Gene target selection for loop-mediated isothermal amplification for rapid discrimination of Treponema pallidum subspecies
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu hodnotící studie, časopisecké články, práce podpořená grantem
PubMed
29649256
PubMed Central
PMC5978989
DOI
10.1371/journal.pntd.0006396
PII: PNTD-D-17-02072
Knihovny.cz E-zdroje
- MeSH
- bakteriální proteiny genetika MeSH
- DNA bakterií genetika MeSH
- frambézie mikrobiologie MeSH
- fylogeneze MeSH
- lidé MeSH
- techniky amplifikace nukleových kyselin metody MeSH
- techniky typizace bakterií MeSH
- Treponema pallidum klasifikace genetika izolace a purifikace MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- hodnotící studie MeSH
- práce podpořená grantem MeSH
- Názvy látek
- bakteriální proteiny MeSH
- DNA bakterií MeSH
We show proof of concept for gene targets (polA, tprL, and TP_0619) that can be used in loop-mediated isothermal amplification (LAMP) assays to rapidly differentiate infection with any of the three Treponema pallidum subspecies (pallidum (TPA), pertenue (TPE), and endemicum (TEN)) and which are known to infect humans and nonhuman primates (NHPs). Four TPA, six human, and two NHP TPE strains, as well as two human TEN strains were used to establish and validate the LAMP assays. All three LAMP assays were highly specific for the target DNA. Amplification was rapid (5-15 min) and within a range of 10E+6 to 10E+2 of target DNA molecules. Performance in NHP clinical samples was similar to the one seen in human TPE strains. The newly designed LAMP assays provide proof of concept for a diagnostic tool that enhances yaws clinical diagnosis. It is highly specific for the target DNA and does not require expensive laboratory equipment. Test results can potentially be interpreted with the naked eye, which makes it suitable for the use in remote clinical settings.
Department of Biology Faculty of Medicine Masaryk University Brno Czech Republic
Mast Diagnostica GmbH Reinfeld Germany
Sokoine University of Agriculture Faculty of Veterinary Medicine Morogoro Tanzania
Zobrazit více v PubMed
Mitjà O, Asiedu K, Mabey D. Yaws. Lancet. 2013;381(9868):763–73. Epub 2013/02/19. PubMed
Marks M, Mitjà O, Solomon AW, Asiedu KB, Mabey DC. Yaws. Br Med Bull. 2015;113(1):91–100. Epub 2014/12/20. doi: 10.1093/bmb/ldu037 PubMed DOI PMC
Asiedu K, Fitzpatrick C, Jannin J. Eradication of yaws: historical efforts and achieving WHO’s 2020 target. PLoS Negl Trop Dis. 2014;8(9):e3016 doi: 10.1371/journal.pntd.0003016 PubMed DOI PMC
Marks M, Mitjà O, Vestergaard LS, Pillay A, Knauf S, Chen CY, et al. Challenges and key research questions for yaws eradication. Lancet Infect Dis. 2015;15(10):1220–5. doi: 10.1016/S1473-3099(15)00136-X PubMed DOI PMC
Asiedu K, Amouzou B, Dhariwal A, Karam M, Lobo D, Patnaik S, et al. Yaws eradication: past efforts and future perspectives. Bull World Health Organ. 2008;86(7):499–A. Epub 2008/08/02. doi: 10.2471/BLT.08.055608 PubMed DOI PMC
Fitzpatrick C, Asiedu K, Jannin J. Where the Road Ends, Yaws Begins? The Cost-effectiveness of Eradication versus More Roads. PLoS Negl Trop Dis. 2014;8(9):e3165 doi: 10.1371/journal.pntd.0003165 PubMed DOI PMC
McGill MA, Edmondson DG, Carroll JA, Cook RG, Orkiszewski RS, Norris SJ. Characterization and serologic analysis of the Treponema pallidum proteome. Infect Immun. 2010;78(6):2631–43. Epub 2010/04/14. doi: 10.1128/IAI.00173-10 PubMed DOI PMC
Brinkman MB, McGill MA, Pettersson J, Rogers A, Matejková P, Šmajs D, et al. A novel Treponema pallidum antigen, TP0136, is an outer membrane protein that binds human fibronectin. Infect Immun. 2008;76(5):1848–57. Epub 2008/03/12. doi: 10.1128/IAI.01424-07 PubMed DOI PMC
Marks M, Yin YP, Chen XS, Castro A, Causer L, Guy R, et al. Metaanalysis of the performance of a combined treponemal and nontreponemal rapid diagnostic test for syphilis and yaws. Clin Infect Dis. 2016;63(5):627–33. doi: 10.1093/cid/ciw348 PubMed DOI PMC
