Sequence variability of BamA and FadL candidate vaccinogens suggests divergent evolutionary paths of Treponema pallidum outer membrane proteins

. 2025 Aug 21 ; 207 (8) : e0015925. [epub] 20250714

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40802283

Grantová podpora
U19AI144177 National Institute of Allergy and Infectious Diseases
T32 AI007151 NIAID NIH HHS - United States
T32AI007151 National Institute of Allergy and Infectious Diseases
D43TW006589 FIC NIH HHS - United States
LX22NPO5103 Next Generation Foundation
D43 TW006589 FIC NIH HHS - United States
INV-036560 Gates Foundation - United States
U19 AI144177 NIAID NIH HHS - United States
214641/Z/18/Z Wellcome Trust - United Kingdom
Wellcome Trust - United Kingdom
INV-036560 Gates Foundation - United States

Knowledge of Treponema pallidum subspecies pallidum (TPA) outer membrane protein (OMP) sequence variability is essential for understanding spirochete proliferation within endemic populations as well as the design of a globally effective syphilis vaccine. Our group has identified extracellular loops (ECLs) of TPA BamA (TP0326) and members of the FadL family (TP0548, TP0856, TP0858, TP0859, and TP0865) as potential components of a multivalent vaccine cocktail. As part of a consortium to explore TPA strain diversity, we mapped the variability of BamA and FadL orthologs in 186 TPA strains from Malawi, China, and Colombia onto predicted 3D structures. The 186 genomes fell into eight subclades (five Nichols- and three SS14-lineage) with substantial geographic restriction. Single nucleotide variants accounted for the large majority of proteoforms, with variability notably higher within the Nichols-lineage strains. Most mutations were in regions of the proteins predicted to be extracellular and harboring B cell epitopes. We observed a striking difference in the degree of variability between the six OMPs, suggesting that these proteins are following divergent evolutionary paths. Concatenation of OMP sequences recapitulated the phylogenetic structure of the TPA strains, effectively segregating within clades and largely clustering by subclades. Finally, we noted that BamA and FadL candidate ECL vaccinogens, previously shown to elicit antibodies that kill treponemes during in vitro cultivation, are well conserved. Taken as a whole, our study establishes a structural-phylogenetic approach for analyzing the forces shaping the host-pathogen interface in syphilis within endemic populations while informing the selection of vaccine targets.IMPORTANCESyphilis remains a major global health concern, reinforcing the need for a safe and effective vaccine. Understanding the variability of TPA OMPs is essential for tracking pathogen evolution and informing vaccine design. Here, we analyzed the variability of six TPA OMPs in 186 strains from Malawi, China, and Colombia, identifying protein-specific evolutionary patterns. Most mutations were localized in extracellular regions and, notably, appeared to correlate with the phylogenetic structure of TPA. Despite OMP heterogeneity, several candidate vaccinogens remained highly conserved, reinforcing their potential as globally effective vaccine targets. Our study establishes a structural-phylogenetic framework for dissecting the forces shaping the host-spirochete interface within endemic populations and provides a foundation for designing a globally effective syphilis vaccine.

Zobrazit více v PubMed

Peeling RW, Mabey D, Chen XS, Garcia PJ. 2023. Syphilis. Lancet 402:336–346. doi: 10.1016/S0140-6736(22)02348-0 PubMed DOI

Radolf JD, Tramont EC, Salazar JC. 2019. Syphilis (

Kojima N, Klausner JD. 2018. An update on the global epidemiology of syphilis. Curr Epidemiol Rep 5:24–38. doi: 10.1007/s40471-018-0138-z PubMed DOI PMC

Workowski KA, Bachmann LH, Chan PA, Johnston CM, Muzny CA, Park I, Reno H, Zenilman JM, Bolan GA. 2021. Sexually transmitted infections treatment guidelines, 2021. MMWR Recomm Rep 70:1–187. doi: 10.15585/mmwr.rr7004a1 PubMed DOI PMC

