Hydrophilic and Amphiphilic Macromolecules as Modulators of the Physical Stability and Bioavailability of Piribedil: A Study on Binary Mixtures and Micellar Systems
Language English Country United States Media print-electronic
Document type Journal Article
PubMed
40586556
PubMed Central
PMC12326366
DOI
10.1021/acs.molpharmaceut.5c00276
Knihovny.cz E-resources
- Keywords
- Soluplus copolymer, amorphous solid dispersions, bioavailability, drug delivery system, micellar systems, piribedil, polyvinylpyrrolidone, solubility, topology of polymers,
- MeSH
- Biological Availability MeSH
- Calorimetry, Differential Scanning methods MeSH
- X-Ray Diffraction methods MeSH
- Chemistry, Pharmaceutical methods MeSH
- Hydrophobic and Hydrophilic Interactions MeSH
- Crystallization MeSH
- Micelles MeSH
- Piribedil * chemistry MeSH
- Polyethylene Glycols chemistry MeSH
- Polymers chemistry MeSH
- Polyvinyls chemistry MeSH
- Drug Compounding methods MeSH
- Solubility MeSH
- Spectroscopy, Fourier Transform Infrared methods MeSH
- Drug Stability MeSH
- Drug Liberation MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Micelles MeSH
- Piribedil * MeSH
- Polyethylene Glycols MeSH
- Polymers MeSH
- polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol graft copolymer MeSH Browser
- Polyvinyls MeSH
This study presents an innovative approach that utilizes polymers with different topologies and properties as potential matrices for the poorly water-soluble active pharmaceutical ingredient piribedil (PBD). We investigated amorphous solid dispersions (ASDs) as well as micellar systems composed of PBD and (i) the commercial amphiphilic copolymer Soluplus, (ii) self-synthesized hydrophilic linear PVP (linPVP), and (iii) self-synthesized hydrophilic star-shaped PVP (starPVP). Differential scanning calorimetry, X-ray diffraction, Fourier-transform infrared, and broadband dielectric spectroscopy were applied to gain comprehensive insights into the thermal and structural properties, intermolecular interactions, global molecular dynamics, and recrystallization of the API from the amorphous PBD-polymer ASDs. The primary objective was to evaluate the impact of the type and topology of macromolecules, as well as the composition of binary formulations, on the physical stability of PBD in the amorphous form, phase transition temperatures, the API's recrystallization rate, and ultimately, the release of drug in the prepared ASDs and micelles. Most importantly, our research led to the discovery of new polymorphic form (II) of PBD that has not been previously described in the scientific literature. We also revealed that ASDs containing hydrophilic PVP polymers exhibit the best performance in stabilizing the amorphous form of the API, with the starPVP systems showing the highest stabilization effect. In contrast, for micellar systems, Soluplus turned out to be the most suitable candidate in terms of forming the self-assembles of the lowest size distribution among all systems. The long-term stability of the amorphous drug in PBD-Soluplus micelles was higher compared to PBD-starPVP ASD. Moreover, an improvement in the bioavailability of the API contained in all tested formulations (binary and micellar systems) was observed, with PBD-starPVP micelles exhibiting the most desirable drug release profile within the polymer matrix, as well as the highest concentration of released drug. The obtained data highlight the crucial role of the type and topology/architecture of the polymer in the design of novel pharmaceutical formulations.