Mitjà O, Lukehart SA, Pokowas G, Moses P, Kapa A, Godornes C, et al. Haemophilus ducreyi as a cause of skin ulcers in children from a yaws-endemic area of Papua New Guinea: a prospective cohort study. Lancet Glob Health. 2014;2(4):e235–41. doi: 10.1016/S2214-109X(14)70019-1 . PubMed DOI
Gibbs S. Skin disease and socioeconomic conditions in rural Africa: Tanzania. Int J Dermatol. 1996;35(9):633–9. Epub 1996/09/01. doi: 10.1111/j.1365-4362.1996.tb03687.x . PubMed DOI
Klegarth AR, Ezeonwu CA, Rompis A, Lee BPY, Aggimarangsee N, Chalise M, et al. Survey of treponemal infections in free-ranging and captive macaques, 1999–2012. Emerg Infect Dis. 2017;23(5):816–9. doi: 10.3201/eid2305.161838 PubMed DOI PMC
Knauf S, Liu H, Harper KN. Treponemal infection in nonhuman primates as possible reservoir for human yaws. Emerg Infect Dis. 2013;19(12):2058–60. Epub 2013/11/28. doi: 10.3201/eid1912.130863 PubMed DOI PMC
Knauf S, Gogarten J, Schuenemann VJ, De Nys HM, Duex A, Strouhal M, et al. African nonhuman primates are infected with the yaws bacterium Treponema pallidum subsp. pertenue. bioRxiv. 2017. doi: 10.1101/135491 PubMed DOI PMC
Zobaníková M, Strouhal M, Mikalová L, Čejková D, Ambrozova L, Pospíšilová P, et al. Whole genome sequence of the Treponema Fribourg-Blanc: unspecified simian isolate is highly similar to the yaws subspecies. PLoS Negl Trop Dis. 2013;7(4):e2172 Epub 2013/05/03. doi: 10.1371/journal.pntd.0002172 PubMed DOI PMC
Fribourg-Blanc A, Mollaret HH. Natural treponematosis of the African primate. Primates Med. 1969;3(0):113–21. Epub 1969/01/01. . PubMed
Smith JL, David NJ, Indgin S, Israel CW, Levine BM, Justice J Jr., et al. Neuro-ophthalmological study of late yaws and pinta. II. The Caracas project. Br J Vener Dis. 1971;47(4):226–51. Epub 1971/08/01. PubMed PMC
Pahil S, Goyal K. Rapid molecular diagnosis of chronic skin ulcers. Lancet Glob Health. 2917;2: e385. PubMed
Notomi T, Okayama H, Masubuchi H, Yonekawa T, Watanabe K, Amino N, et al. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res. 2000;28(12):E63 PubMed PMC
Mori Y, Notomi T. Loop-mediated isothermal amplification (LAMP): a rapid, accurate, and cost-effective diagnostic method for infectious diseases. J Infect Chemother. 2009;15(2):62–9. doi: 10.1007/s10156-009-0669-9 . PubMed DOI PMC
Yoshida A, Nagashima S, Ansai T, Tachibana M, Kato H, Watari H, et al. Loop-mediated isothermal amplification method for rapid detection of the periodontopathic bacteria Porphyromonas gingivalis, Tannerella forsythia, and Treponema denticola. J Clin Microbiol. 2005;43(5):2418–24. doi: 10.1128/JCM.43.5.2418-2424.2005 PubMed DOI PMC
Liu H, Rodes B, Chen CY, Steiner B. New tests for syphilis: rational design of a PCR method for detection of Treponema pallidum in clinical specimens using unique regions of the DNA polymerase I gene. J Clin Microbiol. 2001;39(5):1941–6. Epub 2001/04/28. doi: 10.1128/JCM.39.5.1941-1946.2001 PubMed DOI PMC
Šmajs D, Zobaníková M, Strouhal M, Čejková D, Dugan-Rocha S, Pospíšilová P, et al. Complete genome sequence of Treponema paraluiscuniculi, strain Cuniculi A: the loss of infectivity to humans is associated with genome decay. PLoS One. 2011;6(5):e20415 doi: 10.1371/journal.pone.0020415 PubMed DOI PMC
Graves S, Downes J. Experimental infection of man with rabbit-virulent Treponema paraluis-cuniculi. Br J Vener Dis. 1981;57(1):7–10. PubMed PMC
Centurion-Lara A, Giacani L, Godornes C, Molini BJ, Brinck Reid T, Lukehart SA. Fine analysis of genetic diversity of the tpr gene family among treponemal species, subspecies and strains. PLoS Negl Trop Dis. 2013;7(5):e2222 doi: 10.1371/journal.pntd.0002222 PubMed DOI PMC