Radolf JD, Deka RK, Anand A, Šmajs D, Norgard MV, Yang XF. 2016. Treponema pallidum, the syphilis spirochete: making a living as a stealth pathogen. Nat Rev Microbiol 14:744–759. doi: 10.1038/nrmicro.2016.141 PubMed DOI PMC

Ávila-Nieto C, Pedreño-López N, Mitjà O, Clotet B, Blanco J, Carrillo J. 2023. Syphilis vaccine: challenges, controversies and opportunities. Front Immunol 14:1126170. doi: 10.3389/fimmu.2023.1126170 PubMed DOI PMC

Liu A, Giacani L, Hawley KL, Cameron CE, Seña AC, Konda KA, Radolf JD, Klausner JD. 2024. New pathways in syphilis vaccine development. Sex Transm Dis 51:e49–e53. doi: 10.1097/OLQ.0000000000002050 PubMed DOI PMC

Fraser CM, Norris SJ, Weinstock GM, White O, Sutton GG, Dodson R, Gwinn M, Hickey EK, Clayton R, Ketchum KA, et al. 1998. Complete genome sequence of Treponema pallidum, the syphilis spirochete. Science 281:375–388. doi: 10.1126/science.281.5375.375 PubMed DOI

Liu J, Howell JK, Bradley SD, Zheng Y, Zhou ZH, Norris SJ. 2010. Cellular architecture of Treponema pallidum: novel flagellum, periplasmic cone, and cell envelope as revealed by cryo electron tomography. J Mol Biol 403:546–561. doi: 10.1016/j.jmb.2010.09.020 PubMed DOI PMC

Radolf JD, Kumar S. 2018. The Treponema pallidum outer membrane. Curr Top Microbiol Immunol 415:1–38. doi: 10.1007/82_2017_44 PubMed DOI PMC

Salazar JC, Hazlett KRO, Radolf JD. 2002. The immune response to infection with Treponema pallidum, the stealth pathogen. Microbes Infect 4:1133–1140. doi: 10.1016/s1286-4579(02)01638-6 PubMed DOI

Cox DL, Luthra A, Dunham-Ems S, Desrosiers DC, Salazar JC, Caimano MJ, Radolf JD. 2010. Surface immunolabeling and consensus computational framework to identify candidate rare outer membrane proteins of Treponema pallidum. Infect Immun 78:5178–5194. doi: 10.1128/IAI.00834-10 PubMed DOI PMC

Hawley KL, Montezuma-Rusca JM, Delgado KN, Singh N, Uversky VN, Caimano MJ, Radolf JD, Luthra A. 2021. Structural modeling of the Treponema pallidum outer membrane protein repertoire: a road map for deconvolution of syphilis pathogenesis and development of a syphilis vaccine. J Bacteriol 203:e0008221. doi: 10.1128/JB.00082-21 PubMed DOI PMC

Cullen PA, Cameron CE. 2006. Progress towards an effective syphilis vaccine: the past, present and future. Expert Rev Vaccines 5:67–80. doi: 10.1586/14760584.5.1.67 PubMed DOI

Lafond RE, Lukehart SA. 2006. Biological basis for syphilis. Clin Microbiol Rev 19:29–49. doi: 10.1128/CMR.19.1.29-49.2006 PubMed DOI PMC

Ferguson MR, Delgado KN, McBride S, Orbe IC, La Vake CJ, Caimano MJ, Mendez Q, Moraes TF, Schryvers AB, Moody MA, Radolf JD, Weiner MP, Hawley KL. 2023. Use of Epivolve phage display to generate a monoclonal antibody with opsonic activity directed against a subdominant epitope on extracellular loop 4 of Treponema pallidum BamA (TP0326). Front Immunol 14:1222267. doi: 10.3389/fimmu.2023.1222267 PubMed DOI PMC

Luthra A, Anand A, Hawley KL, LeDoyt M, La Vake CJ, Caimano MJ, Cruz AR, Salazar JC, Radolf JD. 2015. A homology model reveals novel structural features and an immunodominant surface loop/opsonic target in the Treponema pallidum BamA ortholog TP_0326. J Bacteriol 197:1906–1920. doi: 10.1128/JB.00086-15 PubMed DOI PMC