See more in PubMed
Elder D. P., Kuentz M., Holm R.. Pharmaceutical Excipients - Quality, Regulatory and Biopharmaceutical Considerations. Eur. J. Pharm. Sci. 2016;87:88–99. doi: 10.1016/j.ejps.2015.12.018. PubMed DOI
Kumari L., Choudhari Y., Patel P., Gupta G. D., Singh D., Rosenholm J. M., Bansal K. K., Kurmi B. D.. Advancement in Solubilization Approaches: A Step towards Bioavailability Enhancement of Poorly Soluble Drugs. Life. 2023;13(5):1099. doi: 10.3390/life13051099. PubMed DOI PMC
Bhalani D. V., Nutan B., Kumar A., Singh Chandel A. K.. Bioavailability Enhancement Techniques for Poorly Aqueous Soluble Drugs and Therapeutics. Biomedicines. 2022;10(9):2055. doi: 10.3390/biomedicines10092055. PubMed DOI PMC
Ezike T. C., Okpala U. S., Onoja U. L., Nwike C. P., Ezeako E. C., Okpara O. J., Okoroafor C. C., Eze S. C., Kalu O. L., Odoh E. C., Nwadike U. G., Ogbodo J. O., Umeh B. U., Ossai E. C., Nwanguma B. C.. Advances in Drug Delivery Systems, Challenges and Future Directions. Heliyon. 2023;9(6):e17488. doi: 10.1016/j.heliyon.2023.e17488. PubMed DOI PMC
Daughton C. G., Ruhoy I. S.. Lower-Dose Prescribing: Minimizing “Side Effects” of Pharmaceuticals on Society and the Environment. Sci. Total Environ. 2013;443:324–337. doi: 10.1016/j.scitotenv.2012.10.092. PubMed DOI
Williams H. D., Trevaskis N. L., Charman S. A., Shanker R. M., Charman W. N., Pouton C. W., Porter C. J. H.. Strategies to Address Low Drug Solubility in Disc. Pharmacol. Rev. 2013;65(1):315–499. doi: 10.1124/pr.112.005660. PubMed DOI
Rams-Baron, M. ; Jachowicz, R. ; Boldyreva, E. ; Zhou, D. ; Jamroz, W. ; Paluch, M. . Amorphous Drugs: Benefits and Challenges; 2018, 10.1007/978-3-319-72002-9. DOI
Kawakami K., Pikal M. J.. Calorimetric Investigation of the Structural Relaxation of Amorphous Materials: Evaluating Validity of the Methodologies. J. Pharm. Sci. 2005;94(5):948–965. doi: 10.1002/jps.20298. PubMed DOI
Brough C., Williams R. O.. Amorphous Solid Dispersions and Nano-Crystal Technologies for Poorly Water-Soluble Drug Delivery. Int. J. Pharm. 2013;453(1):157–166. doi: 10.1016/j.ijpharm.2013.05.061. PubMed DOI
Huang Y., Dai W.-G.. Fundamental Aspects of Solid Dispersion Technology for Poorly Soluble Drugs. Acta Pharm. Sin. B. 2014;4(1):18–25. doi: 10.1016/j.apsb.2013.11.001. PubMed DOI PMC
Baghel S., Cathcart H., O’Reilly N. J.. Polymeric Amorphous Solid Dispersions: A Review of Amorphization, Crystallization, Stabilization, Solid-State Characterization, and Aqueous Solubilization of Biopharmaceutical Classification System Class II Drugs. J. Pharm. Sci. 2016;105(9):2527–2544. doi: 10.1016/j.xphs.2015.10.008. PubMed DOI
Zhang J., Guo M., Luo M., Cai T.. Advances in the Development of Amorphous Solid Dispersions: The Role of Polymeric Carriers. Asian J. Pharm. Sci. 2023;18(4):100834. doi: 10.1016/j.ajps.2023.100834. PubMed DOI PMC
Lappe S., Mulac D., Langer K.. Polymeric Nanoparticles – Influence of the Glass Transition Temperature on Drug Release. Int. J. Pharm. 2017;517(1):338–347. doi: 10.1016/j.ijpharm.2016.12.025. PubMed DOI
Xiang T.-X., Anderson B. D.. Effects of Molecular Interactions on Miscibility and Mobility of Ibuprofen in Amorphous Solid Dispersions With Various Polymers. J. Pharm. Sci. 2019;108(1):178–186. doi: 10.1016/j.xphs.2018.10.052. PubMed DOI
