• This record comes from PubMed

Hydrophilic and Amphiphilic Macromolecules as Modulators of the Physical Stability and Bioavailability of Piribedil: A Study on Binary Mixtures and Micellar Systems

. 2025 Aug 04 ; 22 (8) : 4708-4730. [epub] 20250630

Language English Country United States Media print-electronic

Document type Journal Article

This study presents an innovative approach that utilizes polymers with different topologies and properties as potential matrices for the poorly water-soluble active pharmaceutical ingredient piribedil (PBD). We investigated amorphous solid dispersions (ASDs) as well as micellar systems composed of PBD and (i) the commercial amphiphilic copolymer Soluplus, (ii) self-synthesized hydrophilic linear PVP (linPVP), and (iii) self-synthesized hydrophilic star-shaped PVP (starPVP). Differential scanning calorimetry, X-ray diffraction, Fourier-transform infrared, and broadband dielectric spectroscopy were applied to gain comprehensive insights into the thermal and structural properties, intermolecular interactions, global molecular dynamics, and recrystallization of the API from the amorphous PBD-polymer ASDs. The primary objective was to evaluate the impact of the type and topology of macromolecules, as well as the composition of binary formulations, on the physical stability of PBD in the amorphous form, phase transition temperatures, the API's recrystallization rate, and ultimately, the release of drug in the prepared ASDs and micelles. Most importantly, our research led to the discovery of new polymorphic form (II) of PBD that has not been previously described in the scientific literature. We also revealed that ASDs containing hydrophilic PVP polymers exhibit the best performance in stabilizing the amorphous form of the API, with the starPVP systems showing the highest stabilization effect. In contrast, for micellar systems, Soluplus turned out to be the most suitable candidate in terms of forming the self-assembles of the lowest size distribution among all systems. The long-term stability of the amorphous drug in PBD-Soluplus micelles was higher compared to PBD-starPVP ASD. Moreover, an improvement in the bioavailability of the API contained in all tested formulations (binary and micellar systems) was observed, with PBD-starPVP micelles exhibiting the most desirable drug release profile within the polymer matrix, as well as the highest concentration of released drug. The obtained data highlight the crucial role of the type and topology/architecture of the polymer in the design of novel pharmaceutical formulations.

See more in PubMed

Elder D. P., Kuentz M., Holm R.. Pharmaceutical Excipients - Quality, Regulatory and Biopharmaceutical Considerations. Eur. J. Pharm. Sci. 2016;87:88–99. doi: 10.1016/j.ejps.2015.12.018. PubMed DOI

Kumari L., Choudhari Y., Patel P., Gupta G. D., Singh D., Rosenholm J. M., Bansal K. K., Kurmi B. D.. Advancement in Solubilization Approaches: A Step towards Bioavailability Enhancement of Poorly Soluble Drugs. Life. 2023;13(5):1099. doi: 10.3390/life13051099. PubMed DOI PMC

Bhalani D. V., Nutan B., Kumar A., Singh Chandel A. K.. Bioavailability Enhancement Techniques for Poorly Aqueous Soluble Drugs and Therapeutics. Biomedicines. 2022;10(9):2055. doi: 10.3390/biomedicines10092055. PubMed DOI PMC

Ezike T. C., Okpala U. S., Onoja U. L., Nwike C. P., Ezeako E. C., Okpara O. J., Okoroafor C. C., Eze S. C., Kalu O. L., Odoh E. C., Nwadike U. G., Ogbodo J. O., Umeh B. U., Ossai E. C., Nwanguma B. C.. Advances in Drug Delivery Systems, Challenges and Future Directions. Heliyon. 2023;9(6):e17488. doi: 10.1016/j.heliyon.2023.e17488. PubMed DOI PMC

Daughton C. G., Ruhoy I. S.. Lower-Dose Prescribing: Minimizing “Side Effects” of Pharmaceuticals on Society and the Environment. Sci. Total Environ. 2013;443:324–337. doi: 10.1016/j.scitotenv.2012.10.092. PubMed DOI

Williams H. D., Trevaskis N. L., Charman S. A., Shanker R. M., Charman W. N., Pouton C. W., Porter C. J. H.. Strategies to Address Low Drug Solubility in Disc. Pharmacol. Rev. 2013;65(1):315–499. doi: 10.1124/pr.112.005660. PubMed DOI

