The system neurophysiological basis of non-adaptive cognitive control: Inhibition of implicit learning mediated by right prefrontal regions
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
27477001
PubMed Central
PMC6867272
DOI
10.1002/hbm.23325
Knihovny.cz E-zdroje
- Klíčová slova
- EEG, automatic processing, cognitive control, rIFG, source localization,
- MeSH
- dospělí MeSH
- elektroencefalografie MeSH
- evokované potenciály MeSH
- exekutivní funkce fyziologie MeSH
- funkční lateralita MeSH
- kognice fyziologie MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- neuropsychologické testy MeSH
- počítačové zpracování signálu MeSH
- pozornost fyziologie MeSH
- prefrontální mozková kůra fyziologie MeSH
- reakční čas MeSH
- učení fyziologie MeSH
- zraková percepce fyziologie MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Cognitive control is adaptive in the sense that it inhibits automatic processes to optimize goal-directed behavior, but high levels of control may also have detrimental effects in case they suppress beneficial automatisms. Until now, the system neurophysiological mechanisms and functional neuroanatomy underlying these adverse effects of cognitive control have remained elusive. This question was examined by analyzing the automatic exploitation of a beneficial implicit predictive feature under conditions of high versus low cognitive control demands, combining event-related potentials (ERPs) and source localization. It was found that cognitive control prohibits the beneficial automatic exploitation of additional implicit information when task demands are high. Bottom-up perceptual and attentional selection processes (P1 and N1 ERPs) are not modulated by this, but the automatic exploitation of beneficial predictive information in case of low cognitive control demands was associated with larger response-locked P3 amplitudes and stronger activation of the right inferior frontal gyrus (rIFG, BA47). This suggests that the rIFG plays a key role in the detection of relevant task cues, the exploitation of alternative task sets, and the automatic (bottom-up) implementation and reprogramming of action plans. Moreover, N450 amplitudes were larger under high cognitive control demands, which was associated with activity differences in the right medial frontal gyrus (BA9). This most likely reflects a stronger exploitation of explicit task sets which hinders the exploration of the implicit beneficial information in case of high cognitive control demands. Hum Brain Mapp 37:4511-4522, 2016. © 2016 Wiley Periodicals, Inc.
Zobrazit více v PubMed
Aron AR, Robbins TW, Poldrack RA (2004): Inhibition and the right inferior frontal cortex. Trends Cogn Sci 8:170–177. PubMed
Aron AR, Robbins TW, Poldrack RA (2014): Inhibition and the right inferior frontal cortex: One decade on. Trends Cogn Sci 18:177–185. PubMed
Barack DL, Gold JI (2016): Temporal trade‐offs in psychophysics. Curr Opin Neurobiol 37:121–125. PubMed PMC
Barceló F, Periáñez JA, Nyhus E (2007): An information theoretical approach to task‐switching: Evidence from cognitive brain potentials in humans. Front Hum Neurosci 1:13. PubMed PMC
Beck AT, Ward CH, Mendelson M, Mock J, Erbaugh J (1961): An inventory for measuring depression. Arch Gen Psychiatry 4:561–571. PubMed
Beste C, Baune BT, Falkenstein M, Konrad C (2010): Variations in the TNF‐α gene (TNF‐α −308G→A) affect attention and action selection mechanisms in a dissociated fashion. J Neurophysiol 104:2523–2531. PubMed
Beste C, Ness V, Lukas C, Hoffmann R, Stüwe S, Falkenstein M, Saft C (2012): Mechanisms mediating parallel action monitoring in fronto‐striatal circuits. NeuroImage 62:137–146. PubMed
Bocanegra BR, Hommel B (2014): When cognitive control is not adaptive. Psychol Sci 25:1249–1255. PubMed
Botvinick MM, Braver TS, Barch DM, Carter CS, Cohen JD (2001): Conflict monitoring and cognitive control. Psychol Rev 108:624–652. PubMed
Botvinick MM, Cohen JD, Carter CS (2004): Conflict monitoring and anterior cingulate cortex: An update. Trends Cogn Sci 8:539–546. PubMed
Cavanagh JF, Frank MJ (2014): Frontal theta as a mechanism for cognitive control. Trends Cogn Sci 18:414–421. PubMed PMC