Sharma J., Singh B., Agrawal A. K., Bansal A. K.. Correlationship of Drug-Polymer Miscibility, Molecular Relaxation and Phase Behavior of Dipyridamole Amorphous Solid Dispersions. J. Pharm. Sci. 2021;110(4):1470–1479. doi: 10.1016/j.xphs.2020.12.007. PubMed DOI
Yang J., Grey K., Doney J.. An Improved Kinetics Approach to Describe the Physical Stability of Amorphous Solid Dispersions. Int. J. Pharm. 2010;384(1):24–31. doi: 10.1016/j.ijpharm.2009.09.035. PubMed DOI
Boucenna Y., Layachi A., Cherfia A., Laoutid F., Satha H.. Non-Isothermal Crystallization Kinetics and Activation Energy for Crystal Growth of Polyamide 66/Short Glass Fiber/Carbon Black Composites. Materials (Basel) 2023;16(22):7073. doi: 10.3390/ma16227073. PubMed DOI PMC
Zhao W., Li C., Chang J., Zhou H., Wang D., Sun J., Liu T., Peng H., Wang Q., Li Y., Whittaker A. K.. Advances and Prospects of RAFT Polymerization-Derived Nanomaterials in MRI-Assisted Biomedical Applications. Prog. Polym. Sci. 2023;146:101739. doi: 10.1016/j.progpolymsci.2023.101739. DOI
Kim J., Jung H. Y., Park M. J.. End-Group Chemistry and Junction Chemistry in Polymer Science: Past, Present, and Future. Macromolecules. 2020;53(3):746–763. doi: 10.1021/acs.macromol.9b02293. DOI
Ding L., Agrawal P., Singh S. K., Chhonker Y. S., Sun J., Murry D. J.. Polymer-Based Drug Delivery Systems for Cancer Therapeutics. Polymers. 2024;16:843. doi: 10.3390/polym16060843. PubMed DOI PMC
Ulbrich K., Holá K., Šubr V., Bakandritsos A., Tuček J., Zbořil R.. Targeted Drug Delivery with Polymers and Magnetic Nanoparticles: Covalent and Noncovalent Approaches, Release Control, and Clinical Studies. Chem. Rev. 2016;116(9):5338–5431. doi: 10.1021/acs.chemrev.5b00589. PubMed DOI
Ghezzi M., Pescina S., Padula C., Santi P., Del Favero E., Cantù L., Nicoli S.. Polymeric Micelles in Drug Delivery: An Insight of the Techniques for Their Characterization and Assessment in Biorelevant Conditions. J. Controlled Release. 2021;332:312–336. doi: 10.1016/j.jconrel.2021.02.031. PubMed DOI
Lu Y., Zhang E., Yang J., Cao Z.. Strategies to Improve Micelle Stability for Drug Delivery. Nano Res. 2018;11(10):4985–4998. doi: 10.1007/s12274-018-2152-3. PubMed DOI PMC
Assiri A. A., Glover K., Mishra D., Waite D., Vora L. K., Thakur R. R. S.. Block Copolymer Micelles as Ocular Drug Delivery Systems. Drug Discovery Today. 2024;29(8):104098. doi: 10.1016/j.drudis.2024.104098. PubMed DOI
Van Duong T., Van den Mooter G.. The Role of the Carrier in the Formulation of Pharmaceutical Solid Dispersions. Part II: Amorphous Carriers. Expert Opin. Drug Delivery. 2016;13(12):1681–1694. doi: 10.1080/17425247.2016.1198769. PubMed DOI
Linn M., Collnot E.-M., Djuric D., Hempel K., Fabian E., Kolter K., Lehr C.-M.. Soluplus® as an Effective Absorption Enhancer of Poorly Soluble Drugs in Vitro and in Vivo. Eur. J. Pharm. Sci. 2012;45(3):336–343. doi: 10.1016/j.ejps.2011.11.025. PubMed DOI
Bonde G. V., Ajmal G., Yadav S. K., Mittal P., Singh J., Bakde B. V., Mishra B.. Assessing the Viability of Soluplus® Self-Assembled Nanocolloids for Sustained Delivery of Highly Hydrophobic Lapatinib (Anticancer Agent): Optimisation and in-Vitro Characterisation. Colloids Surfaces B Biointerfaces. 2020;185:110611. doi: 10.1016/j.colsurfb.2019.110611. PubMed DOI
Mateos H., Gentile L., Murgia S., Colafemmina G., Collu M., Smets J., Palazzo G.. Understanding the Self-Assembly of the Polymeric Drug Solubilizer Soluplus®. J. Colloid Interface Sci. 2022;611:224–234. doi: 10.1016/j.jcis.2021.12.016. PubMed DOI
