Dietary niche shapes bacterial community in Indo-Pacific ants
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
EP/X026868/1
UK Research and Innovation
21-00828S
Czech Science Foundation Standard Project
BB/W001632/1
Biotechnology and Biological Sciences Research Council - United Kingdom
NE/S014470/3
Natural Environment Research Council
RPG-2020-21
Leverhulme Trust
PubMed
40899832
PubMed Central
PMC12502676
DOI
10.1128/spectrum.01965-25
Knihovny.cz E-zdroje
- Klíčová slova
- 16S rRNA sequencing, diet evolution, microbiome, symbioses, tropics,
- MeSH
- Bacteria * klasifikace genetika izolace a purifikace MeSH
- biodiverzita MeSH
- býložravci MeSH
- dieta MeSH
- ekosystém MeSH
- Formicidae * mikrobiologie fyziologie klasifikace MeSH
- fylogeneze MeSH
- mikrobiota * genetika MeSH
- RNA ribozomální 16S genetika MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- RNA ribozomální 16S MeSH
Ants are among the most ecologically diverse insects, especially in tropical forest ecosystems, yet what shapes their microbial associates remains poorly understood. Most research has focused on Neotropical ants, where strong microbial associations have been linked to shifts in diet-such as herbivory-and nesting ecology. In contrast, Indo-Pacific ants, which have independently evolved similar specialized lifestyles, remain largely unstudied for their microbial associations. Here, we integrate deep-coverage 16S rRNA sequencing with stable isotope (δ15N) analyses to characterize the microbiomes of 239 ants from 36 species across 24 genera from the Indo-Pacific region. These ants span a broad ecological range, from ground-dwelling predators to strict arboreal herbivores, allowing us to ask: which ecological traits shape bacterial diversity in tropical ants? Our results reveal that dietary niche (δ15N)-rather than nesting habitat-is the primary explanatory variable of microbial diversity and composition. Ants consuming protein-rich diets (predators and omnivores) exhibit significantly higher bacterial alpha diversity and distinct community composition profiles compared to their plant-based (herbivorous) counterparts, with Rickettsiales, Rhizobiales, and Enterobacterales as major contributors to these differences. Notably, herbivorous ants tend to harbor simpler, Enterobacterales-dominated microbiomes, whereas predators support more complex communities, frequently containing Rhizobiales bacteria. Phylogenetic comparative analyses suggest that the acquisition of specific bacteria, particularly Enterobacterales, is strongly correlated with evolutionary transitions toward herbivory. Our findings expand on previously documented trends in ant-microbe interactions while also offering new insights into how symbioses drive the evolution of dietary strategies in tropical ecosystems.IMPORTANCEHost-microbe interactions have played an integral role in the evolution of specialized lifestyles in insects. Ants, with their ecological diversity and broad microbial associations, offer a powerful model for studying these dynamics. However, most research has focused on Neotropical ant lineages, limiting our broader understanding of how microbes influence ant evolution. Our study addresses this gap by examining Indo-Pacific ants-an underexplored but ecologically rich group-and reveals that diet, rather than nesting habitat, is the primary driver of microbial diversity. Notably, our findings challenge established patterns: Rhizobiales are more frequently associated with predatory ants than herbivores, contrasting with trends in Neotropical taxa. Furthermore, phylogenetic analyses suggest Enterobacterales may have played a key role in the evolution of herbivory. These results underscore the value of expanding research beyond taxa in well-studied regions and show how microbial partnerships can both reinforce and reshape our understanding of lifestyle evolution in ants.