Godornes C, Giacani L, Barry A, Mitjà O, Lukehart S (2017) Development of a multilocus sequence typing (MLST) scheme for Treponema pallidum subsp. pertenue: Application to yaws in Lihir Island, Papua New Guinea. PLoS Negl Trop Dis. 11: e0006113 doi: 10.1371/journal.pntd.0006113 PubMed DOI PMC
Knauf S, Batamuzi EK, Mlengeya T, Kilewo M, Lejora IA, Nordhoff M, et al. Treponema infection associated with genital ulceration in wild baboons. Vet Pathol. 2012;49(2):292–303. Epub 2011/03/18. doi: 10.1177/0300985811402839 . PubMed DOI
Iwamoto T, Sonobe T, Hayashi K. Loop-mediated isothermal amplification for direct detection of Mycobacterium tuberculosis complex, M. avium, and M. intracellulare in sputum samples. J Clin Microbiol. 2003;41(6):2616–22. Epub 2003/06/07. doi: 10.1128/JCM.41.6.2616-2622.2003 PubMed DOI PMC
Aryan E, Makvandi M, Farajzadeh A, Huygen K, Bifani P, Mousavi SL, et al. A novel and more sensitive loop-mediated isothermal amplification assay targeting IS6110 for detection of Mycobacterium tuberculosis complex. Microbiol Res. 2010;165(3):211–20. doi: 10.1016/j.micres.2009.05.001 . PubMed DOI
Das A, Babiuk S, McIntosh MT. Development of a loop-mediated isothermal amplification assay for rapid detection of capripoxviruses. J Clin Microbiol. 2012;50(5):1613–20. doi: 10.1128/JCM.06796-11 PubMed DOI PMC
Sarkodie F, Hassall O, Owusu-Dabo E, Owusu-Ofori S, Bates I, Bygbjerg IC, et al. Syphilis screening practices in blood transfusion facilities in Ghana. Int J Infect Dis. 2016;43:90–4. doi: 10.1016/j.ijid.2015.12.020 . PubMed DOI
Vallely A, Page A, Dias S, Siba P, Lupiwa T, Law G, et al. The prevalence of sexually transmitted infections in Papua New Guinea: a systematic review and meta-analysis. PLoS One. 2010;5(12):e15586 doi: 10.1371/journal.pone.0015586 PubMed DOI PMC
Giacani L, Lukehart SA. The endemic treponematoses. Clin Microbiol Rev. 2014;27(1):89–115. Epub 2014/01/08. doi: 10.1128/CMR.00070-13 PubMed DOI PMC
Liu N, Zou D, Dong D, Yang Z, Ao D, Liu W, et al. Development of a multiplex loop-mediated isothermal amplification method for the simultaneous detection of Salmonella spp. and Vibrio parahaemolyticus. Sci Rep. 2017;7:45601 doi: 10.1038/srep45601 PubMed DOI PMC
Tomita N, Mori Y, Kanda H, Notomi T. Loop-mediated isothermal amplification (LAMP) of gene sequences and simple visual detection of products. Nat Protoc. 2008;3(5):877–82. doi: 10.1038/nprot.2008.57 . PubMed DOI
Chander Y, Koelbl J, Puckett J, Moser MJ, Klingele AJ, Liles MR, et al. A novel thermostable polymerase for RNA and DNA loop-mediated isothermal amplification (LAMP). Front Microbiol. 2014;5:395 doi: 10.3389/fmicb.2014.00395 PubMed DOI PMC
Marks M, Fookes M, Wagner J, Butcher R, Ghinai R, Sokana et al. (2017) Diagnostics for yaws eradication: insights from direct next generation sequencing of cutaneous strains of Treponema pallidum. Clin Infect Dis. 2017; doi: 10.1093/cid/cix892 . PubMed DOI PMC
Marks M, Mitjà O, Fitzpatrick C, Asiedu K, Solomon AW, Mabey DC, et al. Mathematical modeling of programmatic requirements for yaws eradication. Emerg Infect Dis. 2017;23(1):22–8. Epub 2016/12/17. doi: 10.3201/eid2301.160487 PubMed DOI PMC
Tipple C, Hanna MO, Hill S, Daniel J, Goldmeier D, McClure MO, et al. Getting the measure of syphilis: qPCR to better understand early infection. Sex Transm Infect. 2011;87(6):479–85. doi: 10.1136/sti.2011.049494 PubMed DOI PMC
Grange P, Mikalová L, Gaudin C, Strouhal M, Janier M, et al. Treponema pallidum 11qj subtype may correspond to a Treponema pallidum subsp. endemicum strain. Sex Transm Dis. 2016;43: 517–8. PubMed
Noda AA, Grillová L, Lienhard R, Blanco O, Rodríguez I, et al. Bejel in Cuba: molecular identification of Treponema pallidum subsp. endemicum in patients diagnosed with venereal syphilis. Clin Microbiol Infect. 2018; doi: 10.1016/j.cmi.2018.02.006 . PubMed DOI
Ratnam S. The laboratory diagnosis of syphilis. Can J Infect Dis Med Microbiol. 2005;16(1):45–51. Epub 2007/12/27. PubMed PMC