Chmielewski WX, Mückschel M, Dippel G, Beste C (2016): Concurrent information affects response inhibition processes via the modulation of theta oscillations in cognitive control networks. Brain Struct Funct 221:3949–3961. PubMed
Cui J‐F, Wang Y, Shi H‐S, Liu L‐L, Chen X‐J, Chen Y‐H (2015): Effects of working memory load on uncertain decision‐making: Evidence from the Iowa Gambling Task. Front Psychol 6:162. PubMed PMC
Cutmore TRH, Halford GS, Wang Y, Ramm BJ, Spokes T, Shum DHK (2015): Neural correlates of deductive reasoning: An ERP study with the Wason Selection Task. Int J Psychophysiol Off J Int Organ Psychophysiol 98:381–388. PubMed
Diamond A (2013): Executive functions. Annu Rev Psychol 64:135–168. PubMed PMC
Dippel G, Beste C (2015): A causal role of the right inferior frontal cortex in implementing strategies for multi‐component behaviour. Nat Commun 6:6587. PubMed
Dominey PF, Inui T (2009): Cortico‐striatal function in sentence comprehension: Insights from neurophysiology and modeling. Cortex J Devoted Study Nerv Syst Behav 45:1012–1018. PubMed
Folstein JR, Van Petten C (2008): Influence of cognitive control and mismatch on the N2 component of the ERP: A review. Psychophysiology 45:152–170. PubMed PMC
Frühholz S, Ceravolo L, Grandjean D (2012): Specific brain networks during explicit and implicit decoding of emotional prosody. Cereb Cortex N Y N 1991 22:1107–1117. PubMed
Fuchs M, Kastner J, Wagner M, Hawes S, Ebersole JS (2002): A standardized boundary element method volume conductor model. Clin Neurophysiol Off J Int Fed Clin Neurophysiol 113:702–712. PubMed
Gajewski PD, Falkenstein M (2013): Effects of task complexity on ERP components in Go/Nogo tasks. Int J Psychophysiol Off J Int Organ Psychophysiol 87:273–278. PubMed
Gajewski PD, Stoerig P, Falkenstein M (2008): ERP–correlates of response selection in a response conflict paradigm. Brain Res 1189:127–134. PubMed
Gajewski PD, Hengstler JG, Golka K, Falkenstein M, Beste C (2013): The functional tumor necrosis factor‐α (308A/G) polymorphism modulates attentional selection in elderly individuals. Neurobiol Aging 34:2694.e1–2694.e12. PubMed
O Gruber, T Goschke (2004): Executive control emerging from dynamic interactions between brain systems mediating language, working memory and attentional processes. Acta Psychol (Amst) 115:105–121. PubMed
Hampshire A (2015): Putting the brakes on inhibitory models of frontal lobe function. NeuroImage 113:340–355. PubMed PMC
Hampshire A, Chamberlain SR, Monti MM, Duncan J, Owen AM (2010): The role of the right inferior frontal gyrus: Inhibition and attentional control. NeuroImage 50:1313–1319. PubMed PMC
Hanna‐Pladdy B (2007): Dysexecutive syndromes in neurologic disease. J Neurol Phys Ther JNPT 31:119–127. PubMed
Hinaut X, Dominey PF (2013): Real‐time parallel processing of grammatical structure in the fronto‐striatal system: A recurrent network simulation study using reservoir computing. PloS One 8:e52946. PubMed PMC
Hommel B (1998): Automatic stimulus‐response translation in dual‐task performance. J Exp Psychol Hum Percept Perform 24:1368–1384. PubMed
Hopf J‐M, Vogel E, Woodman G, Heinze H‐J, Luck SJ (2002): Localizing visual discrimination processes in time and space. J Neurophysiol 88:2088–2095. PubMed
Janssen TWP, Heslenfeld DJ, van Mourik R, Geladé K, Maras A, Oosterlaan J (2015): Alterations in the ventral attention network during the stop‐signal task in children with ADHD: An event‐related potential source imaging study. J Atten Disord. DOI: 10.1177/1087054715580847. PubMed DOI
Joyce AW (2016): Implicit working memory: Implications for assessment and treatment. Appl Neuropsychol Child 5:223–234. PubMed
Kahn LE, Peake SJ, Dishion TJ, Stormshak EA, Pfeifer JH (2015): Learning to play it safe (or not): stable and evolving neural responses during adolescent risky decision‐making. J Cogn Neurosci 27:13–25. PubMed PMC
Keil A, Debener S, Gratton G, Junghöfer M, Kappenman ES, Luck SJ, Luu P, Miller GA, Yee CM (2014): Committee report: Publication guidelines and recommendations for studies using electroencephalography and magnetoencephalography. Psychophysiology 51:1–21. PubMed
Koechlin E (2013): Motivation, control, and human prefrontal executive function In: Stuss DT, Knight RT, editors. Principles of Frontal Lobe Function, 2nd ed New York: Oxford University Press; pp 279–291.