Rams-Baron, M. ; Jachowicz, R. ; Boldyreva, E. ; Zhou, D. ; Jamroz, W. ; Paluch, M. . Amorphous Drugs: Benefits and Challenges; 2018, 10.1007/978-3-319-72002-9. DOI

Kawakami K., Pikal M. J.. Calorimetric Investigation of the Structural Relaxation of Amorphous Materials: Evaluating Validity of the Methodologies. J. Pharm. Sci. 2005;94(5):948–965. doi: 10.1002/jps.20298. PubMed DOI

Brough C., Williams R. O.. Amorphous Solid Dispersions and Nano-Crystal Technologies for Poorly Water-Soluble Drug Delivery. Int. J. Pharm. 2013;453(1):157–166. doi: 10.1016/j.ijpharm.2013.05.061. PubMed DOI

Huang Y., Dai W.-G.. Fundamental Aspects of Solid Dispersion Technology for Poorly Soluble Drugs. Acta Pharm. Sin. B. 2014;4(1):18–25. doi: 10.1016/j.apsb.2013.11.001. PubMed DOI PMC

Baghel S., Cathcart H., O’Reilly N. J.. Polymeric Amorphous Solid Dispersions: A Review of Amorphization, Crystallization, Stabilization, Solid-State Characterization, and Aqueous Solubilization of Biopharmaceutical Classification System Class II Drugs. J. Pharm. Sci. 2016;105(9):2527–2544. doi: 10.1016/j.xphs.2015.10.008. PubMed DOI

Zhang J., Guo M., Luo M., Cai T.. Advances in the Development of Amorphous Solid Dispersions: The Role of Polymeric Carriers. Asian J. Pharm. Sci. 2023;18(4):100834. doi: 10.1016/j.ajps.2023.100834. PubMed DOI PMC

Lappe S., Mulac D., Langer K.. Polymeric Nanoparticles – Influence of the Glass Transition Temperature on Drug Release. Int. J. Pharm. 2017;517(1):338–347. doi: 10.1016/j.ijpharm.2016.12.025. PubMed DOI

Xiang T.-X., Anderson B. D.. Effects of Molecular Interactions on Miscibility and Mobility of Ibuprofen in Amorphous Solid Dispersions With Various Polymers. J. Pharm. Sci. 2019;108(1):178–186. doi: 10.1016/j.xphs.2018.10.052. PubMed DOI

Sharma J., Singh B., Agrawal A. K., Bansal A. K.. Correlationship of Drug-Polymer Miscibility, Molecular Relaxation and Phase Behavior of Dipyridamole Amorphous Solid Dispersions. J. Pharm. Sci. 2021;110(4):1470–1479. doi: 10.1016/j.xphs.2020.12.007. PubMed DOI

Yang J., Grey K., Doney J.. An Improved Kinetics Approach to Describe the Physical Stability of Amorphous Solid Dispersions. Int. J. Pharm. 2010;384(1):24–31. doi: 10.1016/j.ijpharm.2009.09.035. PubMed DOI

Boucenna Y., Layachi A., Cherfia A., Laoutid F., Satha H.. Non-Isothermal Crystallization Kinetics and Activation Energy for Crystal Growth of Polyamide 66/Short Glass Fiber/Carbon Black Composites. Materials (Basel) 2023;16(22):7073. doi: 10.3390/ma16227073. PubMed DOI PMC

Zhao W., Li C., Chang J., Zhou H., Wang D., Sun J., Liu T., Peng H., Wang Q., Li Y., Whittaker A. K.. Advances and Prospects of RAFT Polymerization-Derived Nanomaterials in MRI-Assisted Biomedical Applications. Prog. Polym. Sci. 2023;146:101739. doi: 10.1016/j.progpolymsci.2023.101739. DOI

Kim J., Jung H. Y., Park M. J.. End-Group Chemistry and Junction Chemistry in Polymer Science: Past, Present, and Future. Macromolecules. 2020;53(3):746–763. doi: 10.1021/acs.macromol.9b02293. DOI

Ding L., Agrawal P., Singh S. K., Chhonker Y. S., Sun J., Murry D. J.. Polymer-Based Drug Delivery Systems for Cancer Therapeutics. Polymers. 2024;16:843. doi: 10.3390/polym16060843. PubMed DOI PMC