Delgado Kristina N., Caimano MJ, Orbe IC, Vicente CF, La Vake CJ, Grassmann AA, Moody MA, Radolf JD, Hawley KL. 2024. Immunodominant extracellular loops of Treponema pallidum FadL outer membrane proteins elicit antibodies with opsonic and growth-inhibitory activities. PLoS Pathog 20:e1012443. doi: 10.1371/journal.ppat.1012443 PubMed DOI PMC

Delgado K.N, Vicente CF, Hennelly CM, Aghakhanian F, Parr JB, Claffey KP, Radolf JD, Hawley KL, Caimano MJ. 2025. Development and utilization of Treponema pallidum expressing green fluorescent protein to study spirochete-host interactions and antibody-mediated clearance: expanding the toolbox for syphilis research. MBio 16:e0325324. doi: 10.1128/mbio.03253-24 PubMed DOI PMC

Noinaj N, Gumbart JC, Buchanan SK. 2017. The β-barrel assembly machinery in motion. Nat Rev Microbiol 15:197–204. doi: 10.1038/nrmicro.2016.191 PubMed DOI PMC

Desrosiers DC, Anand A, Luthra A, Dunham-Ems SM, LeDoyt M, Cummings MAD, Eshghi A, Cameron CE, Cruz AR, Salazar JC, Caimano MJ, Radolf JD. 2011. TP0326, a Treponema pallidum β-barrel assembly machinery A (BamA) orthologue and rare outer membrane protein. Mol Microbiol 80:1496–1515. doi: 10.1111/j.1365-2958.2011.07662.x PubMed DOI PMC

Hearn EM, Patel DR, Lepore BW, Indic M, van den Berg B. 2009. Transmembrane passage of hydrophobic compounds through a protein channel wall. Nature 458:367–370. doi: 10.1038/nature07678 PubMed DOI PMC

van den Berg B, Black PN, Clemons WM Jr, Rapoport TA. 2004. Crystal structure of the long-chain fatty acid transporter FadL. Science 304:1506–1509. doi: 10.1126/science.1097524 PubMed DOI

Zeytuni N, Zarivach R. 2012. Structural and functional discussion of the tetra-trico-peptide repeat, a protein interaction module. Structure 20:397–405. doi: 10.1016/j.str.2012.01.006 PubMed DOI

Nishiki S, Lee K, Kanai M, Nakayama SI, Ohnishi M. 2021. Phylogenetic and genetic characterization of Treponema pallidum strains from syphilis patients in Japan by whole-genome sequence analysis from global perspectives. Sci Rep 11:3154. doi: 10.1038/s41598-021-82337-7 PubMed DOI PMC

Morando N, Vrbová E, Melgar A, Rabinovich RD, Šmajs D, Pando MA. 2022. High frequency of Nichols-like strains and increased levels of macrolide resistance in Treponema pallidum in clinical samples from Buenos Aires, Argentina. Sci Rep 12:16339. doi: 10.1038/s41598-022-20410-5 PubMed DOI PMC

Beale MA, Marks M, Sahi SK, Tantalo LC, Nori AV, French P, Lukehart SA, Marra CM, Thomson NR. 2019. Genomic epidemiology of syphilis reveals independent emergence of macrolide resistance across multiple circulating lineages. Nat Commun 10:3255. doi: 10.1038/s41467-019-11216-7 PubMed DOI PMC

Gallo Vaulet L, Grillová L, Mikalová L, Casco R, Rodríguez Fermepin M, Pando MA, Šmajs D. 2017. Molecular typing of Treponema pallidum isolates from Buenos Aires, Argentina: frequent Nichols-like isolates and low levels of macrolide resistance. PLoS One 12:e0172905. doi: 10.1371/journal.pone.0172905 PubMed DOI PMC

Thurlow CM, Joseph SJ, Ganova-Raeva L, Katz SS, Pereira L, Chen C, Debra A, Vilfort K, Workowski K, Cohen SE, Reno H, Sun Y, Burroughs M, Sheth M, Chi KH, Danavall D, Philip SS, Cao W, Kersh EN, Pillay A. 2022. Selective whole-genome amplification as a tool to enrich specimens with low Treponema pallidum genomic DNA copies for whole-genome sequencing. mSphere 7:e0000922. doi: 10.1128/msphere.00009-22 PubMed DOI PMC

