Conflict processing in juvenile patients with neurofibromatosis type 1 (NF1) and healthy controls - Two pathways to success
Jazyk angličtina Země Nizozemsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
28289600
PubMed Central
PMC5338893
DOI
10.1016/j.nicl.2017.02.014
PII: S2213-1582(17)30048-7
Knihovny.cz E-zdroje
- Klíčová slova
- Cognitive control, Conflict processing, EEG, Neurofibromatosis type 1, Source localisation,
- MeSH
- dítě MeSH
- elektroencefalografie MeSH
- evokované potenciály fyziologie MeSH
- konflikt (psychologie) * MeSH
- lidé MeSH
- mapování mozku * MeSH
- mladiství MeSH
- neurofibromatóza 1 patofyziologie psychologie MeSH
- neuropsychologické testy MeSH
- reakční čas fyziologie MeSH
- Check Tag
- dítě MeSH
- lidé MeSH
- mladiství MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
Neurofibromatosis Type 1 (NF1) is a monogenetic autosomal-dominant disorder with a broad spectrum of clinical symptoms and is commonly associated with cognitive deficits. Patients with NF1 frequently exhibit cognitive impairments like attention problems, working memory deficits and dysfunctional inhibitory control. The latter is also relevant for the resolution of cognitive conflicts. However, it is unclear how conflict monitoring processes are modulated in NF1. To examine this question in more detail, we used a system neurophysiological approach combining high-density ERP recordings with source localisation analyses in juvenile patients with NF1 and controls during a flanker task. Behaviourally, patients with NF1 perform significantly slower than controls. Specifically on trials with incompatible flanker-target pairings, however, the patients with NF1 made significantly fewer errors than healthy controls. Yet, importantly, this overall successful conflict resolution was reached via two different routes in the two groups. The healthy controls seem to arrive at a successful conflict monitoring performance through a developing conflict recognition via the N2 accompanied by a selectively enhanced N450 activation in the case of perceived flanker-target conflicts. The presumed dopamine deficiency in the patients with NF1 seems to result in a reduced ability to process conflicts via the N2. However, NF1 patients show an increased N450 irrespective of cognitive conflict. Activation differences in the orbitofrontal cortex (BA11) and anterior cingulate cortex (BA24) underlie these modulations. Taken together, juvenile patients with NF1 and juvenile healthy controls seem to accomplish conflict monitoring via two different cognitive neurophysiological pathways.
Zobrazit více v PubMed
Acosta M.T., Gioia G.A., Silva A.J. Neurofibromatosis type 1: new insights into neurocognitive issues. Curr. Neurol. Neurosci. Rep. 2006;6:136–143. PubMed
Albrecht B., Brandeis D., Uebel H., Heinrich H., Mueller U.C., Hasselhorn M., Steinhausen H.-C., Rothenberger A., Banaschewski T. Action monitoring in boys with attention-deficit/hyperactivity disorder, their nonaffected siblings, and normal control subjects: evidence for an endophenotype. Biol. Psychiatry. 2008;64:615–625. PubMed PMC
Anastasaki C., Woo A.S., Messiaen L.M., Gutmann D.H. Elucidating the impact of neurofibromatosis-1 germline mutations on neurofibromin function and dopamine-based learning. Hum. Mol. Genet. 2015;24:3518–3528. PubMed PMC
Beste C., Saft C., Andrich J., Gold R., Falkenstein M. Stimulus-response compatibility in Huntington's disease: a cognitive-neurophysiological analysis. J. Neurophysiol. 2008;99:1213–1223. PubMed
Beste C., Willemssen R., Saft C., Falkenstein M. Response inhibition subprocesses and dopaminergic pathways: basal ganglia disease effects. Neuropsychologia. 2010;48:366–373. PubMed
Beste C., Ness V., Falkenstein M., Saft C. On the role of fronto-striatal neural synchronization processes for response inhibition—evidence from ERP phase-synchronization analyses in pre-manifest Huntington's disease gene mutation carriers. Neuropsychologia. 2011;49:3484–3493. PubMed
Beste C., Stock A.-K., Epplen J.T., Arning L. Dissociable electrophysiological subprocesses during response inhibition are differentially modulated by dopamine D1 and D2 receptors. Eur. Neuropsychopharmacol. 2016;26:1029–1036. PubMed