Department of Biology Boston University Boston Massachusetts USA
Department of Bioscience Durham University Durham United Kingdom
Faculty of Science University of South Bohemia Ceske Budejovice Czechia
School of Biological and Behavioural Sciences Queen Mary University of London London United Kingdom
Zobrazit více v PubMed
Moggioli G, Panossian B, Sun Y, Thiel D, Martín-Zamora FM, Tran M, Clifford AM, Goffredi SK, Rimskaya-Korsakova N, Jékely G, Tresguerres M, Qian P-Y, Qiu J-W, Rouse GW, Henry LM, Martín-Durán JM. 2023. Distinct genomic routes underlie transitions to specialised symbiotic lifestyles in deep-sea annelid worms. Nat Commun 14:2814. doi: 10.1038/s41467-023-38521-6 PubMed DOI PMC
van Rhijn P, Vanderleyden J. 1995. The Rhizobium-plant symbiosis. Microbiol Rev 59:124–142. doi: 10.1128/mr.59.1.124-142.1995 PubMed DOI PMC
Cornwallis CK, van ’t Padje A, Ellers J, Klein M, Jackson R, Kiers ET, West SA, Henry LM. 2023. Symbioses shape feeding niches and diversification across insects. Nat Ecol Evol 7:1022–1044. doi: 10.1038/s41559-023-02058-0 PubMed DOI PMC
Husnik F, Hypsa V, Darby A. 2020. Insect-symbiont gene expression in the midgut bacteriocytes of a blood-sucking parasite. Genome Biol Evol 12:429–442. doi: 10.1093/gbe/evaa032 PubMed DOI PMC
Kanyile SN, Engl T, Kaltenpoth M. 2022. Nutritional symbionts enhance structural defence against predation and fungal infection in a grain pest beetle. J Exp Biol 225:jeb243593. doi: 10.1242/jeb.243593 PubMed DOI PMC
Wu T, Monnin D, Lee RAR, Henry LM. 2022. Local adaptation to hosts and parasitoids shape Hamiltonella defensa genotypes across aphid species. Proc Biol Sci 289:20221269. doi: 10.1098/rspb.2022.1269 PubMed DOI PMC
Schultheiss P, Nooten SS, Wang R, Wong MKL, Brassard F, Guénard B. 2022. The abundance, biomass, and distribution of ants on Earth. Proc Natl Acad Sci USA 119:e2201550119. doi: 10.1073/pnas.2201550119 PubMed DOI PMC
Jackson R, Monnin D, Patapiou PA, Golding G, Helanterä H, Oettler J, Heinze J, Wurm Y, Economou CK, Chapuisat M, Henry LM. 2022. Convergent evolution of a labile nutritional symbiosis in ants. ISME J 16:2114–2122. doi: 10.1038/s41396-022-01256-1 PubMed DOI PMC
Jackson R, Patapiou PA, Golding G, Helanterä H, Economou CK, Chapuisat M, Henry LM. 2023. Evidence of phylosymbiosis in Formica ants. Front Microbiol 14:1044286. doi: 10.3389/fmicb.2023.1044286 PubMed DOI PMC
Russell JA, Sanders JG, Moreau CS. 2017. Hotspots for symbiosis: function, evolution, and specificity of ant-microbe associa- tions from trunk to tips of the ant phylogeny (Hymenoptera: Formicidae). Myrmecol News 23:43–69.
Sanders JG, Lukasik P, Frederickson ME, Russell JA, Koga R, Knight R, Pierce NE. 2017. Dramatic differences in gut bacterial densities correlate with diet and habitat in rainforest ants. Integr Comp Biol 57:705–722. doi: 10.1093/icb/icx088 PubMed DOI
Russell JA, Moreau CS, Goldman-Huertas B, Fujiwara M, Lohman DJ, Pierce NE. 2009. Bacterial gut symbionts are tightly linked with the evolution of herbivory in ants. Proc Natl Acad Sci USA 106:21236–21241. doi: 10.1073/pnas.0907926106 PubMed DOI PMC
Nelsen MP, Ree RH, Moreau CS. 2018. Ant-plant interactions evolved through increasing interdependence. Proc Natl Acad Sci USA 115:12253–12258. doi: 10.1073/pnas.1719794115 PubMed DOI PMC
