The neuronal mechanisms underlying improvement of impulsivity in ADHD by theta/beta neurofeedback
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
27514985
PubMed Central
PMC4981886
DOI
10.1038/srep31178
PII: srep31178
Knihovny.cz E-zdroje
- MeSH
- dítě MeSH
- hyperkinetická porucha patologie psychologie MeSH
- impulzivní chování * MeSH
- lidé MeSH
- mladiství MeSH
- neurofeedback * MeSH
- neurony patologie MeSH
- Check Tag
- dítě MeSH
- lidé MeSH
- mladiství MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Neurofeedback is increasingly recognized as an intervention to treat core symptoms of attention deficit hyperactivity disorder (ADHD). Despite the large number of studies having been carried out to evaluate its effectiveness, it is widely elusive what neuronal mechanisms related to the core symptoms of ADHD are modulated by neurofeedback. 19 children with ADHD undergoing 8 weeks of theta/beta neurofeedback and 17 waiting list controls performed a Go/Nogo task in a pre-post design. We used neurophysiological measures combining high-density EEG recording with source localization analyses using sLORETA. Compared to the waiting list ADHD control group, impulsive behaviour measured was reduced after neurofeedback treatment. The effects of neurofeedback were very specific for situations requiring inhibitory control over responses. The neurophysiological data shows that processes of perceptual gating, attentional selection and resource allocation processes were not affected by neurofeedback. Rather, neurofeedback effects seem to be based on the modulation of response inhibition processes in medial frontal cortices. The study shows that specific neuronal mechanisms underlying impulsivity are modulated by theta/beta neurofeedback in ADHD. The applied neurofeedback protocol could be particularly suitable to address inhibitory control. The study validates assumed functional neuroanatomical target regions of an established neurofeedback protocol on a neurophysiological level.
Zobrazit více v PubMed
Thomas R., Sanders S., Doust J., Beller E. & Glasziou P. Prevalence of attention-deficit/hyperactivity disorder: a systematic review and meta-analysis. Pediatrics 135, e994–1001 (2015). PubMed
Hinshaw S. P., Arnold L. E. & MTA Cooperative Group. Attention-deficit hyperactivity disorder, multimodal treatment, and longitudinal outcome: evidence, paradox, and challenge. Wiley Interdiscip. Rev. Cogn. Sci. 6, 39–52 (2015). PubMed
Barry R. J., Clarke A. R., Johnstone S. J., McCarthy R. & Selikowitz M. Electroencephalogram theta/beta ratio and arousal in attention-deficit/hyperactivity disorder: evidence of independent processes. Biol. Psychiatry 66, 398–401 (2009). PubMed
Gevensleben H. et al.. Neurofeedback in ADHD: Further Pieces of the Puzzle. Brain Topogr. 27, 20–32 (2014). PubMed
Hammond D. C. What is Neurofeedback: An Update. J. Neurother. 15, 305–336 (2011).