Bluschke A., Chmielewski W.X., Roessner V., Beste C. Intact context-dependent modulation of conflict monitoring in childhood ADHD. J. Atten. Disord. 2016 PubMed
Bluschke A., von der Hagen M., Papenhagen K., Roessner V., Beste C. Response inhibition in attention deficit disorder and neurofibromatosis type 1 – clinically similar, neurophysiologically different. Sci. Rep. 2017 (in press) PubMed PMC
Brown J.A., Emnett R.J., White C.R., Yuede C.M., Conyers S.B., O’Malley K.L., Wozniak D.F., Gutmann D.H. Reduced striatal dopamine underlies the attention system dysfunction in neurofibromatosis-1 mutant mice. Hum. Mol. Genet. 2010;19:4515–4528. PubMed PMC
Brown J.A., Xu J., Diggs-Andrews K.A., Wozniak D.F., Mach R.H., Gutmann D.H. PET imaging for attention deficit preclinical drug testing in neurofibromatosis-1 mice. Exp. Neurol. 2011;232:333–338. PubMed PMC
Chmielewski W.X., Mückschel M., Roessner V., Beste C. Expectancy effects during response selection modulate attentional selection and inhibitory control networks. Behav. Brain Res. 2014;274:53–61. PubMed
Chmielewski W.X., Roessner V., Beste C. Predictability and context determine differences in conflict monitoring between adolescence and adulthood. Behav. Brain Res. 2015;292:10–18. PubMed
Cisek P., Kalaska J.F. Neural correlates of reaching decisions in dorsal premotor cortex: specification of multiple direction choices and final selection of action. Neuron. 2005;45:801–814. PubMed
Diggs-Andrews K.A., Gutmann D.H. Modeling cognitive dysfunction in neurofibromatosis-1. Trends Neurosci. 2013;36:237–247. PubMed PMC
Diggs-Andrews K.A., Tokuda K., Izumi Y., Zorumski C.F., Wozniak D.F., Gutmann D.H. Dopamine deficiency underlies learning deficits in neurofibromatosis-1 mice. Ann. Neurol. 2013;73:309–315. PubMed PMC
Dippel G., Beste C. A causal role of the right inferior frontal cortex in implementing strategies for multi-component behaviour. Nat. Commun. 2015;6:6587. PubMed
Falkenstein M., Hoormann J., Hohnsbein J. ERP components in Go/Nogo tasks and their relation to inhibition. Acta Psychol. 1999;101:267–291. PubMed
Falkenstein M., Hoormann J., Hohnsbein J. Inhibition-related ERP components: variation with modality, age, and time-on-task. J. Psychophysiol. 2002;16:167–175.
Folstein J.R., Van Petten C. Influence of cognitive control and mismatch on the N2 component of the ERP: a review. Psychophysiology. 2008;45:152–170. PubMed PMC
Fuchs M., Kastner J., Wagner M., Hawes S., Ebersole J.S. A standardized boundary element method volume conductor model. Clin. Neurophysiol. Off. J. Int. Fed. Clin. Neurophysiol. 2002;113:702–712. PubMed
Herrmann C.S., Knight R.T. Mechanisms of human attention: event-related potentials and oscillations. Neurosci. Biobehav. Rev. 2001;25:465–476. PubMed
Huijbregts S.C.J., de Sonneville L.M.J. Does cognitive impairment explain behavioral and social problems of children with neurofibromatosis type 1? Behav. Genet. 2011;41:430–436. PubMed PMC
Huijbregts S., Swaab H., de Sonneville L. Cognitive and motor control in neurofibromatosis type I: influence of maturation and hyperactivity-inattention. Dev. Neuropsychol. 2010;35:737–751. PubMed
Kayl A.E., Moore B.D. Behavioral phenotype of neurofibromatosis, type 1. Ment. Retard. Dev. Disabil. Res. Rev. 2000;6:117–124. PubMed
Killikelly C., Szűcs D. Asymmetry in stimulus and response conflict processing across the adult lifespan: ERP and EMG evidence. Cortex. 2013;49:2888–2903. PubMed PMC
Klein P.-A., Petitjean C., Olivier E., Duque J. Top-down suppression of incompatible motor activations during response selection under conflict. NeuroImage. 2014;86:138–149. PubMed
Koini M., Rombouts S.A.R.B., Veer I.M., Van Buchem M.A., Huijbregts S.C.J. White matter microstructure of patients with neurofibromatosis type 1 and its relation to inhibitory control. Brain Imaging Behav. 2016 PubMed PMC
Ladouceur C.D., Dahl R.E., Carter C.S. Development of action monitoring through adolescence into adulthood: ERP and source localization. Dev. Sci. 2007;10:874–891. PubMed
Lamm C., Zelazo P.D., Lewis M.D. Neural correlates of cognitive control in childhood and adolescence: disentangling the contributions of age and executive function. Neuropsychologia, Advances in Developmental Cognitive Neuroscience. 2006;44:2139–2148. PubMed