Béchade B, Hu Y, Sanders JG, Cabuslay CS, Łukasik P, Williams BR, Fiers VJ, Lu R, Wertz JT, Russell JA. 2022. Turtle ants harbor metabolically versatile microbiomes with conserved functions across development and phylogeny. FEMS Microbiol Ecol 98:fiac068. doi: 10.1093/femsec/fiac068 PubMed DOI
Hu Y, D’Amelio CL, Béchade B, Cabuslay CS, Łukasik P, Sanders JG, Price S, Fanwick E, Powell S, Moreau CS, Russell JA. 2023. Partner fidelity and environmental filtering preserve stage‐specific turtle ant gut symbioses for over 40 million years. Ecol Monogr 93:e1560. doi: 10.1002/ecm.1560 DOI
Ramalho MO, Bueno OC, Moreau CS. 2017. Microbial composition of spiny ants (Hymenoptera: Formicidae: Polyrhachis) across their geographic range. BMC Evol Biol 17:96. doi: 10.1186/s12862-017-0945-8 PubMed DOI PMC
Ramalho MO, Bueno OC, Moreau CS. 2017. Species-specific signatures of the microbiome from Camponotus and Colobopsis ants across developmental stages. PLoS One 12:e0187461. doi: 10.1371/journal.pone.0187461 PubMed DOI PMC
Gil R, Silva FJ, Zientz E, Delmotte F, González-Candelas F, Latorre A, Rausell C, Kamerbeek J, Gadau J, Hölldobler B, van Ham R, Gross R, Moya A. 2003. The genome sequence of Blochmannia floridanus: comparative analysis of reduced genomes. Proc Natl Acad Sci USA 100:9388–9393. doi: 10.1073/pnas.1533499100 PubMed DOI PMC
Wernegreen JJ, Kauppinen SN, Brady SG, Ward PS. 2009. One nutritional symbiosis begat another: phylogenetic evidence that the ant tribe Camponotini acquired Blochmannia by tending sap-feeding insects. BMC Evol Biol 9:292. doi: 10.1186/1471-2148-9-292 PubMed DOI PMC
Feldhaar H, Straka J, Krischke M, Berthold K, Stoll S, Mueller MJ, Gross R. 2007. Nutritional upgrading for omnivorous carpenter ants by the endosymbiont Blochmannia. BMC Biol 5:48. doi: 10.1186/1741-7007-5-48 PubMed DOI PMC
Neuvonen M-M, Tamarit D, Näslund K, Liebig J, Feldhaar H, Moran NA, Guy L, Andersson SGE. 2016. The genome of Rhizobiales bacteria in predatory ants reveals urease gene functions but no genes for nitrogen fixation. Sci Rep 6:39197. doi: 10.1038/srep39197 PubMed DOI PMC
Sapountzis P, Zhukova M, Shik JZ, Schiott M, Boomsma JJ. 2018. Reconstructing the functions of endosymbiotic Mollicutes in fungus-growing ants. Elife 7:e39209. doi: 10.7554/eLife.39209 PubMed DOI PMC
Sapountzis P, Nash DR, Schiøtt M, Boomsma JJ. 2019. The evolution of abdominal microbiomes in fungus-growing ants. Mol Ecol 28:879–899. doi: 10.1111/mec.14931 PubMed DOI PMC
Bisch G, Neuvonen M-M, Pierce NE, Russell JA, Koga R, Sanders JG, Lukasik P, Andersson SGE. 2018. Genome evolution of bartonellaceae symbionts of ants at the opposite ends of the trophic scale. Genome Biol Evol 10:1687–1704. doi: 10.1093/gbe/evy126 PubMed DOI PMC
Łukasik P, Newton JA, Sanders JG, Hu Y, Moreau CS, Kronauer DJC, O’Donnell S, Koga R, Russell JA. 2017. The structured diversity of specialized gut symbionts of the New World army ants. Mol Ecol 26:3808–3825. doi: 10.1111/mec.14140 PubMed DOI
Schultz TR, Sosa-Calvo J, Kweskin MP, Lloyd MW, Dentinger B, Kooij PW, Vellinga EC, Rehner SA, Rodrigues A, Montoya QV, Fernández-Marín H, Ješovnik A, Niskanen T, Liimatainen K, Leal-Dutra CA, Solomon SE, Gerardo NM, Currie CR, Bacci M, Vasconcelos HL, Rabeling C, Faircloth BC, Doyle VP. 2024. The coevolution of fungus-ant agriculture. Science 386:105–110. doi: 10.1126/science.adn7179 PubMed DOI