Koechlin E (2015): Prefrontal executive function and adaptive behavior in complex environments. Curr Opin Neurobiol 37:1–6. PubMed
Krieger‐Redwood K, Teige C, Davey J, Hymers M, Jefferies E (2015): Conceptual control across modalities: Graded specialisation for pictures and words in inferior frontal and posterior temporal cortex. Neuropsychologia 76:92–107. PubMed PMC
Larson MJ, Clayson PE, Clawson A (2014): Making sense of all the conflict: A theoretical review and critique of conflict‐related ERPs. Int J Psychophysiol Off J Int Organ Psychophysiol 93:283–297. PubMed
Lenartowicz A, Verbruggen F, Logan GD, Poldrack RA (2011): Inhibition‐related activation in the right inferior frontal gyrus in the absence of inhibitory cues. J Cogn Neurosci 23:3388–3399. PubMed
Luck SJ, Woodman GF, Vogel EK (2000): Event‐related potential studies of attention. Trends Cogn Sci 4:432–440. PubMed
FA Mansouri, K Tanaka, MJ Buckley (2009): Conflict‐induced behavioural adjustment: a clue to the executive functions of the prefrontal cortex. Nat Rev Neurosci 10:141–152. PubMed
Marco‐Pallarés J, Grau C, Ruffini G (2005): Combined ICA‐LORETA analysis of mismatch negativity. NeuroImage 25:471–477. PubMed
Mazziotta J, Toga A, Evans A, Fox P, Lancaster J, Zilles K, Woods R, Paus T, Simpson G, Pike B, Holmes C, Collins L, Thompson P, MacDonald D, Iacoboni M, Schormann T, Amunts K, Palomero‐Gallagher N, Geyer S, Parsons L, Narr K, Kabani N, Le Goualher G, Boomsma D, Cannon T, Kawashima R, Mazoyer B (2001): A probabilistic atlas and reference system for the human brain: International Consortium for Brain Mapping (ICBM). Philos Trans R Soc Lond B Biol Sci 356:1293–1322. PubMed PMC
Miller EK, Cohen JD (2001): An integrative theory of prefrontal cortex function. Annu Rev Neurosci 24:167–202. PubMed
Mückschel M, Stock A‐K, Beste C (2014): Psychophysiological mechanisms of interindividual differences in goal activation modes during action cascading. Cereb Cortex N Y N 24:2120–2129. 1991 PubMed
Naylor LJ, Stanley EM, Wicha NYY (2012): Cognitive and electrophysiological correlates of the bilingual stroop effect. Front Psychol 3:81. PubMed PMC
Nunez PL, Pilgreen KL (1991): The spline‐Laplacian in clinical neurophysiology: A method to improve EEG spatial resolution. J Clin Neurophysiol Off Publ Am Electroencephalogr Soc 8:397–413. PubMed
Pascual‐Marqui RD (2002): Standardized low‐resolution brain electromagnetic tomography (sLORETA): technical details. Methods Find Exp Clin Pharmacol 24 Suppl D:5–12. PubMed
Perrin F, Pernier J, Bertrand O, Echallier JF (1989): Spherical splines for scalp potential and current density mapping. Electroencephalogr Clin Neurophysiol 72:184–187. PubMed
Polich J (2007): Updating P300: an integrative theory of P3a and P3b. Clin Neurophysiol Off J Int Fed Clin Neurophysiol 118:2128–2148. PubMed PMC
Schneider D, Beste C, Wascher E (2012): On the time course of bottom‐up and top‐down processes in selective visual attention: An EEG study. Psychophysiology 49:1492–1503. PubMed