Lammert M., Friedman J.M., Kluwe L., Mautner V.F. Prevalence of neurofibromatosis 1 in German children at elementary school enrollment. Arch. Dermatol. 2005;141:71–74. PubMed
Larson M.J., Clayson P.E., Clawson A. Making sense of all the conflict: a theoretical review and critique of conflict-related ERPs. Int. J. Psychophysiol. 2014;93:283–297. PubMed
Larson M.J., Clayson P.E., Primosch M., Leyton M., Steffensen S.C. The effects of acute dopamine precursor depletion on the cognitive control functions of performance monitoring and conflict processing: an event-related potential (ERP) study. PLoS One. 2015;10 PubMed PMC
Li S.-C., Passow S., Nietfeld W., Schröder J., Bertram L., Heekeren H.R., Lindenberger U. Dopamine modulates attentional control of auditory perception: DARPP-32 (PPP1R1B) genotype effects on behavior and cortical evoked potentials. Neuropsychologia. 2013;51:1649–1661. PubMed
Lidzba K., Granstroem S., Leark R.A., Kraegeloh-Mann I., Mautner V.-F. Pharmacotherapy of attention deficit in neurofibromatosis type 1: effects on cognition. Neuropediatrics. 2014;45:240–246. PubMed
Liu C., Yao R., Wang Z., Zhou R. N450 as a candidate neural marker for interference control deficits in children with learning disabilities. Int. J. Psychophysiol. 2014;93:70–77. PubMed
Loitfelder M., Huijbregts S.C.J., Veer I.M., Swaab H.S., Van Buchem M.A., Schmidt R., Rombouts S.A. Functional connectivity changes and executive and social Problems in neurofibromatosis type I. Brain Connect. 2015;5:312–320. PubMed PMC
Marco-Pallarés J., Grau C., Ruffini G. Combined ICA-LORETA analysis of mismatch negativity. NeuroImage. 2005;25:471–477. PubMed
Mautner V.-F., Kluwe L., Thakker S.D., Leark R.A. Treatment of ADHD in neurofibromatosis type 1. Dev. Med. Child Neurol. 2002;44:164–170. PubMed
Mautner V.-F., Granström S., Leark R.A. Impact of ADHD in adults with neurofibromatosis type 1: associated psychological and social problems. J. Atten. Disord. 2015;19:35–43. PubMed
Mazziotta J., Toga A., Evans A., Fox P., Lancaster J., Zilles K., Woods R., Paus T., Simpson G., Pike B., Holmes C., Collins L., Thompson P., MacDonald D., Iacoboni M., Schormann T., Amunts K., Palomero-Gallagher N., Geyer S., Parsons L., Narr K., Kabani N., Le Goualher G., Boomsma D., Cannon T., Kawashima R., Mazoyer B. A probabilistic atlas and reference system for the human brain: International Consortium for Brain Mapping (ICBM) Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 2001;356:1293–1322. PubMed PMC
Mückschel M., Stock A.-K., Beste C. Psychophysiological mechanisms of interindividual differences in goal activation modes during action cascading. Cereb. Cortex N. Y. N. 2014;1991(24):2120–2129. PubMed
Mückschel M., Gohil K., Ziemssen T., Beste C. The norepinephrine system and its relevance for multi-component behavior. NeuroImage. 2016 PubMed
NIH National Institutes of Health Consensus Development Conference Statement: neurofibromatosis. Bethesda, Md., USA, July 13–15, 1987. Neurofibromatosis. 1988;1(3):172–178. https://www.ncbi.nlm.nih.gov/pubmed/3152465 PubMed
North K.N., Riccardi V., Samango-Sprouse C., Ferner R., Moore B., Legius E., Ratner N., Denckla M.B. Cognitive function and academic performance in neurofibromatosis. 1: consensus statement from the NF1 Cognitive Disorders Task Force. Neurology. 1997;48:1121–1127. PubMed
Nunez P.L., Pilgreen K.L. The spline-Laplacian in clinical neurophysiology: a method to improve EEG spatial resolution. J. Clin. Neurophysiol. Off. Publ. Am. Electroencephalogr. Soc. 1991;8:397–413. PubMed
Oades R.d., Dmittmann-Balcar A., Zerbin D. Development and topography of auditory event-related potentials (ERPs): mismatch and processing negativity in individuals 8–22 years of age. Psychophysiology. 1997;34:677–693. PubMed
Ocklenburg S., Güntürkün O., Beste C. Lateralized neural mechanisms underlying the modulation of response inhibition processes. NeuroImage. 2011;55:1771–1778. PubMed
Pascual-Marqui R.D. Standardized low-resolution brain electromagnetic tomography (sLORETA): technical details. Methods Find. Exp. Clin. Pharmacol. 2002;(24 Suppl. D):5–12. PubMed