Innocent TM, Sapountzis P, Zhukova M, Poulsen M, Schiøtt M, Nash DR, Boomsma JJ. 2024. From the inside out: Were the cuticular Pseudonocardia bacteria of fungus-farming ants originally domesticated as gut symbionts? PNAS Nexus 3:gae391. doi: 10.1093/pnasnexus/pgae391 PubMed DOI PMC
Ramalho MO, Duplais C, Orivel J, Dejean A, Gibson JC, Suarez AV, Moreau CS. 2020. Development but not diet alters microbial communities in the Neotropical arboreal trap jaw ant Daceton armigerum: an exploratory study. Sci Rep 10:7350. doi: 10.1038/s41598-020-64393-7 PubMed DOI PMC
Chanson A, Moreau CS, Duplais C. 2023. Impact of nesting mode, diet, and taxonomy in structuring the associated microbial communities of amazonian ants. Diversity (Basel) 15:126. doi: 10.3390/d15020126 DOI
Chua K-O, Song S-L, Yong H-S, See-Too W-S, Yin W-F, Chan K-G. 2018. Microbial community composition reveals spatial variation and distinctive core microbiome of the weaver ant Oecophylla smaragdina in Malaysia. Sci Rep 8:10777. doi: 10.1038/s41598-018-29159-2 PubMed DOI PMC
Hu Y, Holway DA, Łukasik P, Chau L, Kay AD, LeBrun EG, Miller KA, Sanders JG, Suarez AV, Russell JA. 2017. By their own devices: invasive Argentine ants have shifted diet without clear aid from symbiotic microbes. Mol Ecol 26:1608–1630. doi: 10.1111/mec.13991 PubMed DOI
Cárdenas RE, Rodríguez-Ortega C, Utreras D, Forrister DL, Endara M-J, Queenborough SA, Alvia P, Menéndez-Guerrero PA, Báez S, Donoso DA. 2024. Long-term strict ant-plant mutualism identity characterises growth rate and leaf shearing resistance of an Amazonian myrmecophyte. Sci Rep 14:17813. doi: 10.1038/s41598-024-67140-4 PubMed DOI PMC
Peeters C, Wiwatwitaya D. 2014. Philidris ants living inside Dischidia epiphytes from Thailand. Asian Myrmecol 6:49–61.
Chomicki G, Ward PS, Renner SS. 2015. Macroevolutionary assembly of ant/plant symbioses: Pseudomyrmex ants and their ant-housing plants in the Neotropics . Proc R Soc B 282:20152200. doi: 10.1098/rspb.2015.2200 PubMed DOI PMC
Debout G, Provost E, Renucci M, Tirard A, Schatz B, McKey D. 2003. Colony structure in a plant-ant: behavioural, chemical and genetic study of polydomy in Cataulacus mckeyi (Myrmicinae). Oecologia 137:195–204. doi: 10.1007/s00442-003-1330-4 PubMed DOI
Plowman NS, Hood ASC, Moses J, Redmond C, Novotny V, Klimes P, Fayle TM. 2017. Network reorganization and breakdown of an ant–plant protection mutualism with elevation. Proc R Soc B 284:20162564. doi: 10.1098/rspb.2016.2564 PubMed DOI PMC
Campbell LCE, Kiers ET, Chomicki G. 2023. The evolution of plant cultivation by ants. Trends Plant Sci 28:271–282. doi: 10.1016/j.tplants.2022.09.005 PubMed DOI
Tillberg CV, McCarthy DP, Dolezal AG, Suarez AV. 2006. Measuring the trophic ecology of ants using stable isotopes. Insect Soc 53:65–69. doi: 10.1007/s00040-005-0836-7 DOI
Pfeiffer M, Mezger D, Dyckmans J. 2013. Trophic ecology of tropical leaf litter ants (Hymenoptera: Formicidae) – a stable isotope study in four types of Bornean rain forest. Myrmecol News:31–42.
Feldhaar H, Gebauer G, Blüthgen N. 2010. Stable isotopes: past and future in exposing secrets of ant nutrition (Hymenoptera: Formicidae). Myrmecol News 13:3–13.