Barry R. J., Clarke A. R. & Johnstone S. J. A review of electrophysiology in attention-deficit/hyperactivity disorder: I. Qualitative and quantitative electroencephalography. Clin. Neurophysiol. Off. J. Int. Fed. Clin. Neurophysiol. 114, 171–183 (2003). PubMed
Butnik S. M. Neurofeedback in adolescents and adults with attention deficit hyperactivity disorder. J. Clin. Psychol. 61, 621–625 (2005). PubMed
Lofthouse N., Arnold L. E., Hersch S., Hurt E. & DeBeus R. A review of neurofeedback treatment for pediatric ADHD. J. Atten. Disord. 16, 351–372 (2012). PubMed
Mann C. A., Lubar J. F., Zimmerman A. W., Miller C. A. & Muenchen R. A. Quantitative analysis of EEG in boys with attention-deficit-hyperactivity disorder: Controlled study with clinical implications. Pediatr. Neurol. 8, 30–36 (1992). PubMed
Heinrich H. et al.. EEG spectral analysis of attention in ADHD: implications for neurofeedback training? Front. Hum. Neurosci. 8, 611 (2014). PubMed PMC
Saad J. F. & Kohn M. R. Is the Theta/Beta EEG Marker for ADHD Inherently Flawed? J. Atten. Disord. 10.1177/1087054715578270 (2015). PubMed DOI
Buyck I. & Wiersema J. R. Electroencephalographic Activity Before and After Cognitive Effort in Children With Attention Deficit/Hyperactivity Disorder. Clin. EEG Neurosci. 10.1177/1550059414553244 (2014). PubMed DOI
Arns M., de Ridder S., Strehl U., Breteler M. & Coenen A. Efficacy of Neurofeedback Treatment in ADHD: The Effects on Inattention, Impulsivity and Hyperactivity: A Meta-Analysis. Clin. EEG Neurosci. 40, 180–189 (2009). PubMed
Bink M., van Nieuwenhuizen C., Popma A., Bongers I. L. & van Boxtel G. J. M. Behavioral effects of neurofeedback in adolescents with ADHD: a randomized controlled trial. Eur. Child Adolesc. Psychiatry 24, 1035–1048 (2015). PubMed
Gevensleben H. et al.. Neurofeedback training in children with ADHD: 6-month follow-up of a randomised controlled trial. Eur. Child Adolesc. Psychiatry 19, 715–724 (2010). PubMed PMC
Micoulaud-Franchi J.-A. et al.. EEG neurofeedback treatments in children with ADHD: an updated meta-analysis of randomized controlled trials. Front. Hum. Neurosci. 8, 906 (2014). PubMed PMC
Perreau-Linck E., Lessard N., Lévesque J. & Beauregard M. Effects of Neurofeedback Training on Inhibitory Capacities in ADHD Children: A Single-Blind, Randomized, Placebo-Controlled Study. J. Neurother. 14, 229–242 (2010).
Sonuga-Barke E. J. S. et al.. Nonpharmacological interventions for ADHD: systematic review and meta-analyses of randomized controlled trials of dietary and psychological treatments. Am. J. Psychiatry 170, 275–289 (2013). PubMed
Holtmann M., Sonuga-Barke E., Cortese S. & Brandeis D. Neurofeedback for ADHD: a review of current evidence. Child Adolesc. Psychiatr. Clin. N. Am. 23, 789–806 (2014). PubMed
Wangler S. et al.. Neurofeedback in children with ADHD: specific event-related potential findings of a randomized controlled trial. Clin. Neurophysiol. Off. J. Int. Fed. Clin. Neurophysiol. 122, 942–950 (2011). PubMed
Janssen T. W. P. et al.. A Randomized Controlled Trial Investigating the Effects of Neurofeedback, Methylphenidate, and Physical Activity on Event-Related Potentials in Children with Attention-Deficit/Hyperactivity Disorder. J. Child Adolesc. Psychopharmacol. 10.1089/cap.2015.0144 (2016). PubMed DOI
Gevensleben H. et al.. Distinct EEG effects related to neurofeedback training in children with ADHD: A randomized controlled trial. Int. J. Psychophysiol. 74, 149–157 (2009). PubMed
Heinrich H., Gevensleben H., Freisleder F. J., Moll G. H. & Rothenberger A. Training of slow cortical potentials in attention-deficit/hyperactivity disorder: evidence for positive behavioral and neurophysiological effects. Biol. Psychiatry 55, 772–775 (2004). PubMed