Passow S., Westerhausen R., Hugdahl K., Wartenburger I., Heekeren H.R., Lindenberger U., Li S.-C. Electrophysiological correlates of adult age differences in attentional control of auditory processing. Cereb. Cortex. 2014;24:249–260. PubMed
Plasschaert E., Van Eylen L., Descheemaeker M.-J., Noens I., Legius E., Steyaert J. Executive functioning deficits in children with neurofibromatosis type 1: the influence of intellectual and social functioning. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2016;171:348–362. PubMed
Polich J. Updating P300: an integrative theory of P3a and P3b. Clin. Neurophysiol. Off. J. Int. Fed. Clin. Neurophysiol. 2007;118:2128–2148. PubMed PMC
Pride N.A., Payne J.M., North K.N. The impact of ADHD on the COgnitive and academic functioning of children with NF1. Dev. Neuropsychol. 2012;37:590–600. PubMed
Ratsma J.E., van der Stelt O., Schoffelmeer A.N.M., Westerveld A., Boudewijn Gunning W. P3 event-related potential, dopamine D2 receptor A1 allele, and sensation-seeking in adult children of alcoholics. Alcohol. Clin. Exp. Res. 2001;25:960–967. PubMed
Ribeiro M.J., Violante I.R., Bernardino I., Edden R.A.E., Castelo-Branco M. Abnormal relationship between GABA, neurophysiology and impulsive behavior in neurofibromatosis type 1. Cortex J. Devoted Study Nerv. Syst. Behav. 2015;64:194–208. PubMed PMC
Rowbotham I., Pit-ten Cate I.M., Sonuga-Barke E.J.S., Huijbregts S.C.J. Cognitive control in adolescents with neurofibromatosis type 1. Neuropsychology. 2009;23:50–60. PubMed
Seer C., Lange F., Georgiev D., Jahanshahi M., Kopp B. Event-related potentials and cognition in Parkinson's disease: an integrative review. Neurosci. Biobehav. Rev. 2016;71:691–714. PubMed
Sekihara K., Sahani M., Nagarajan S.S. Localization bias and spatial resolution of adaptive and non-adaptive spatial filters for MEG source reconstruction. NeuroImage. 2005;25:1056–1067. PubMed PMC
Stock A.-K., Steenbergen L., Colzato L., Beste C. The system neurophysiological basis of non-adaptive cognitive control: inhibition of implicit learning mediated by right prefrontal regions. Hum. Brain Mapp. 2016;37:4511–4522. PubMed PMC
Szűcs D., Soltész F. Functional definition of the N450 event-related brain potential marker of conflict processing: a numerical stroop study. BMC Neurosci. 2012;13:35. PubMed PMC
Tandonnet C., Garry M.I., Summers J.J. Selective suppression of the incorrect response implementation in choice behavior assessed by transcranial magnetic stimulation. Psychophysiology. 2011;48:462–469. PubMed
Taylor P.C.J., Nobre A.C., Rushworth M.F.S. Subsecond changes in top down control exerted by human medial frontal cortex during conflict and action selection: a combined transcranial magnetic stimulation electroencephalography study. J. Neurosci. 2007;27:11343–11353. PubMed PMC
van Veen V., Carter C.S. The anterior cingulate as a conflict monitor: fMRI and ERP studies. Physiol. Behav. 2002;77:477–482. PubMed
Verleger R., Kuniecki M., Möller F., Fritzmannova M., Siebner H.R. On how the motor cortices resolve an inter-hemispheric response conflict: an event-related EEG potential-guided TMS study of the flankers task. Eur. J. Neurosci. 2009;30:318–326. PubMed
van der Voet M., Harich B., Franke B., Schenck A. ADHD-associated dopamine transporter, latrophilin and neurofibromin share a dopamine-related locomotor signature in Drosophila. Mol. Psychiatry. 2016;21:565–573. PubMed PMC
West R. The effects of aging on controlled attention and conflict processing in the Stroop task. J. Cogn. Neurosci. 2004;16:103–113. PubMed
Willemssen R., Falkenstein M., Schwarz M., Müller T., Beste C. Effects of aging, Parkinson's disease, and dopaminergic medication on response selection and control. Neurobiol. Aging. 2011;32:327–335. PubMed
Wozniak D.F., Diggs-Andrews K.A., Conyers S., Yuede C.M., Dearborn J.T., Brown J.A., Tokuda K., Izumi Y., Zorumski C.F., Gutmann D.H. Motivational disturbances and effects of l-dopa administration in neurofibromatosis-1 model mice. PLoS One. 2013;8 PubMed PMC
Zhang T., Wang C., Tan F., Mou D., Zheng L., Chen A. Different relationships between central dopamine system and sub-processes of inhibition: spontaneous eye blink rate relates with N2 but not P3 in a Go/Nogo task. Brain Cogn. 2016;105:95–103. PubMed