Ulbrich K., Holá K., Šubr V., Bakandritsos A., Tuček J., Zbořil R.. Targeted Drug Delivery with Polymers and Magnetic Nanoparticles: Covalent and Noncovalent Approaches, Release Control, and Clinical Studies. Chem. Rev. 2016;116(9):5338–5431. doi: 10.1021/acs.chemrev.5b00589. PubMed DOI

Ghezzi M., Pescina S., Padula C., Santi P., Del Favero E., Cantù L., Nicoli S.. Polymeric Micelles in Drug Delivery: An Insight of the Techniques for Their Characterization and Assessment in Biorelevant Conditions. J. Controlled Release. 2021;332:312–336. doi: 10.1016/j.jconrel.2021.02.031. PubMed DOI

Lu Y., Zhang E., Yang J., Cao Z.. Strategies to Improve Micelle Stability for Drug Delivery. Nano Res. 2018;11(10):4985–4998. doi: 10.1007/s12274-018-2152-3. PubMed DOI PMC

Assiri A. A., Glover K., Mishra D., Waite D., Vora L. K., Thakur R. R. S.. Block Copolymer Micelles as Ocular Drug Delivery Systems. Drug Discovery Today. 2024;29(8):104098. doi: 10.1016/j.drudis.2024.104098. PubMed DOI

Van Duong T., Van den Mooter G.. The Role of the Carrier in the Formulation of Pharmaceutical Solid Dispersions. Part II: Amorphous Carriers. Expert Opin. Drug Delivery. 2016;13(12):1681–1694. doi: 10.1080/17425247.2016.1198769. PubMed DOI

Linn M., Collnot E.-M., Djuric D., Hempel K., Fabian E., Kolter K., Lehr C.-M.. Soluplus® as an Effective Absorption Enhancer of Poorly Soluble Drugs in Vitro and in Vivo. Eur. J. Pharm. Sci. 2012;45(3):336–343. doi: 10.1016/j.ejps.2011.11.025. PubMed DOI

Bonde G. V., Ajmal G., Yadav S. K., Mittal P., Singh J., Bakde B. V., Mishra B.. Assessing the Viability of Soluplus® Self-Assembled Nanocolloids for Sustained Delivery of Highly Hydrophobic Lapatinib (Anticancer Agent): Optimisation and in-Vitro Characterisation. Colloids Surfaces B Biointerfaces. 2020;185:110611. doi: 10.1016/j.colsurfb.2019.110611. PubMed DOI

Mateos H., Gentile L., Murgia S., Colafemmina G., Collu M., Smets J., Palazzo G.. Understanding the Self-Assembly of the Polymeric Drug Solubilizer Soluplus®. J. Colloid Interface Sci. 2022;611:224–234. doi: 10.1016/j.jcis.2021.12.016. PubMed DOI

Xia D., Yu H., Tao J., Zeng J., Zhu Q., Zhu C., Gan Y.. Supersaturated Polymeric Micelles for Oral Cyclosporine A Delivery: The Role of Soluplus-Sodium Dodecyl Sulfate Complex. Colloids Surfaces B Biointerfaces. 2016;141:301–310. doi: 10.1016/j.colsurfb.2016.01.047. PubMed DOI

Alopaeus J. F., Hagesæther E., Tho I.. Micellisation Mechanism and Behaviour of Soluplus®–Furosemide Micelles: Preformulation Studies of an Oral Nanocarrier-Based System. Pharmaceuticals. 2019;12(1):15. doi: 10.3390/ph12010015. PubMed DOI PMC

Alvarez-Rivera F., Fernández-Villanueva D., Concheiro A., Alvarez-Lorenzo C.. α-Lipoic Acid in Soluplus® Polymeric Nanomicelles for Ocular Treatment of Diabetes-Associated Corneal Diseases. J. Pharm. Sci. 2016;105(9):2855–2863. doi: 10.1016/j.xphs.2016.03.006. PubMed DOI

Varela-Garcia A., Concheiro A., Alvarez-Lorenzo C.. Soluplus Micelles for Acyclovir Ocular Delivery: Formulation and Cornea and Sclera Permeability. Int. J. Pharm. 2018;552(1):39–47. doi: 10.1016/j.ijpharm.2018.09.053. PubMed DOI

Salah I., Shamat M. A., Cook M. T.. Soluplus Solutions as Thermothickening Materials for Topical Drug Delivery. J. Appl. Polym. Sci. 2019;136(1):1–9. doi: 10.1002/app.46915. DOI