Chen W, Šmajs D, Hu Y, Ke W, Pospíšilová P, Hawley KL, Caimano MJ, Radolf JD, Sena A, Tucker JD, Yang B, Juliano JJ, Zheng H, Parr JB. 2021. Analysis of Treponema pallidum strains from China using improved methods for whole-genome sequencing from primary syphilis chancres. J Infect Dis 223:848–853. doi: 10.1093/infdis/jiaa449 PubMed DOI PMC

Seña AC, Matoga MM, Yang L, Lopez-Medina E, Aghakhanian F, Chen JS, Bettin EB, Caimano MJ, Chen W, Garcia-Luna JA, et al. 2024. Clinical and genomic diversity of Treponema pallidum subspecies pallidum to inform vaccine research: an international, molecular epidemiology study. Lancet Microbe 5:100871. doi: 10.1016/S2666-5247(24)00087-9 PubMed DOI PMC

Yang L, Zhang X, Chen W, Seña AC, Zheng H, Jiang Y, Zhao P, Chen R, Wang L, Ke W, Salazar JC, Parr JB, Tucker JD, Hawley KL, Caimano MJ, Hennelly CM, Aghakanian F, Bettin EB, Zhang F, Chen JS, Moody MA, Radolf JD, Yang B. 2024. Clinical presentation of early syphilis and genomic sequences of Treponema pallidum strains in patient specimens and isolates obtained by rabbit inoculation. J Infect Dis 230:e1322–e1333. doi: 10.1093/infdis/jiae322 PubMed DOI PMC

Beale MA, Marks M, Cole MJ, Lee M-K, Pitt R, Ruis C, Balla E, Crucitti T, Ewens M, Fernández-Naval C, et al. 2021. Global phylogeny of Treponema pallidum lineages reveals recent expansion and spread of contemporary syphilis. Nat Microbiol 6:1549–1560. doi: 10.1038/s41564-021-01000-z PubMed DOI PMC

Taouk ML, Taiaroa G, Pasricha S, Herman S, Chow EPF, Azzatto F, Zhang B, Sia CM, Duchene S, Lee A, Higgins N, Prestedge J, Lee YW, Thomson NR, Graves B, Meumann E, Gunathilake M, Hocking JS, Bradshaw CS, Beale MA, Howden BP, Chen MY, Fairley CK, Ingle DJ, Williamson DA. 2022. Characterisation of Treponema pallidum lineages within the contemporary syphilis outbreak in Australia: a genomic epidemiological analysis. Lancet Microbe 3:e417–e426. doi: 10.1016/S2666-5247(22)00035-0 PubMed DOI

Salazar JC, Vargas-Cely F, García-Luna JA, Ramirez LG, Bettin EB, Romero-Rosas N, Amórtegui MF, Silva S, Oviedo O, Vigil J, La Vake CJ, Galindo X, Ramirez JD, Martínez-Valencia AJ, Caimano MJ, Hennelly CM, Aghakhanian F, Moody MA, Seña AC, Parr JB, Hawley KL, López-Medina E, Radolf JD. 2024. Treponema pallidum genetic diversity and its implications for targeted vaccine development: a cross-sectional study of early syphilis cases in Southwestern Colombia. PLoS One 19:e0307600. doi: 10.1371/journal.pone.0307600 PubMed DOI PMC

Lieberman NAP, Lin MJ, Xie H, Shrestha L, Nguyen T, Huang M-L, Haynes AM, Romeis E, Wang Q-Q, Zhang R-L, et al. 2021. Treponema pallidum genome sequencing from six continents reveals variability in vaccine candidate genes and dominance of Nichols clade strains in Madagascar. PLoS Negl Trop Dis 15:e0010063. doi: 10.1371/journal.pntd.0010063 PubMed DOI PMC