Xia D., Yu H., Tao J., Zeng J., Zhu Q., Zhu C., Gan Y.. Supersaturated Polymeric Micelles for Oral Cyclosporine A Delivery: The Role of Soluplus-Sodium Dodecyl Sulfate Complex. Colloids Surfaces B Biointerfaces. 2016;141:301–310. doi: 10.1016/j.colsurfb.2016.01.047. PubMed DOI
Alopaeus J. F., Hagesæther E., Tho I.. Micellisation Mechanism and Behaviour of Soluplus®–Furosemide Micelles: Preformulation Studies of an Oral Nanocarrier-Based System. Pharmaceuticals. 2019;12(1):15. doi: 10.3390/ph12010015. PubMed DOI PMC
Alvarez-Rivera F., Fernández-Villanueva D., Concheiro A., Alvarez-Lorenzo C.. α-Lipoic Acid in Soluplus® Polymeric Nanomicelles for Ocular Treatment of Diabetes-Associated Corneal Diseases. J. Pharm. Sci. 2016;105(9):2855–2863. doi: 10.1016/j.xphs.2016.03.006. PubMed DOI
Varela-Garcia A., Concheiro A., Alvarez-Lorenzo C.. Soluplus Micelles for Acyclovir Ocular Delivery: Formulation and Cornea and Sclera Permeability. Int. J. Pharm. 2018;552(1):39–47. doi: 10.1016/j.ijpharm.2018.09.053. PubMed DOI
Salah I., Shamat M. A., Cook M. T.. Soluplus Solutions as Thermothickening Materials for Topical Drug Delivery. J. Appl. Polym. Sci. 2019;136(1):1–9. doi: 10.1002/app.46915. DOI
Taveira S. F., Varela-Garcia A., dos Santos Souza B., Marreto R. N., Martin-Pastor M., Concheiro A., Alvarez-Lorenzo C.. Cyclodextrin-Based Poly(Pseudo)Rotaxanes for Transdermal Delivery of Carvedilol. Carbohydr. Polym. 2018;200(May):278–288. doi: 10.1016/j.carbpol.2018.08.017. PubMed DOI
Jin X., Zhou B., Xue L., San W.. Soluplus® Micelles as a Potential Drug Delivery System for Reversal of Resistant Tumor. Biomed. Pharmacother. 2015;69:388–395. doi: 10.1016/j.biopha.2014.12.028. PubMed DOI
Pignatello R., Corsaro R., Bonaccorso A., Zingale E., Carbone C., Musumeci T.. Soluplus® Polymeric Nanomicelles Improve Solubility of BCS-Class II Drugs. Drug Delivery Transl. Res. 2022;12(8):1991–2006. doi: 10.1007/s13346-022-01182-x. PubMed DOI PMC
Attia M. S., Elshahat A., Hamdy A., Fathi A. M., Emad-Eldin M., Ghazy F.-E. S., Chopra H., Ibrahim T. M.. Soluplus® as a Solubilizing Excipient for Poorly Water-Soluble Drugs: Recent Advances in Formulation Strategies and Pharmaceutical Product Features. J. Drug Delivery Sci. Technol. 2023;84:104519. doi: 10.1016/j.jddst.2023.104519. DOI
Kaur D., Rathee A., Krishna V., Nagpal M.. Soluplus-Based Polymeric Micelles: A Promising Carrier System for Challenging Drugs. Int. J. Pharm. Sci. Rev. Res. 2024;84:83–93. doi: 10.47583/ijpsrr.2024.v84i09.014. DOI
Liu P., Zhou J. Y., Chang J. H., Liu X. G., Xue H. F., Wang R. X., Li Z. S., Li C. S., Wang J., Liu C. Z.. Soluplus-Mediated Diosgenin Amorphous Solid Dispersion with High Solubility and High Stability: Development, Characterization and Oral Bioavailability. Drug Des. Devel. Ther. 2020;14:2959–2975. doi: 10.2147/DDDT.S253405. PubMed DOI PMC
Li S., Zhang Z., Gu W., Gallas M., Jones D., Boulet P., Johnson L. M., de Margerie V., Andrews G. P.. Hot Melt Extruded High-Dose Amorphous Solid Dispersions Containing Lumefantrine and Soluplus. Int. J. Pharm. 2024;665:124676. doi: 10.1016/j.ijpharm.2024.124676. PubMed DOI
Singh A., Bharati A., Frederiks P., Verkinderen O., Goderis B., Cardinaels R., Moldenaers P., Van Humbeeck J., Van den Mooter G.. Effect of Compression on the Molecular Arrangement of Itraconazole–Soluplus Solid Dispersions: Induction of Liquid Crystals or Exacerbation of Phase Separation? Mol. Pharmaceutics. 2016;13(6):1879–1893. doi: 10.1021/acs.molpharmaceut.6b00046. PubMed DOI