Meade A, Pagel M. 2022. Ancestral state reconstruction using bayestraits. Methods Mol Biol 2569:255–266. doi: 10.1007/978-1-0716-2691-7_12 PubMed DOI
Shoemaker DD, Ross KG, Keller L, Vargo EL, Werren JH. 2000. Wolbachia infections in native and introduced populations of fire ants (Solenopsis spp.). Insect Mol Biol 9:661–673. doi: 10.1046/j.1365-2583.2000.00233.x PubMed DOI
Larson HK, Goffredi SK, Parra EL, Vargas O, Pinto-Tomas AA, McGlynn TP. 2014. Distribution and dietary regulation of an associated facultative Rhizobiales-related bacterium in the omnivorous giant tropical ant, Paraponera clavata. Naturwissenschaften 101:397–406. doi: 10.1007/s00114-014-1168-0 PubMed DOI
Moreau CS, Rubin BER. 2017. Diversity and persistence of the gut microbiome of the giant neotropical bullet ant. Integr Comp Biol 57:682–689. doi: 10.1093/icb/icx037 PubMed DOI
Tiede J, Scherber C, Mutschler J, McMahon KD, Gratton C. 2017. Gut microbiomes of mobile predators vary with landscape context and species identity. Ecol Evol 7:8545–8557. doi: 10.1002/ece3.3390 PubMed DOI PMC
Yun J-H, Roh SW, Whon TW, Jung M-J, Kim M-S, Park D-S, Yoon C, Nam Y-D, Kim Y-J, Choi J-H, Kim J-Y, Shin N-R, Kim S-H, Lee W-J, Bae J-W. 2014. Insect gut bacterial diversity determined by environmental habitat, diet, developmental stage, and phylogeny of host. Appl Environ Microbiol 80:5254–5264. doi: 10.1128/AEM.01226-14 PubMed DOI PMC
Rojas-Gätjens D, Valverde-Madrigal KS, Rojas-Jimenez K, Pereira R, Avey-Arroyo J, Chavarría M. 2022. Antibiotic-producing Micrococcales govern the microbiome that inhabits the fur of two- and three-toed sloths. Environ Microbiol 24:3148–3163. doi: 10.1111/1462-2920.16082 PubMed DOI
Kikuchi Y, Bomar L, Graf J. 2009. Stratified bacterial community in the bladder of the medicinal leech, Hirudo verbana. Environ Microbiol 11:2758–2770. doi: 10.1111/j.1462-2920.2009.02004.x PubMed DOI
Goldstein SL, Klassen JL. 2020. Pseudonocardia symbionts of fungus-growing ants and the evolution of defensive secondary metabolism. Front Microbiol 11:621041. doi: 10.3389/fmicb.2020.621041 PubMed DOI PMC
Kaltenpoth M. 2020. An endosymbiont’s journey through metamorphosis of its insect host. Proc Natl Acad Sci USA 117:20994–20996. doi: 10.1073/pnas.2014598117 PubMed DOI PMC
Lee J, Jeong B, Bae HR, Jang HA, Kim JK. 2023. Trehalose biosynthesis gene otsA protects against stress in the initial infection stage of Burkholderia-bean bug symbiosis. Microbiol Spectr 11:e0351022. doi: 10.1128/spectrum.03510-22 PubMed DOI PMC
Wang S, Wang L, Fan X, Yu C, Feng L, Yi L. 2020. An insight into diversity and functionalities of gut microbiota in insects. Curr Microbiol 77:1976–1986. doi: 10.1007/s00284-020-02084-2 PubMed DOI
Monnin D, Jackson R, Kiers ET, Bunker M, Ellers J, Henry LM. 2020. Parallel evolution in the integration of a co-obligate aphid symbiosis. Curr Biol 30:1949–1957. doi: 10.1016/j.cub.2020.03.011 PubMed DOI
Klein A, Schrader L, Gil R, Manzano-Marín A, Flórez L, Wheeler D, Werren JH, Latorre A, Heinze J, Kaltenpoth M, Moya A, Oettler J. 2016. A novel intracellular mutualistic bacterium in the invasive ant Cardiocondyla obscurior. ISME J 10:376–388. doi: 10.1038/ismej.2015.119 PubMed DOI PMC
Klimeš P, Drescher J, Buchori D, Hidayat P, Nazarreta R, Potocký P, Rimandai M, Scheu S, Matos-Maraví P. 2022. Uncovering cryptic diversity in the enigmatic ant genus Overbeckia and insights into the phylogeny of Camponotini (Hymenoptera:Formicidae:Formicinae). Invert Systematics 36:557. doi: 10.1071/IS21067 DOI
Zheng Z, Zhao M, Zhang Z, Hu X, Xu Y, Wei C, He H. 2021. Lactic acid bacteria are prevalent in the infrabuccal pockets and crops of ants that prefer aphid honeydew. Front Microbiol 12:785016. doi: 10.3389/fmicb.2021.785016 PubMed DOI PMC