Abramson J, Adler J, Dunger J, Evans R, Green T, Pritzel A, Ronneberger O, Willmore L, Ballard AJ, Bambrick J, et al. 2024. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature 630:493–500. doi: 10.1038/s41586-024-07487-w PubMed DOI PMC

van den Berg B. 2005. The FadL family: unusual transporters for unusual substrates. Curr Opin Struct Biol 15:401–407. doi: 10.1016/j.sbi.2005.06.003 PubMed DOI

Grantham R. 1974. Amino acid difference formula to help explain protein evolution. Science 185:862–864. doi: 10.1126/science.185.4154.862 PubMed DOI

Delgado KN, Montezuma-Rusca JM, Orbe IC, Caimano MJ, La Vake CJ, Luthra A, Hennelly CM, Nindo FN, Meyer JW, Jones LD, Parr JB, Salazar JC, Moody MA, Radolf JD, Hawley KL. 2022. Extracellular loops of the Treponema pallidum FadL orthologs TP0856 and TP0858 elicit IgG antibodies and IgG PubMed DOI PMC

Strouhal M, Mikalová L, Havlíčková P, Tenti P, Čejková D, Rychlík I, Bruisten S, Šmajs D. 2017. Complete genome sequences of two strains of Treponema pallidum subsp. pertenue from Ghana, Africa: Identical genome sequences in samples isolated more than 7 years apart. PLOS Negl Trop Dis 11:e0005894. doi: 10.1371/journal.pntd.0005894 PubMed DOI PMC

Pla-Díaz M, Sánchez-Busó L, Giacani L, Šmajs D, Bosshard PP, Bagheri HC, Schuenemann VJ, Nieselt K, Arora N, González-Candelas F. 2022. Evolutionary processes in the emergence and recent spread of the syphilis agent, Treponema pallidum. Mol Biol Evol 39:msab318. doi: 10.1093/molbev/msab318 PubMed DOI PMC

Grillová L, Oppelt J, Mikalová L, Nováková M, Giacani L, Niesnerová A, Noda AA, Mechaly AE, Pospíšilová P, Čejková D, Grange PA, Dupin N, Strnadel R, Chen M, Denham I, Arora N, Picardeau M, Weston C, Forsyth RA, Šmajs D. 2019. Directly sequenced genomes of contemporary strains of syphilis reveal recombination-driven diversity in genes encoding predicted surface-exposed antigens. Front Microbiol 10:1691. doi: 10.3389/fmicb.2019.01691 PubMed DOI PMC

Pla-Díaz M, Akgül G, Molak M, du Plessis L, Panagiotopoulou H, Doan K, Bogdanowicz W, Dąbrowski P, Oziembłowski M, Kwiatkowska B, Szczurowski J, Grzelak J, Arora N, Majander K, González-Candelas F, Schuenemann VJ. 2025. Insights into Treponema pallidum genomics from modern and ancient genomes using a novel mapping strategy. BMC Biol 23:7. doi: 10.1186/s12915-024-02108-4 PubMed DOI PMC

Zhou Z, Alikhan N-F, Sergeant MJ, Luhmann N, Vaz C, Francisco AP, Carriço JA, Achtman M. 2018. GrapeTree: visualization of core genomic relationships among 100,000 bacterial pathogens. Genome Res 28:1395–1404. doi: 10.1101/gr.232397.117 PubMed DOI PMC

Høie MH, Gade FS, Johansen JM, Würtzen C, Winther O, Nielsen M, Marcatili P. 2024. DiscoTope-3.0: improved B-cell epitope prediction using inverse folding latent representations. Front Immunol 15:1322712. doi: 10.3389/fimmu.2024.1322712 PubMed DOI PMC

Ponomarenko J, Bui HH, Li W, Fusseder N, Bourne PE, Sette A, Peters B. 2008. ElliPro: a new structure-based tool for the prediction of antibody epitopes. BMC Bioinformatics 9:514. doi: 10.1186/1471-2105-9-514 PubMed DOI PMC

Moody MA. Persons with early syphilis make antibodies that differentially recognize extracellular loops of Treponema pallidum outer membrane proteins