Bejaoui, M. ; Galai, H. ; Touati, F. ; Kouass, S. . Multifunctional Roles of PVP as a Versatile Biomaterial in Solid State. In Dosage Forms; Ahmad, U. , Ed.; IntechOpen: Rijeka, 2021. 10.5772/intechopen.99431. DOI
Kurakula M., Rao G. S. N. K.. Pharmaceutical Assessment of Polyvinylpyrrolidone (PVP): As Excipient from Conventional to Controlled Delivery Systems with a Spotlight on COVID-19 Inhibition. J. Drug Delivery Sci. Technol. 2020;60(August):102046. doi: 10.1016/j.jddst.2020.102046. PubMed DOI PMC
Franco P., De Marco I.. The Use of Poly(N-Vinyl Pyrrolidone) in the Delivery of Drugs: A Review. Polymers (Basel) 2020;12(5):1114. doi: 10.3390/polym12051114. PubMed DOI PMC
Kim J. M., Baig C.. Communication: Role of Short Chain Branching in Polymer Structure and Dynamics. J. Chem. Phys. 2016;144(8):81101. doi: 10.1063/1.4942351. PubMed DOI
Gabriel C., Münstedt H.. Influence of Long-Chain Branches in Polyethylenes on Linear Viscoelastic Flow Properties in Shear. Rheol. Acta. 2002;41(3):232–244. doi: 10.1007/s00397-001-0219-6. DOI
Ramachandran R., Beaucage G., Kulkarni A. S., McFaddin D., Merrick-Mack J., Galiatsatos V.. Persistence Length of Short-Chain Branched Polyethylene. Macromolecules. 2008;41(24):9802–9806. doi: 10.1021/ma801775n. DOI
Choe D., Jeong S. H., Baig C.. Structural, Topological, and Rheological Characteristics of Entangled Short-Chain Branched Polymer Melts under Shear Flow in Comparison with the Linear Analog. J. Rheol. (N. Y. N. Y). 2024;68(4):591–601. doi: 10.1122/8.0000844. DOI
Orszulak L., Lamrani T., Tarnacka M., Hachuła B., Jurkiewicz K., Zioła P., Mrozek-Wilczkiewicz A., Kamińska E., Kamiński K.. The Impact of Various Poly(Vinylpyrrolidone) Polymers on the Crystallization Process of Metronidazole. Pharmaceutics. 2024;16(1):136. doi: 10.3390/pharmaceutics16010136. PubMed DOI PMC
Heczko D., Hachuła B., Maksym P., Kamiński K., Zięba A., Orszulak L., Paluch M., Kamińska E.. The Effect of Various Poly (N-Vinylpyrrolidone) (PVP) Polymers on the Crystallization of Flutamide. Pharmaceuticals. 2022;15(8):971. doi: 10.3390/ph15080971. PubMed DOI PMC
Orszulak L., Lamrani T., Bernat R., Tarnacka M., Żakowiecki D., Jurkiewicz K., Zioła P., Mrozek-Wilczkiewicz A., Zięba A., Kamiński K., Kamińska E.. The Influence of PVP Polymer Topology on the Liquid Crystalline Order of Itraconazole in Binary Systems. Mol. Pharmaceutics. 2024;21(6):3027–3039. doi: 10.1021/acs.molpharmaceut.4c00215. PubMed DOI PMC
Orszulak L., Włodarczyk P., Hachuła B., Lamrani T., Jurkiewicz K., Tarnacka M., Hreczka M., Kamiński K., Kamińska E.. Inhibition of Naproxen Crystallization by Polymers: The Role of Topology and Chain Length of Polyvinylpyrrolidone Macromolecules. Eur. J. Pharm. Biopharm. 2025;207:114581. doi: 10.1016/j.ejpb.2024.114581. PubMed DOI
Uppuluri C. T., Dalvi A. V., Bommireddy E. P., Ravi P. R.. Development and Validation of Rapid and Sensitive LC Methods with PDA and Fluorescence Detection for Determination of Piribedil in Rat Plasma and Brain Tissues and Their Pharmacokinetic Application. Biomed. Chromatogr. 2018;32(10):1–10. doi: 10.1002/bmc.4303. PubMed DOI