Taveira S. F., Varela-Garcia A., dos Santos Souza B., Marreto R. N., Martin-Pastor M., Concheiro A., Alvarez-Lorenzo C.. Cyclodextrin-Based Poly­(Pseudo)­Rotaxanes for Transdermal Delivery of Carvedilol. Carbohydr. Polym. 2018;200(May):278–288. doi: 10.1016/j.carbpol.2018.08.017. PubMed DOI

Jin X., Zhou B., Xue L., San W.. Soluplus® Micelles as a Potential Drug Delivery System for Reversal of Resistant Tumor. Biomed. Pharmacother. 2015;69:388–395. doi: 10.1016/j.biopha.2014.12.028. PubMed DOI

Pignatello R., Corsaro R., Bonaccorso A., Zingale E., Carbone C., Musumeci T.. Soluplus® Polymeric Nanomicelles Improve Solubility of BCS-Class II Drugs. Drug Delivery Transl. Res. 2022;12(8):1991–2006. doi: 10.1007/s13346-022-01182-x. PubMed DOI PMC

Attia M. S., Elshahat A., Hamdy A., Fathi A. M., Emad-Eldin M., Ghazy F.-E. S., Chopra H., Ibrahim T. M.. Soluplus® as a Solubilizing Excipient for Poorly Water-Soluble Drugs: Recent Advances in Formulation Strategies and Pharmaceutical Product Features. J. Drug Delivery Sci. Technol. 2023;84:104519. doi: 10.1016/j.jddst.2023.104519. DOI

Kaur D., Rathee A., Krishna V., Nagpal M.. Soluplus-Based Polymeric Micelles: A Promising Carrier System for Challenging Drugs. Int. J. Pharm. Sci. Rev. Res. 2024;84:83–93. doi: 10.47583/ijpsrr.2024.v84i09.014. DOI

Liu P., Zhou J. Y., Chang J. H., Liu X. G., Xue H. F., Wang R. X., Li Z. S., Li C. S., Wang J., Liu C. Z.. Soluplus-Mediated Diosgenin Amorphous Solid Dispersion with High Solubility and High Stability: Development, Characterization and Oral Bioavailability. Drug Des. Devel. Ther. 2020;14:2959–2975. doi: 10.2147/DDDT.S253405. PubMed DOI PMC

Li S., Zhang Z., Gu W., Gallas M., Jones D., Boulet P., Johnson L. M., de Margerie V., Andrews G. P.. Hot Melt Extruded High-Dose Amorphous Solid Dispersions Containing Lumefantrine and Soluplus. Int. J. Pharm. 2024;665:124676. doi: 10.1016/j.ijpharm.2024.124676. PubMed DOI

Singh A., Bharati A., Frederiks P., Verkinderen O., Goderis B., Cardinaels R., Moldenaers P., Van Humbeeck J., Van den Mooter G.. Effect of Compression on the Molecular Arrangement of Itraconazole–Soluplus Solid Dispersions: Induction of Liquid Crystals or Exacerbation of Phase Separation? Mol. Pharmaceutics. 2016;13(6):1879–1893. doi: 10.1021/acs.molpharmaceut.6b00046. PubMed DOI

Bejaoui, M. ; Galai, H. ; Touati, F. ; Kouass, S. . Multifunctional Roles of PVP as a Versatile Biomaterial in Solid State. In Dosage Forms; Ahmad, U. , Ed.; IntechOpen: Rijeka, 2021. 10.5772/intechopen.99431. DOI

Kurakula M., Rao G. S. N. K.. Pharmaceutical Assessment of Polyvinylpyrrolidone (PVP): As Excipient from Conventional to Controlled Delivery Systems with a Spotlight on COVID-19 Inhibition. J. Drug Delivery Sci. Technol. 2020;60(August):102046. doi: 10.1016/j.jddst.2020.102046. PubMed DOI PMC

Franco P., De Marco I.. The Use of Poly­(N-Vinyl Pyrrolidone) in the Delivery of Drugs: A Review. Polymers (Basel) 2020;12(5):1114. doi: 10.3390/polym12051114. PubMed DOI PMC

Kim J. M., Baig C.. Communication: Role of Short Chain Branching in Polymer Structure and Dynamics. J. Chem. Phys. 2016;144(8):81101. doi: 10.1063/1.4942351. PubMed DOI