Dekker JP. 2024. Within-host evolution of bacterial pathogens in acute and chronic infection. Annu Rev Pathol 19:203–226. doi: 10.1146/annurev-pathmechdis-051122-111408 PubMed DOI

Worth CL, Gong S, Blundell TL. 2009. Structural and functional constraints in the evolution of protein families. Nat Rev Mol Cell Biol 10:709–720. doi: 10.1038/nrm2762 PubMed DOI

Arenas M, Araujo NM, Branco C, Castelhano N, Castro-Nallar E, Pérez-Losada M. 2018. Mutation and recombination in pathogen evolution: relevance, methods and controversies. Infect Genet Evol 63:295–306. doi: 10.1016/j.meegid.2017.09.029 PubMed DOI

Torrance EL, Burton C, Diop A, Bobay LM. 2024. Evolution of homologous recombination rates across bacteria. Proc Natl Acad Sci USA 121:e2316302121. doi: 10.1073/pnas.2316302121 PubMed DOI PMC

Gray RR, Mulligan CJ, Molini BJ, Sun ES, Giacani L, Godornes C, Kitchen A, Lukehart SA, Centurion-Lara A. 2006. Molecular evolution of the tprC, D, I, K, G, and J genes in the pathogenic genus Treponema. Mol Biol Evol 23:2220–2233. doi: 10.1093/molbev/msl092 PubMed DOI

Giacani L, Molini BJ, Kim EY, Godornes BC, Leader BT, Tantalo LC, Centurion-Lara A, Lukehart SA. 2010. Antigenic variation in Treponema pallidum: TprK sequence diversity accumulates in response to immune pressure during experimental syphilis. J Immunol 184:3822–3829. doi: 10.4049/jimmunol.0902788 PubMed DOI PMC

Centurion-Lara A, Giacani L, Godornes C, Molini BJ, Brinck Reid T, Lukehart SA. 2013. Fine analysis of genetic diversity of the tpr gene family among treponemal species, subspecies and strains. PLoS Negl Trop Dis 7:e2222. doi: 10.1371/journal.pntd.0002222 PubMed DOI PMC

Kumar S, Caimano MJ, Anand A, Dey A, Hawley KL, LeDoyt ME, La Vake CJ, Cruz AR, Ramirez LG, Paštěková L, Bezsonova I, Šmajs D, Salazar JC, Radolf JD. 2018. Sequence variation of rare outer membrane protein β-barrel domains in clinical strains provides insights into the evolution of Treponema pallidum subsp. pallidum, the syphilis spirochete. MBio 9:e01006-18. doi: 10.1128/mBio.01006-18 PubMed DOI PMC

Pětrošová H, Zobaníková M, Čejková D, Mikalová L, Pospíšilová P, Strouhal M, Chen L, Qin X, Muzny DM, Weinstock GM, Šmajs D. 2012. Whole genome sequence of Treponema pallidum ssp. pallidum, strain Mexico A, suggests recombination between yaws and syphilis strains. PLoS Negl Trop Dis 6:e1832. doi: 10.1371/journal.pntd.0001832 PubMed DOI PMC

Majander K, Pla-Díaz M, du Plessis L, Arora N, Filippini J, Pezo-Lanfranco L, Eggers S, González-Candelas F, Schuenemann VJ. 2024. Redefining the treponemal history through pre-Columbian genomes from Brazil. Nature 627:182–188. doi: 10.1038/s41586-023-06965-x PubMed DOI PMC

Medappa M, Pospíšilová P, John LN, González-Beiras C, Mitjà O, Šmajs D. 2024. Coinfection of a yaws patient with two closely related Treponema pallidum subsp. pertenue strains: a rare event with potential evolutionary implications. Acta Trop 256:107254. doi: 10.1016/j.actatropica.2024.107254 PubMed DOI

Lou H, Chen M, Black SS, Bushell SR, Ceccarelli M, Mach T, Beis K, Low AS, Bamford VA, Booth IR, Bayley H, Naismith JH. 2011. Altered antibiotic transport in OmpC mutants isolated from a series of clinical strains of multi-drug resistant E. coli. PLoS ONE 6:e25825. doi: 10.1371/journal.pone.0025825 PubMed DOI PMC