Meng F., Dave V., Chauhan H.. Qualitative and Quantitative Methods to Determine Miscibility in Amorphous Drug-Polymer Systems. Eur. J. Pharm. Sci. Off. J. Eur. Fed. Pharm. Sci. 2015;77:106–111. doi: 10.1016/j.ejps.2015.05.018. PubMed DOI
Bansal K., Baghel U. S., Thakral S.. Construction and Validation of Binary Phase Diagram for Amorphous Solid Dispersion Using Flory-Huggins Theory. AAPS PharmSciTech. 2016;17(2):318–327. doi: 10.1208/s12249-015-0343-8. PubMed DOI PMC
Wu C., Li J., Wei H., Hang Y., Jiang Y.. 2-{4-[(1,3-Benzodioxol-5-Yl)Methyl]Piperazin-1-Yl}pyrimidine. Acta Crystallogr. Sect. E Struct. Reports Online. 2013;69(7):o1140. doi: 10.1107/S1600536813016851. PubMed DOI PMC
Baird J. A., Van Eerdenbrugh B., Taylor L. S.. A Classification System to Assess the Crystallization Tendency of Organic Molecules from Undercooled Melts. J. Pharm. Sci. 2010;99(9):3787–3806. doi: 10.1002/jps.22197. PubMed DOI
Blaabjerg L. I., Lindenberg E., Löbmann K., Grohganz H., Rades T.. Is There a Correlation between the Glass Forming Ability of a Drug and Its Supersaturation Propensity? Int. J. Pharm. 2018;538(1–2):243–249. doi: 10.1016/j.ijpharm.2018.01.013. PubMed DOI
Kaminska E., Tarnacka M., Wlodarczyk P., Jurkiewicz K., Kolodziejczyk K., Dulski M., Haznar-Garbacz D., Hawelek L., Kaminski K., Wlodarczyk A., Paluch M.. Studying the Impact of Modified Saccharides on the Molecular Dynamics and Crystallization Tendencies of Model API Nifedipine. Mol. Pharmaceutics. 2015;12(8):3007–3019. doi: 10.1021/acs.molpharmaceut.5b00271. PubMed DOI
Grzybowska K., Grzybowski A., Knapik-Kowalczuk J., Chmiel K., Woyna-Orlewicz K., Szafraniec-Szczȩsny J., Antosik-Rogóż A., Jachowicz R., Kowalska-Szojda K., Lodowski P., Paluch M.. Molecular Dynamics and Physical Stability of Ibuprofen in Binary Mixtures with an Acetylated Derivative of Maltose. Mol. Pharmaceutics. 2020;17(8):3087–3105. doi: 10.1021/acs.molpharmaceut.0c00517. PubMed DOI PMC
Minecka A., Tarnacka M., Jurkiewicz K., Hachuła B., Wrzalik R., Bródka A., Kamiński K., Kamińska E.. The Impact of the Size of Acetylated Cyclodextrin on the Stability of Amorphous Metronidazole. Int. J. Pharm. 2022;624:122025. doi: 10.1016/j.ijpharm.2022.122025. PubMed DOI
Minecka A., Tarnacka M., Jurkiewicz K., Hachuła B., Wrzalik R., Kamiński K., Paluch M., Kamińska E.. Impact of the Chain Length and Topology of the Acetylated Oligosaccharide on the Crystallization Tendency of Naproxen from Amorphous Binary Mixtures. Mol. Pharmaceutics. 2021;18(1):347–358. doi: 10.1021/acs.molpharmaceut.0c00982. PubMed DOI PMC
Jayachandra Babu R., Brostow W., Kalogeras I. M., Sathigari S.. Glass Transitions in Binary Drug+polymer Systems. Mater. Lett. 2009;63(30):2666–2668. doi: 10.1016/j.matlet.2009.09.033. DOI
Valenti S., Del Valle L. J., Romanini M., Mitjana M., Puiggalí J., Tamarit J. L., Macovez R.. Drug-Biopolymer Dispersions: Morphology-and Temperature-Dependent (Anti)Plasticizer Effect of the Drug and Component-Specific Johari–Goldstein Relaxations. Int. J. Mol. Sci. 2022;23(5):2456. doi: 10.3390/ijms23052456. PubMed DOI PMC
Avramov I., Gutzow I.. Heating Rate and Glass Transition Temperature. J. Non. Cryst. Solids. 1988;104(1):148–150. doi: 10.1016/0022-3093(88)90194-9. DOI
Pries J., Wei S., Wuttig M., Lucas P.. Switching between Crystallization from the Glassy and the Undercooled Liquid Phase in Phase Change Material Ge2Sb2Te5. Adv. Mater. 2019;31(39):1900784. doi: 10.1002/adma.201900784. PubMed DOI