Gabriel C., Münstedt H.. Influence of Long-Chain Branches in Polyethylenes on Linear Viscoelastic Flow Properties in Shear. Rheol. Acta. 2002;41(3):232–244. doi: 10.1007/s00397-001-0219-6. DOI

Ramachandran R., Beaucage G., Kulkarni A. S., McFaddin D., Merrick-Mack J., Galiatsatos V.. Persistence Length of Short-Chain Branched Polyethylene. Macromolecules. 2008;41(24):9802–9806. doi: 10.1021/ma801775n. DOI

Choe D., Jeong S. H., Baig C.. Structural, Topological, and Rheological Characteristics of Entangled Short-Chain Branched Polymer Melts under Shear Flow in Comparison with the Linear Analog. J. Rheol. (N. Y. N. Y). 2024;68(4):591–601. doi: 10.1122/8.0000844. DOI

Orszulak L., Lamrani T., Tarnacka M., Hachuła B., Jurkiewicz K., Zioła P., Mrozek-Wilczkiewicz A., Kamińska E., Kamiński K.. The Impact of Various Poly­(Vinylpyrrolidone) Polymers on the Crystallization Process of Metronidazole. Pharmaceutics. 2024;16(1):136. doi: 10.3390/pharmaceutics16010136. PubMed DOI PMC

Heczko D., Hachuła B., Maksym P., Kamiński K., Zięba A., Orszulak L., Paluch M., Kamińska E.. The Effect of Various Poly (N-Vinylpyrrolidone) (PVP) Polymers on the Crystallization of Flutamide. Pharmaceuticals. 2022;15(8):971. doi: 10.3390/ph15080971. PubMed DOI PMC

Orszulak L., Lamrani T., Bernat R., Tarnacka M., Żakowiecki D., Jurkiewicz K., Zioła P., Mrozek-Wilczkiewicz A., Zięba A., Kamiński K., Kamińska E.. The Influence of PVP Polymer Topology on the Liquid Crystalline Order of Itraconazole in Binary Systems. Mol. Pharmaceutics. 2024;21(6):3027–3039. doi: 10.1021/acs.molpharmaceut.4c00215. PubMed DOI PMC

Orszulak L., Włodarczyk P., Hachuła B., Lamrani T., Jurkiewicz K., Tarnacka M., Hreczka M., Kamiński K., Kamińska E.. Inhibition of Naproxen Crystallization by Polymers: The Role of Topology and Chain Length of Polyvinylpyrrolidone Macromolecules. Eur. J. Pharm. Biopharm. 2025;207:114581. doi: 10.1016/j.ejpb.2024.114581. PubMed DOI

Uppuluri C. T., Dalvi A. V., Bommireddy E. P., Ravi P. R.. Development and Validation of Rapid and Sensitive LC Methods with PDA and Fluorescence Detection for Determination of Piribedil in Rat Plasma and Brain Tissues and Their Pharmacokinetic Application. Biomed. Chromatogr. 2018;32(10):1–10. doi: 10.1002/bmc.4303. PubMed DOI

Meng F., Dave V., Chauhan H.. Qualitative and Quantitative Methods to Determine Miscibility in Amorphous Drug-Polymer Systems. Eur. J. Pharm. Sci. Off. J. Eur. Fed. Pharm. Sci. 2015;77:106–111. doi: 10.1016/j.ejps.2015.05.018. PubMed DOI

Bansal K., Baghel U. S., Thakral S.. Construction and Validation of Binary Phase Diagram for Amorphous Solid Dispersion Using Flory-Huggins Theory. AAPS PharmSciTech. 2016;17(2):318–327. doi: 10.1208/s12249-015-0343-8. PubMed DOI PMC

Wu C., Li J., Wei H., Hang Y., Jiang Y.. 2-{4-[(1,3-Benzodioxol-5-Yl)­Methyl]­Piperazin-1-Yl}­pyrimidine. Acta Crystallogr. Sect. E Struct. Reports Online. 2013;69(7):o1140. doi: 10.1107/S1600536813016851. PubMed DOI PMC

Baird J. A., Van Eerdenbrugh B., Taylor L. S.. A Classification System to Assess the Crystallization Tendency of Organic Molecules from Undercooled Melts. J. Pharm. Sci. 2010;99(9):3787–3806. doi: 10.1002/jps.22197. PubMed DOI