Cheng D, Chen S, Huang Y, Pierce NE, Riegler M, Yang F, Zeng L, Lu Y, Liang G, Xu Y. 2019. Symbiotic microbiota may reflect host adaptation by resident to invasive ant species. PLoS Pathog 15:e1007942. doi: 10.1371/journal.ppat.1007942 PubMed DOI PMC
Hosokawa T, Koga R, Kikuchi Y, Meng X-Y, Fukatsu T. 2010. Wolbachia as a bacteriocyte-associated nutritional mutualist. Proc Natl Acad Sci USA 107:769–774. doi: 10.1073/pnas.0911476107 PubMed DOI PMC
Singh R, Linksvayer TA. 2020. Wolbachia-infected ant colonies have increased reproductive investment and an accelerated life cycle. J Exp Biol 223:jeb220079. doi: 10.1242/jeb.220079 PubMed DOI
Serbus LR, White PM, Silva JP, Rabe A, Teixeira L, Albertson R, Sullivan W. 2015. The impact of host diet on Wolbachia titer in Drosophila. PLoS Pathog 11:e1004777. doi: 10.1371/journal.ppat.1004777 PubMed DOI PMC
Funaro CF, Kronauer DJC, Moreau CS, Goldman-Huertas B, Pierce NE, Russell JA. 2011. Army ants harbor a host-specific clade of Entomoplasmatales bacteria. Appl Environ Microbiol 77:346–350. doi: 10.1128/AEM.01896-10 PubMed DOI PMC
Zacharias M, Rajan PD. 2004. Vombisidris humboldticola (Hymenoptera: Formicidae): a new arboreal ant species from an Indian ant plant. Curr Sci 87:1337–1338.
Nepel M, Mayer VE, Barrajon-Santos V, Woebken D. 2023. Bacterial diversity in arboreal ant nesting spaces is linked to colony developmental stage. Commun Biol 6:1217. doi: 10.1038/s42003-023-05577-5 PubMed DOI PMC
Shimoji H, Itoh H, Matsuura Y, Yamashita R, Hori T, Hojo MK, Kikuchi Y. 2021. Worker-dependent gut symbiosis in an ant. ISME Commun 1:60. doi: 10.1038/s43705-021-00061-9 PubMed DOI PMC
Hoenle PO, Plowman NS, Matos-Maraví P, de Bello F, Bishop TR, Libra M, Idigel C, Rimandai M, Klimes P. 2024. Forest disturbance increases functional diversity but decreases phylogenetic diversity of an arboreal tropical ant community. J Anim Ecol 93:501–516. doi: 10.1111/1365-2656.14060 PubMed DOI
Plowman NS, Mottl O, Novotny V, Idigel C, Philip FJ, Rimandai M, Klimes P. 2020. Nest microhabitats and tree size mediate shifts in ant community structure across elevation in tropical rainforest canopies. Ecography 43:431–442. doi: 10.1111/ecog.04730 DOI
Volf M, Klimeš P, Lamarre GPA, Redmond CM, Seifert CL, Abe T, Auga J, Anderson-Teixeira K, Basset Y, Beckett S, et al. 2019. Quantitative assessment of plant-arthropod interactions in forest canopies: a plot-based approach. PLoS One 14:e0222119. doi: 10.1371/journal.pone.0222119 PubMed DOI PMC
Walters W, Hyde ER, Berg-Lyons D, Ackermann G, Humphrey G, Parada A, Gilbert JA, Jansson JK, Caporaso JG, Fuhrman JA, Apprill A, Knight R. 2016. Improved bacterial 16S rRNA gene (V4 and V4-5) and fungal internal transcribed spacer marker gene primers for microbial community surveys. mSystems 1:e00009-15. doi: 10.1128/mSystems.00009-15 PubMed DOI PMC
Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, Alexander H, Alm EJ, Arumugam M, Asnicar F, et al. 2019. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol 37:852–857. doi: 10.1038/s41587-019-0209-9 PubMed DOI PMC
Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. 2016. DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods 13:581–583. doi: 10.1038/nmeth.3869 PubMed DOI PMC
Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO. 2013. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41:D590–6. doi: 10.1093/nar/gks1219 PubMed DOI PMC
Yilmaz P, Parfrey LW, Yarza P, Gerken J, Pruesse E, Quast C, Schweer T, Peplies J, Ludwig W, Glöckner FO. 2014. The SILVA and “All-species Living Tree Project (LTP)” taxonomic frameworks. Nucl Acids Res 42:D643–D648. doi: 10.1093/nar/gkt1209 PubMed DOI PMC
Davis NM, Proctor DM, Holmes SP, Relman DA, Callahan BJ. 2018. Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data. Microbiome 6:226. doi: 10.1186/s40168-018-0605-2 PubMed DOI PMC
Wickham H. 2016. Ggplot2: elegant graphics for data analysis. Springer-Verlag New York.