Hess K. U., Schawe J. E. K., Wilding M., Purgstaller B., Goetschl K. E., Sturm S., Müller-Caspary K., Sturm E. V., Schmahl W., Griesshaber E., Bissbort T., Weidendorfer D., Dietzel M., Dingwell D. B.. Glass Transition Temperatures and Crystallization Kinetics of a Synthetic, Anhydrous, Amorphous Calcium-Magnesium Carbonate. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2023;381(2258):20220356. doi: 10.1098/rsta.2022.0356. PubMed DOI PMC
Kissinger H. E.. Variation of Peak Temperature With Heating Rate in DTA- Kissinger. 1956;57(4):217–221. doi: 10.6028/jres.057.026. DOI
Alotaibi N. M., Aouak T.. Preparation and Non Isothermal Crystallization Kinetic of Acetylsalicylic Acid-Poly(Vinylalcohol-Co-Ethylene) Blend. Application in Drug Delivery Domain. Macromol. Res. 2013;21(7):747–756. doi: 10.1007/s13233-013-1078-6. DOI
Maxwell J. C.. On the Dynamical Theory of Gases. 2003;1:197–261. doi: 10.1142/9781848161337_0014. DOI
Karra S., Průša V., Rajagopal K. R.. On Maxwell Fluids with Relaxation Time and Viscosity Depending on the Pressure. Int. J. Non. Linear. Mech. 2011;46(6):819–827. doi: 10.1016/j.ijnonlinmec.2011.02.013. DOI
Kamińska E., Minecka A., Tarnacka M., Hachuła B., Kamiński K., Paluch M.. Influence of Annealing in the Close Vicinity of Tg on the Reorganization within Dimers and Its Impact on the Crystallization Kinetics of Gemfibrozil. Mol. Pharmaceutics. 2020;17(3):990–1000. doi: 10.1021/acs.molpharmaceut.9b01244. PubMed DOI PMC
Rozwadowski T., Noda H., Kolek Ł., Ito M., Yamamura Y., Saitoh H., Saito K.. Molecular Dynamics and Kinetics of Isothermal Cold Crystallization with Tunable Dimensionality in a Molecular Glass Former, 5′-(2,3-Difluorophenyl)-2′-Ethoxy-4-Pentyloxy-2,3-Difluorotolane. Phys. Chem. Chem. Phys. 2022;25(1):724–735. doi: 10.1039/D2CP03638J. PubMed DOI
Schulz E.. B. Wunderlich. Macromolecular Physics, Vol. 2 Crystal Nucleation, Growth, Annealing. Academic Press New York 1976, Preis $ 46, 50. Krist. und Technol. 1977;12(1):K11–K12. doi: 10.1002/crat.19770120121. DOI
Nair A. R., Lakshman Y. D., Anand V. S. K., Sree K. S. N., Bhat K., Dengale S. J.. Overview of Extensively Employed Polymeric Carriers in Solid Dispersion Technology. AAPS PharmSciTech. 2020;21(8):309. doi: 10.1208/s12249-020-01849-z. PubMed DOI PMC
Bielas R., Maksym P., Tarnacka M., Minecka A., Jurkiewicz K., Talik A., Geppert-Rybczyńska M., Grelska J., Mielańczyk Ł., Bernat R., Kamiński K., Paluch M., Kamińska E.. Synthetic Strategy Matters: The Study of a Different Kind of PVP as Micellar Vehicles of Metronidazole. J. Mol. Liq. 2021;332:115789. doi: 10.1016/j.molliq.2021.115789. DOI
Heinz D., Amado E., Kressler J.. Polyphilicity-An Extension of the Concept of Amphiphilicity in Polymers. Polymers (Basel) 2018;10(9):960. doi: 10.3390/polym10090960. PubMed DOI PMC
Manfredini N., Sponchioni M., Moscatelli D.. Recoverable Thermo-Responsive Polymeric Surfactants for the Synthesis of Bulk Plastics from Latexes. ACS Appl. Polym. Mater. 2022;4(1):270–279. doi: 10.1021/acsapm.1c01266. DOI
Allen C., Maysinger D., Eisenberg A.. Nano-Engineering Block Copolymer Aggregates for Drug Delivery. Colloids Surfaces B Biointerfaces. 1999;16(1):3–27. doi: 10.1016/S0927-7765(99)00058-2. DOI
Tiwari, D. ; Verma, P. . Microencapsulation Technique by Solvent Evaporation Method (Study of Effect of Process Variables). Int. J. Pharm. Life Sci. 2011, 2, 998–1005.