Schubö A, Meinecke C, Schröger E (2001): Automaticity and attention: Investigating automatic processing in texture segmentation with event‐related brain potentials. Brain Res Cogn Brain Res 11:341–361. PubMed
Sekihara K, Sahani M, Nagarajan SS (2005): Localization bias and spatial resolution of adaptive and non‐adaptive spatial filters for MEG source reconstruction. NeuroImage 25:1056–1067. PubMed PMC
Sherman JW, Gawronski B, Gonsalkorale K, Hugenberg K, Allen TJ, Groom CJ (2008): The self‐regulation of automatic associations and behavioral impulses. Psychol Rev 115:314–335. PubMed
Stock A‐K, Popescu F, Neuhaus AH, Beste C (2015): Single‐subject prediction of response inhibition behavior by event‐related potentials. J Neurophysiol jn.00969. 2015. PubMed PMC
Stuss DT, Knight RT, editors (2013): Principles of Frontal Lobe Function, 2nd ed New York: Oxford University Press.
Szűcs D, Soltész F (2012): Functional definition of the N450 event‐related brain potential marker of conflict processing: A numerical stroop study. BMC Neurosci 13:35. PubMed PMC
Tenke CE, Kayser J (2012): Generator localization by current source density (CSD): implications of volume conduction and field closure at intracranial and scalp resolutions. Clin Neurophysiol Off J Int Fed Clin Neurophysiol 123:2328–2345. PubMed PMC
Twomey DM, Murphy PR, Kelly SP, O'Connell RG (2015): The classic P300 encodes a build‐to‐threshold decision variable. Eur J Neurosci 42:1636–1643. PubMed
Ulrich R, Schröter H, Leuthold H, Birngruber T (2015): Automatic and controlled stimulus processing in conflict tasks: Superimposed diffusion processes and delta functions. Cognit Psychol 78:148–174. PubMed
Vanderhasselt M‐A, De Raedt R, Dillon DG, Dutra SJ, Brooks N, Pizzagalli DA (2012): Decreased cognitive control in response to negative information in patients with remitted depression: An event‐related potential study. J Psychiatry Neurosci JPN 37:250–258. PubMed PMC
Verleger R, Jaśkowski P, Wascher E (2005): Evidence for an integrative role of P3b in linking reaction to perception. J Psychophysiol 19:165–181.
Verleger R, Hamann LM, Asanowicz D, Śmigasiewicz K (2015): Testing the S‐R link hypothesis of P3b: The oddball effect on S1‐evoked P3 gets reduced by increased task relevance of S2. Biol Psychol 108:25–35. PubMed
Vogel EK, Luck SJ (2000): The visual N1 component as an index of a discrimination process. Psychophysiology 37:190–203. PubMed
Volle E, Lewy R, Burgess PW (2013): A new era for lesion‐behavior mapping of prefrontal functions In: Stuss DT, Knight RT, editors. Principles of Frontal Lobe Function, 2nd ed New: Oxford University Press; pp 500–523.
Wascher E, Beste C (2010): Tuning perceptual competition. J Neurophysiol 103:1057–1065. PubMed
Zhang R, Stock A‐K, Fischer R, Beste C (2016): The system neurophysiological basis of backward inhibition. Brain Struct Funct. DOI: 10.1007/s00429-016-1186-0 PubMed DOI