Paradis E, Schliep K. 2019. Ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35:526–528. doi: 10.1093/bioinformatics/bty633 PubMed DOI
Davidson DW, Cook SC, Snelling RR, Chua TH. 2003. Explaining the abundance of ants in lowland tropical rainforest canopies. Science 300:969–972. doi: 10.1126/science.1082074 PubMed DOI
Potapov AM. 2022. Multifunctionality of belowground food webs: resource, size and spatial energy channels. Biol Rev Camb Philos Soc 97:1691–1711. doi: 10.1111/brv.12857 PubMed DOI
Casey MM, Post DM. 2011. The problem of isotopic baseline: reconstructing the diet and trophic position of fossil animals. Earth Sci Rev 106:131–148. doi: 10.1016/j.earscirev.2011.02.001 DOI
Chomicki G, Renner SS. 2019. Farming by ants remodels nutrient uptake in epiphytes. New Phytol 223:2011–2023. doi: 10.1111/nph.15855 PubMed DOI
Houadria MYI, Barone G, Fayle TM, Schmitt T, Konik P, Feldhaar H. 2023. An experimental, behavioral, and chemical analysis of food limitations in mutualistic Crematogaster ant symbionts inhabiting Macaranga host plants. Ecol Evol 13:e9760. doi: 10.1002/ece3.9760 PubMed DOI PMC
McNabb DM, Halaj J, Wise DH. 2001. Inferring trophic positions of generalist predators and their linkage to the detrital food web in agroecosystems: a stable isotope analysis. Pedobiologia 45:289–297. doi: 10.1078/0031-4056-00087 DOI
Blanchard BD, Moreau CS. 2017. Defensive traits exhibit an evolutionary trade-off and drive diversification in ants. Evolution (N Y) 71:315–328. doi: 10.1111/evo.13117 PubMed DOI
Greer JA, Moreau CS. 2021. Phylogenetic analysis and trait evolution of ant cocoons. Insect Syst Evol 53:60–77. doi: 10.1163/1876312X-bja10008 DOI
Klimes P, Fibich P, Idigel C, Rimandai M. 2015. Disentangling the diversity of arboreal ant communities in tropical forest trees. PLoS One 10:e0117853. doi: 10.1371/journal.pone.0117853 PubMed DOI PMC
Larabee FJ, Fisher BL, Schmidt CA, Matos-Maraví P, Janda M, Suarez AV. 2016. Molecular phylogenetics and diversification of trap-jaw ants in the genera Anochetus and Odontomachus (Hymenoptera: Formicidae). Mol Phylogenet Evol 103:143–154. doi: 10.1016/j.ympev.2016.07.024 PubMed DOI
Huelsenbeck JP, Larget B, Alfaro ME. 2004. Bayesian phylogenetic model selection using reversible jump Markov chain Monte Carlo. Mol Biol Evol 21:1123–1133. doi: 10.1093/molbev/msh123 PubMed DOI
Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP. 2012. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61:539–542. doi: 10.1093/sysbio/sys029 PubMed DOI PMC
Hadfield JD. 2010. MCMC methods for multi-response generalized linear mixed models: the MCMCglmm R package. J Stat Softw 33. doi: 10.18637/jss.v033.i02 DOI
Okansen J, Sumpson G, Blanchet F. 2022. Vegan: community ecology package. CRAN.r-project
Gibert C, Escarguel G. 2019. PER‐SIMPER—A new tool for inferring community assembly processes from taxon occurrences. Global Ecol Biogeogr 28:374–385. doi: 10.1111/geb.12859 DOI
Bates D, Mächler M, Bolker B, Walker S. 2015. Fitting linear mixed-effects models using lme4. J Stat Softw 67. doi: 10.18637/jss.v067.i01 DOI
Pagel M, Meade A, Barker D. 2004. Bayesian estimation of ancestral character states on phylogenies. Syst Biol 53:673–684. doi: 10.1080/10635150490522232 PubMed DOI
Trujill-Barreto NJ. 2015. Bayesian model inference. Brain Mapp.