Wallace S. J., Li J., Nation R. L., Boyd B. J.. Drug Release from Nanomedicines: Selection of Appropriate Encapsulation and Release Methodology. Drug Delivery Transl. Res. 2012;2(4):284–292. doi: 10.1007/s13346-012-0064-4. PubMed DOI PMC
Zhou Y., Yu J., Feng X., Li W., Wang Y., Jin H., Huang H., Liu Y., Fan D.. Reduction-Responsive Core-Crosslinked Micelles Based on a Glycol Chitosan–Lipoic Acid Conjugate for Triggered Release of Doxorubicin. RSC Adv. 2016;6(37):31391–31400. doi: 10.1039/C6RA05501J. DOI
Mitchell M. J., Billingsley M. M., Haley R. M., Wechsler M. E., Peppas N. A., Langer R.. Engineering Precision Nanoparticles for Drug Delivery. Nat. Rev. Drug Discovery. 2021;20(2):101–124. doi: 10.1038/s41573-020-0090-8. PubMed DOI PMC
Pochapski D. J., Carvalho dos Santos C., Leite G. W., Pulcinelli S. H., Santilli C. V.. Zeta Potential and Colloidal Stability Predictions for Inorganic Nanoparticle Dispersions: Effects of Experimental Conditions and Electrokinetic Models on the Interpretation of Results. Langmuir. 2021;37(45):13379–13389. doi: 10.1021/acs.langmuir.1c02056. PubMed DOI
Deleu D., Northway M. G., Hanssens Y.. Clinical Pharmacokinetic and Pharmacodynamic Properties of Drugs Used in the Treatment of Parkinson’s Disease. Clin. Pharmacokinet. 2002;41(4):261–309. doi: 10.2165/00003088-200241040-00003. PubMed DOI
Millan M. J.. From the Cell to the Clinic: A Comparative Review of the Partial D2/D3 Receptor Agonist and A2-Adrenoceptor Antagonist, Piribedil, in the Treatment of Parkinson’s Disease. Pharmacol. Ther. 2010;128(2):229–273. doi: 10.1016/j.pharmthera.2010.06.002. PubMed DOI
Perez-Lloret S., Rascol O.. Piribedil for the Treatment of Motor and Non-Motor Symptoms of Parkinson Disease. CNS Drugs. 2016;30(8):703–717. doi: 10.1007/s40263-016-0360-5. PubMed DOI
Uppuluri C. T., Ravi P. R., Dalvi A. V.. Design, Optimization and Pharmacokinetic Evaluation of Piribedil Loaded Solid Lipid Nanoparticles Dispersed in Nasal in Situ Gelling System for Effective Management of Parkinson’s Disease. Int. J. Pharm. 2021;606:120881. doi: 10.1016/j.ijpharm.2021.120881. PubMed DOI
Demirel M., Yazan Y., Muller R. H., Kilic F., Bozan B.. Formulation and in Vitro-in Vivo Evaluation of Piribedil Solid Lipid Micro- and Nanoparticles. J. Microencapsul. 2001;18(3):359–371. doi: 10.1080/02652040010018119. PubMed DOI
Uppuluri C. T., Ravi P. R., Dalvi A. V., Shaikh S. S., Kale S. R.. Piribedil Loaded Thermo-Responsive Nasal in Situ Gelling System for Enhanced Delivery to the Brain: Formulation Optimization, Physical Characterization, and in Vitro and in Vivo Evaluation. Drug Delivery Transl. Res. 2021;11(3):909–926. doi: 10.1007/s13346-020-00800-w. PubMed DOI
Kumar S. K., Ganesan V., Riggleman R. A.. Perspective: Outstanding Theoretical Questions in Polymer-Nanoparticle Hybrids. J. Chem. Phys. 2017;147(2):020901. doi: 10.1063/1.4990501. PubMed DOI
Fujita M., Goto S., Chatani H., Otsuka Y., Shimada Y., Terada H., Inoo K.. The Function of Oxybuprocaine: A Parachute Effect That Sustains the Supersaturated State of Anhydrous Piroxicam Crystals. RSC Adv. 2020;10(3):1572–1579. doi: 10.1039/C9RA09952B. PubMed DOI PMC
Fujita M., Tsuchida T., Kataoka H., Tsunoda C., Moritake K., Goto S.. Spring and Parachute Approach for Piroxicam Dissolution; Its Phenomenological Model on the Thermodynamics of Irreversible Processes. Int. J. Pharm. 2024;667:124886. doi: 10.1016/j.ijpharm.2024.124886. PubMed DOI
Real D. A., Gagliano A., Orzan L., Leonardi D., Salomon C. J.. Amorphous Solid Dispersions of Triclabendazole: Keeping the Supersaturated Drug Solution Using Poloxamers. J. Drug Delivery Sci. Technol. 2024;91:105223. doi: 10.1016/j.jddst.2023.105223. DOI