305, (2023).
Mahafzah, K. A., Obeidat, M. A., Mansour, A., Sanseverino, E. R. & Zizzo, G. A New Smart Grid Hybrid DC–DC Converter with Improved Voltage Gain and synchronized multiple outputs. Appl. Sci.14(6), 2274 (2024).
Reddy, G. S., Premkumar, M., Ravi, S. & Abualigah, L. An intelligent converter and controller for electric vehicle drives utilizing grid and stand-alone solar photovoltaic power generation systems. Int. J. Appl. Power Eng. (IJAPE)12, 255–276 (2023).
Mahafzah, K. A., Al-Shetwi, A. Q., Hannan, M. A., Babu, T. S. & Nwulu, N. A new cuk-based DC-DC converter with improved efficiency and lower rated voltage of coupling capacitor. Sustainability15(11), 8515 (2023).
Mahafzah, K. A. & Rababah, H. A. A novel step-up/step-down DC-DC converter based on flyback and SEPIC topologies with improved voltage gain. Int. J. Power Electron. Drive Syst. (IJPEDS)14, 898–908 (2023).
Alajmi, B. N., Marei, M. I., Abdelsalam, I. & Ahmed, N. A. Multiphase interleaved converter based on cascaded non-inverting buck-boost converter. IEEE Access.10, 42497–42506 (2022).
Zheng, Y., Guo, J. & Leung, K. N. A single-inductor multiple-output buck/boost DC–DC converter with duty-cycle and control-current predictor. IEEE Trans. Power Electron.35(11), 12022–12039 (2020).
Abualhaj, M. M., Abu-Shareha, A. A., Al-Allawee, A. & Munther, A. and Mohammed Anbar. Performance Evaluation of Whale and Harris Hawks Optimization Algorithms with Intrusion Prevention Systems. In International Conference on Soft Computing and Data Mining, pp. 254–265. Cham: Springer Nature Switzerland, (2024).
Manzoor, A. et al. AHHO: Arithmetic Harris Hawks Optimization algorithm for demand side management in smart grids. Discover Internet Things3(1), 3 (2023).
Heidari, A. A. et al. Harris hawks optimization: Algorithm and applications. Future Generation Comput. Syst.97, 849–872 (2019).
Abbas, S. et al. Harris-Hawk-Optimization-Based Deep Recurrent Neural Network for Securing the Internet of Medical Things, Electronics, vol. 12, no. 12, p. 2612, (2023).
Dong, M., Wang, Y., Todo, Y. & Hua, Y. A Novel Feature Selection Strategy Based on the Harris Hawks Optimization Algorithm for the Diagnosis of Cervical Cancer, Electronics, vol. 13, no. 13, p. 2554, (2024).
Too, J., Abdullah, A. R. & Mohd Saad, N. A new quadratic binary harris hawk optimization for feature selection, Electronics, vol. 8, no. 10, p. 1130, (2019).
Prabha, A., Yadav, J., Rani, A. & Singh, V. Design of intelligent diabetes mellitus detection system using hybrid feature selection based XGBoost classifier. Comput. Biol. Med.136, 104664 (2021). PubMed
Dang, H. L., Kim, J., Kwak, S. & Choi, S. Series DC arc fault detection using machine learning algorithms. IEEE Access.9, 133346–133364 (2021).
Nanfak, A. et al. A combined technique for power transformer fault diagnosis based on k-means clustering and support vector machine. IET Nanodielectrics (2024).
Amiri, A. F., Oudira, H., Chouder, A. & Kichou, S. Faults detection and diagnosis of PV systems based on machine learning approach using random forest classifier. Energy. Conv. Manag.301, 118076 (2024).
Hechifa, A. et al. Improved intelligent methods for power transformer fault diagnosis based on tree ensemble learning and multiple feature vector analysis. Electr. Eng.106(3), 2575–2594 (2024).
Gündoğdu, S. Efficient prediction of early-stage diabetes using XGBoost classifier with random forest feature selection technique. Multimedia Tools Appl.82(22), 34163–34181 (2023). PubMed PMC
Le, N. Q. K., Do, D. T. & Le, Q. A. A sequence-based prediction of Kruppel-like factors proteins using XGBoost and optimized features, Gene, vol. 787, p. 145643 (2021). PubMed