Olesky M, Zhao S, Rosenberg RL, Nicholas RA. 2006. Porin-mediated antibiotic resistance in Neisseria gonorrhoeae: ion, solute, and antibiotic permeation through PIB proteins with penB mutations. J Bacteriol 188:2300–2308. doi: 10.1128/JB.188.7.2300-2308.2006 PubMed DOI PMC

Simonet V, Malléa M, Pagès JM. 2000. Substitutions in the eyelet region disrupt cefepime diffusion through the Escherichia coli OmpF channel. Antimicrob Agents Chemother 44:311–315. doi: 10.1128/AAC.44.2.311-315.2000 PubMed DOI PMC

Wu Z, Periaswamy B, Sahin O, Yaeger M, Plummer P, Zhai W, Shen Z, Dai L, Chen SL, Zhang Q. 2016. Point mutations in the major outer membrane protein drive hypervirulence of a rapidly expanding clone of Campylobacter jejuni. Proc Natl Acad Sci USA 113:10690–10695. doi: 10.1073/pnas.1605869113 PubMed DOI PMC

Abdelsamed H, Peters J, Byrne GI. 2013. Genetic variation in Chlamydia trachomatis and their hosts: impact on disease severity and tissue tropism. Future Microbiol 8:1129–1146. doi: 10.2217/fmb.13.80 PubMed DOI PMC

Dean D, Oudens E, Bolan G, Padian N, Schachter J. 1995. Major outer membrane protein variants of Chlamydia trachomatis are associated with severe upper genital tract infections and histopathology in San Francisco. J Infect Dis 172:1013–1022. doi: 10.1093/infdis/172.4.1013 PubMed DOI

Nunes A, Borrego MJ, Nunes B, Florindo C, Gomes JP. 2009. Evolutionary dynamics of ompA, the gene encoding the Chlamydia trachomatis key antigen. J Bacteriol 191:7182–7192. doi: 10.1128/JB.00895-09 PubMed DOI PMC

Smajs D, Norris SJ, Weinstock GM. 2012. Genetic diversity in Treponema pallidum: implications for pathogenesis, evolution and molecular diagnostics of syphilis and yaws. Infect Genet Evol 12:191–202. doi: 10.1016/j.meegid.2011.12.001 PubMed DOI PMC

Storek KM, Auerbach MR, Shi H, Garcia NK, Sun D, Nickerson NN, Vij R, Lin Z, Chiang N, Schneider K, Wecksler AT, Skippington E, Nakamura G, Seshasayee D, Koerber JT, Payandeh J, Smith PA, Rutherford ST. 2018. Monoclonal antibody targeting the β-barrel assembly machine of Escherichia coli is bactericidal. Proc Natl Acad Sci USA 115:3692–3697. doi: 10.1073/pnas.1800043115 PubMed DOI PMC

White P, Haysom SF, Iadanza MG, Higgins AJ, Machin JM, Whitehouse JM, Horne JE, Schiffrin B, Carpenter-Platt C, Calabrese AN, Storek KM, Rutherford ST, Brockwell DJ, Ranson NA, Radford SE. 2021. The role of membrane destabilisation and protein dynamics in BAM catalysed OMP folding. Nat Commun 12:4174. doi: 10.1038/s41467-021-24432-x PubMed DOI PMC

Hughes AL. 1994. The evolution of functionally novel proteins after gene duplication. Proc Biol Sci 256:119–124. doi: 10.1098/rspb.1994.0058 PubMed DOI

Koonin EV. 2005. Orthologs, paralogs, and evolutionary genomics. Annu Rev Genet 39:309–338. doi: 10.1146/annurev.genet.39.073003.114725 PubMed DOI

Gupta S, Ferguson N, Anderson R. 1998. Chaos, persistence, and evolution of strain structure in antigenically diverse infectious agents. Science 280:912–915. doi: 10.1126/science.280.5365.912 PubMed DOI

Lipsitch M, O’Hagan JJ. 2007. Patterns of antigenic diversity and the mechanisms that maintain them. J R Soc Interface 4:787–802. doi: 10.1098/rsif.2007.0229 PubMed DOI PMC