Blaabjerg L. I., Lindenberg E., Löbmann K., Grohganz H., Rades T.. Is There a Correlation between the Glass Forming Ability of a Drug and Its Supersaturation Propensity? Int. J. Pharm. 2018;538(1–2):243–249. doi: 10.1016/j.ijpharm.2018.01.013. PubMed DOI

Kaminska E., Tarnacka M., Wlodarczyk P., Jurkiewicz K., Kolodziejczyk K., Dulski M., Haznar-Garbacz D., Hawelek L., Kaminski K., Wlodarczyk A., Paluch M.. Studying the Impact of Modified Saccharides on the Molecular Dynamics and Crystallization Tendencies of Model API Nifedipine. Mol. Pharmaceutics. 2015;12(8):3007–3019. doi: 10.1021/acs.molpharmaceut.5b00271. PubMed DOI

Grzybowska K., Grzybowski A., Knapik-Kowalczuk J., Chmiel K., Woyna-Orlewicz K., Szafraniec-Szczȩsny J., Antosik-Rogóż A., Jachowicz R., Kowalska-Szojda K., Lodowski P., Paluch M.. Molecular Dynamics and Physical Stability of Ibuprofen in Binary Mixtures with an Acetylated Derivative of Maltose. Mol. Pharmaceutics. 2020;17(8):3087–3105. doi: 10.1021/acs.molpharmaceut.0c00517. PubMed DOI PMC

Minecka A., Tarnacka M., Jurkiewicz K., Hachuła B., Wrzalik R., Bródka A., Kamiński K., Kamińska E.. The Impact of the Size of Acetylated Cyclodextrin on the Stability of Amorphous Metronidazole. Int. J. Pharm. 2022;624:122025. doi: 10.1016/j.ijpharm.2022.122025. PubMed DOI

Minecka A., Tarnacka M., Jurkiewicz K., Hachuła B., Wrzalik R., Kamiński K., Paluch M., Kamińska E.. Impact of the Chain Length and Topology of the Acetylated Oligosaccharide on the Crystallization Tendency of Naproxen from Amorphous Binary Mixtures. Mol. Pharmaceutics. 2021;18(1):347–358. doi: 10.1021/acs.molpharmaceut.0c00982. PubMed DOI PMC

Jayachandra Babu R., Brostow W., Kalogeras I. M., Sathigari S.. Glass Transitions in Binary Drug+polymer Systems. Mater. Lett. 2009;63(30):2666–2668. doi: 10.1016/j.matlet.2009.09.033. DOI

Valenti S., Del Valle L. J., Romanini M., Mitjana M., Puiggalí J., Tamarit J. L., Macovez R.. Drug-Biopolymer Dispersions: Morphology-and Temperature-Dependent (Anti)­Plasticizer Effect of the Drug and Component-Specific Johari–Goldstein Relaxations. Int. J. Mol. Sci. 2022;23(5):2456. doi: 10.3390/ijms23052456. PubMed DOI PMC

Avramov I., Gutzow I.. Heating Rate and Glass Transition Temperature. J. Non. Cryst. Solids. 1988;104(1):148–150. doi: 10.1016/0022-3093(88)90194-9. DOI

Pries J., Wei S., Wuttig M., Lucas P.. Switching between Crystallization from the Glassy and the Undercooled Liquid Phase in Phase Change Material Ge2Sb2Te5. Adv. Mater. 2019;31(39):1900784. doi: 10.1002/adma.201900784. PubMed DOI

Hess K. U., Schawe J. E. K., Wilding M., Purgstaller B., Goetschl K. E., Sturm S., Müller-Caspary K., Sturm E. V., Schmahl W., Griesshaber E., Bissbort T., Weidendorfer D., Dietzel M., Dingwell D. B.. Glass Transition Temperatures and Crystallization Kinetics of a Synthetic, Anhydrous, Amorphous Calcium-Magnesium Carbonate. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2023;381(2258):20220356. doi: 10.1098/rsta.2022.0356. PubMed DOI PMC

Kissinger H. E.. Variation of Peak Temperature With Heating Rate in DTA- Kissinger. 1956;57(4):217–221. doi: 10.6028/jres.057.026. DOI