Lee MSY, Ho SYW. 2016. Molecular clocks. Curr Biol 26:R399–R402. doi: 10.1016/j.cub.2016.03.071 PubMed DOI

Viale AM, Evans BA. 2020. Microevolution in the major outer membrane protein OmpA of Acinetobacter baumannii. Microb Genom 6:e000381. doi: 10.1099/mgen.0.000381 PubMed DOI PMC

Camprubí-Font C, Ruiz Del Castillo B, Barrabés S, Martínez-Martínez L, Martinez-Medina M. 2019. Amino acid substitutions and differential gene expression of outer membrane proteins in adherent-invasive Escherichia coli. Front Microbiol 10:1707. doi: 10.3389/fmicb.2019.01707 PubMed DOI PMC

Ormsby MJ, Davies RL. 2021. Diversification of OmpA and OmpF of Yersinia ruckeri is independent of the underlying species phylogeny and evidence of virulence-related selection. Sci Rep 11:3493. doi: 10.1038/s41598-021-82925-7 PubMed DOI PMC

Isaeva MP, Stenkova AM, Guzev KV, Bystritskaya EP, Shubin FN, Rasskazov VA, Rakin A. 2012. Diversity and adaptive evolution of a major porin gene (ompF) in Yersinia pseudotuberculosis. Adv Exp Med Biol 954:39–43. doi: 10.1007/978-1-4614-3561-7_5 PubMed DOI

Dawkins R, Krebs JR. 1979. Arms races between and within species. Proc R Soc Lond B Biol Sci 205:489–511. doi: 10.1098/rspb.1979.0081 PubMed DOI

Romeis E, Tantalo L, Lieberman N, Phung Q, Greninger A, Giacani L. 2021. Genetic engineering of Treponema pallidum subsp. pallidum, the syphilis spirochete. PLoS Pathog 17:e1009612. doi: 10.1371/journal.ppat.1009612 PubMed DOI PMC

Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120. doi: 10.1093/bioinformatics/btu170 PubMed DOI PMC

Bushnell B. 2014. BBMap: a fast, accurate, splice-aware aligner. Lawrence Berkeley National Lab.

Li H, Durbin R. 2009. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25:1754–1760. doi: 10.1093/bioinformatics/btp324 PubMed DOI PMC

Van der Auwera GA, O’Connor BD. 2020. Genomics in the cloud: using Docker, GATK, and WDL in Terra, First edition. O’Reilly Media, Sebastopol, CA.

Croucher NJ, Page AJ, Connor TR, Delaney AJ, Keane JA, Bentley SD, Parkhill J, Harris SR. 2015. Rapid phylogenetic analysis of large samples of recombinant bacterial whole genome sequences using Gubbins. Nucleic Acids Res 43:e15. doi: 10.1093/nar/gku1196 PubMed DOI PMC

Katoh K, Rozewicki J, Yamada KD. 2019. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief Bioinform 20:1160–1166. doi: 10.1093/bib/bbx108 PubMed DOI PMC

Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312–1313. doi: 10.1093/bioinformatics/btu033 PubMed DOI PMC

Team RC . 2023. R: a language and environment for statistical computing. R v4.3.2. R Foundation for Statistical Computing, Vienna, Austria

Yu G, Smith DK, Zhu H, Guan Y, Lam T-Y. 2017. ggtree: an R package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods Ecol Evol 8:28–36. doi: 10.1111/2041-210X.12628 DOI

Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE. 2004. UCSF Chimera--a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612. doi: 10.1002/jcc.20084 PubMed DOI

Lomize AL, Todd SC, Pogozheva ID. 2022. Spatial arrangement of proteins in planar and curved membranes by PPM 3.0. Protein Sci 31:209–220. doi: 10.1002/pro.4219 PubMed DOI PMC

Lomize MA, Pogozheva ID, Joo H, Mosberg HI, Lomize AL. 2012. OPM database and PPM web server: resources for positioning of proteins in membranes. Nucleic Acids Res 40:D370–6. doi: 10.1093/nar/gkr703 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...