Alotaibi N. M., Aouak T.. Preparation and Non Isothermal Crystallization Kinetic of Acetylsalicylic Acid-Poly­(Vinylalcohol-Co-Ethylene) Blend. Application in Drug Delivery Domain. Macromol. Res. 2013;21(7):747–756. doi: 10.1007/s13233-013-1078-6. DOI

Maxwell J. C.. On the Dynamical Theory of Gases. 2003;1:197–261. doi: 10.1142/9781848161337_0014. DOI

Karra S., Průša V., Rajagopal K. R.. On Maxwell Fluids with Relaxation Time and Viscosity Depending on the Pressure. Int. J. Non. Linear. Mech. 2011;46(6):819–827. doi: 10.1016/j.ijnonlinmec.2011.02.013. DOI

Kamińska E., Minecka A., Tarnacka M., Hachuła B., Kamiński K., Paluch M.. Influence of Annealing in the Close Vicinity of Tg on the Reorganization within Dimers and Its Impact on the Crystallization Kinetics of Gemfibrozil. Mol. Pharmaceutics. 2020;17(3):990–1000. doi: 10.1021/acs.molpharmaceut.9b01244. PubMed DOI PMC

Rozwadowski T., Noda H., Kolek Ł., Ito M., Yamamura Y., Saitoh H., Saito K.. Molecular Dynamics and Kinetics of Isothermal Cold Crystallization with Tunable Dimensionality in a Molecular Glass Former, 5′-(2,3-Difluorophenyl)-2′-Ethoxy-4-Pentyloxy-2,3-Difluorotolane. Phys. Chem. Chem. Phys. 2022;25(1):724–735. doi: 10.1039/D2CP03638J. PubMed DOI

Schulz E.. B. Wunderlich. Macromolecular Physics, Vol. 2 Crystal Nucleation, Growth, Annealing. Academic Press New York 1976, Preis $ 46, 50. Krist. und Technol. 1977;12(1):K11–K12. doi: 10.1002/crat.19770120121. DOI

Nair A. R., Lakshman Y. D., Anand V. S. K., Sree K. S. N., Bhat K., Dengale S. J.. Overview of Extensively Employed Polymeric Carriers in Solid Dispersion Technology. AAPS PharmSciTech. 2020;21(8):309. doi: 10.1208/s12249-020-01849-z. PubMed DOI PMC

Bielas R., Maksym P., Tarnacka M., Minecka A., Jurkiewicz K., Talik A., Geppert-Rybczyńska M., Grelska J., Mielańczyk Ł., Bernat R., Kamiński K., Paluch M., Kamińska E.. Synthetic Strategy Matters: The Study of a Different Kind of PVP as Micellar Vehicles of Metronidazole. J. Mol. Liq. 2021;332:115789. doi: 10.1016/j.molliq.2021.115789. DOI

Heinz D., Amado E., Kressler J.. Polyphilicity-An Extension of the Concept of Amphiphilicity in Polymers. Polymers (Basel) 2018;10(9):960. doi: 10.3390/polym10090960. PubMed DOI PMC

Manfredini N., Sponchioni M., Moscatelli D.. Recoverable Thermo-Responsive Polymeric Surfactants for the Synthesis of Bulk Plastics from Latexes. ACS Appl. Polym. Mater. 2022;4(1):270–279. doi: 10.1021/acsapm.1c01266. DOI

Allen C., Maysinger D., Eisenberg A.. Nano-Engineering Block Copolymer Aggregates for Drug Delivery. Colloids Surfaces B Biointerfaces. 1999;16(1):3–27. doi: 10.1016/S0927-7765(99)00058-2. DOI

Tiwari, D. ; Verma, P. . Microencapsulation Technique by Solvent Evaporation Method (Study of Effect of Process Variables). Int. J. Pharm. Life Sci. 2011, 2, 998–1005.

Wallace S. J., Li J., Nation R. L., Boyd B. J.. Drug Release from Nanomedicines: Selection of Appropriate Encapsulation and Release Methodology. Drug Delivery Transl. Res. 2012;2(4):284–292. doi: 10.1007/s13346-012-0064-4. PubMed DOI PMC

Zhou Y., Yu J., Feng X., Li W., Wang Y., Jin H., Huang H., Liu Y., Fan D.. Reduction-Responsive Core-Crosslinked Micelles Based on a Glycol Chitosan–Lipoic Acid Conjugate for Triggered Release of Doxorubicin. RSC Adv. 2016;6(37):31391–31400. doi: 10.1039/C6RA05501J. DOI

Mitchell M. J., Billingsley M. M., Haley R. M., Wechsler M. E., Peppas N. A., Langer R.. Engineering Precision Nanoparticles for Drug Delivery. Nat. Rev. Drug Discovery. 2021;20(2):101–124. doi: 10.1038/s41573-020-0090-8. PubMed DOI PMC

Pochapski D. J., Carvalho dos Santos C., Leite G. W., Pulcinelli S. H., Santilli C. V.. Zeta Potential and Colloidal Stability Predictions for Inorganic Nanoparticle Dispersions: Effects of Experimental Conditions and Electrokinetic Models on the Interpretation of Results. Langmuir. 2021;37(45):13379–13389. doi: 10.1021/acs.langmuir.1c02056. PubMed DOI

Deleu D., Northway M. G., Hanssens Y.. Clinical Pharmacokinetic and Pharmacodynamic Properties of Drugs Used in the Treatment of Parkinson’s Disease. Clin. Pharmacokinet. 2002;41(4):261–309. doi: 10.2165/00003088-200241040-00003. PubMed DOI

Millan M. J.. From the Cell to the Clinic: A Comparative Review of the Partial D2/D3 Receptor Agonist and A2-Adrenoceptor Antagonist, Piribedil, in the Treatment of Parkinson’s Disease. Pharmacol. Ther. 2010;128(2):229–273. doi: 10.1016/j.pharmthera.2010.06.002. PubMed DOI

Perez-Lloret S., Rascol O.. Piribedil for the Treatment of Motor and Non-Motor Symptoms of Parkinson Disease. CNS Drugs. 2016;30(8):703–717. doi: 10.1007/s40263-016-0360-5. PubMed DOI

Uppuluri C. T., Ravi P. R., Dalvi A. V.. Design, Optimization and Pharmacokinetic Evaluation of Piribedil Loaded Solid Lipid Nanoparticles Dispersed in Nasal in Situ Gelling System for Effective Management of Parkinson’s Disease. Int. J. Pharm. 2021;606:120881. doi: 10.1016/j.ijpharm.2021.120881. PubMed DOI

Demirel M., Yazan Y., Muller R. H., Kilic F., Bozan B.. Formulation and in Vitro-in Vivo Evaluation of Piribedil Solid Lipid Micro- and Nanoparticles. J. Microencapsul. 2001;18(3):359–371. doi: 10.1080/02652040010018119. PubMed DOI

Uppuluri C. T., Ravi P. R., Dalvi A. V., Shaikh S. S., Kale S. R.. Piribedil Loaded Thermo-Responsive Nasal in Situ Gelling System for Enhanced Delivery to the Brain: Formulation Optimization, Physical Characterization, and in Vitro and in Vivo Evaluation. Drug Delivery Transl. Res. 2021;11(3):909–926. doi: 10.1007/s13346-020-00800-w. PubMed DOI

Kumar S. K., Ganesan V., Riggleman R. A.. Perspective: Outstanding Theoretical Questions in Polymer-Nanoparticle Hybrids. J. Chem. Phys. 2017;147(2):020901. doi: 10.1063/1.4990501. PubMed DOI

Fujita M., Goto S., Chatani H., Otsuka Y., Shimada Y., Terada H., Inoo K.. The Function of Oxybuprocaine: A Parachute Effect That Sustains the Supersaturated State of Anhydrous Piroxicam Crystals. RSC Adv. 2020;10(3):1572–1579. doi: 10.1039/C9RA09952B. PubMed DOI PMC

Fujita M., Tsuchida T., Kataoka H., Tsunoda C., Moritake K., Goto S.. Spring and Parachute Approach for Piroxicam Dissolution; Its Phenomenological Model on the Thermodynamics of Irreversible Processes. Int. J. Pharm. 2024;667:124886. doi: 10.1016/j.ijpharm.2024.124886. PubMed DOI

Real D. A., Gagliano A., Orzan L., Leonardi D., Salomon C. J.. Amorphous Solid Dispersions of Triclabendazole: Keeping the Supersaturated Drug Solution Using Poloxamers. J. Drug Delivery Sci. Technol. 2024;91:105223. doi: 10.1016/j.jddst.2023.105223. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...