Janssen T. W. P. et al.. A randomized controlled trial into the effects of neurofeedback, methylphenidate, and physical activity on EEG power spectra in children with ADHD. J. Child Psychol. Psychiatry, 10.1111/jcpp.12517 (2016). PubMed DOI
Albrecht B. et al.. Familiality of neural preparation and response control in childhood attention deficit-hyperactivity disorder. Psychol. Med. 43, 1997–2011 (2013). PubMed
Coghill D. R., Seth S. & Matthews K. A comprehensive assessment of memory, delay aversion, timing, inhibition, decision making and variability in attention deficit hyperactivity disorder: advancing beyond the three-pathway models. Psychol. Med. 44, 1989–2001 (2014). PubMed
Bluschke A., Roessner V. & Beste C. Specific cognitive-neurophysiological processes predict impulsivity in the childhood attention-deficit/hyperactivity disorder combined subtype. Psychol. Med. 46, 1277–1287 (2016). PubMed
Lackner C. L., Santesso D. L., Dywan J., Wade T. J. & Segalowitz S. J. Electrocortical indices of selective attention predict adolescent executive functioning. Biol. Psychol. 93, 325–333 (2013). PubMed
Ocklenburg S., Güntürkün O. & Beste C. Lateralized neural mechanisms underlying the modulation of response inhibition processes. NeuroImage 55, 1771–1778 (2011). PubMed
Stock A.-K., Popescu F., Neuhaus A. H. & Beste C. Single-subject prediction of response inhibition behavior by event-related potentials. J. Neurophysiol. 10.1152/jn.00969.2015 (2015). PubMed DOI PMC
Bari A. & Robbins T. W. Inhibition and impulsivity: behavioral and neural basis of response control. Prog. Neurobiol. 108, 44–79 (2013). PubMed
Nikolas M. A. & Nigg J. T. Neuropsychological performance and attention-deficit hyperactivity disorder subtypes and symptom dimensions. Neuropsychology 27, 107–120 (2013). PubMed PMC
Herrmann C. S. & Knight R. T. Mechanisms of human attention: event-related potentials and oscillations. Neurosci. Biobehav. Rev. 25, 465–476 (2001). PubMed
Bonnefond A., Doignon-Camus N., Touzalin-Chretien P. & Dufour A. Vigilance and intrinsic maintenance of alert state: An ERP study. Behav. Brain Res. 211, 185–190 (2010). PubMed
Beste C., Ness V., Falkenstein M. & Saft C. On the role of fronto-striatal neural synchronization processes for response inhibition–evidence from ERP phase-synchronization analyses in pre-manifest Huntington’s disease gene mutation carriers. Neuropsychologia 49, 3484–3493 (2011). PubMed
Beste C., Willemssen R., Saft C. & Falkenstein M. Response inhibition subprocesses and dopaminergic pathways: basal ganglia disease effects. Neuropsychologia 48, 366–373 (2010). PubMed
Falkenstein M., Hoormann J. & Hohnsbein J. ERP components in Go/Nogo tasks and their relation to inhibition. Acta Psychol. (Amst.) 101, 267–291 (1999). PubMed
Huster R. J., Enriquez-Geppert S., Lavallee C. F., Falkenstein M. & Herrmann C. S. Electroencephalography of response inhibition tasks: Functional networks and cognitive contributions. Int. J. Psychophysiol. 87, 217–233 (2013). PubMed
Nieuwenhuis S., Yeung N., van den Wildenberg W. & Ridderinkhof K. R. Electrophysiological correlates of anterior cingulate function in a go/no-go task: effects of response conflict and trial type frequency. Cogn. Affect. Behav. Neurosci. 3, 17–26 (2003). PubMed
Bluschke A., Roessner V. & Beste C. Editorial Perspective: How to optimise frequency band neurofeedback for ADHD. J. Child Psychol. Psychiatry 57, 457–461 (2016). PubMed
Lubar J. F., Swartwood M. O., Swartwood J. N. & O’Donnell P. H. Evaluation of the effectiveness of EEG neurofeedback training for ADHD in a clinical setting as measured by changes in TOVA scores, behavioral ratings, and WISC-R performance. Biofeedback Self-Regul. 20, 83–99 (1995). PubMed
Holtmann M. et al.. Spezifische Wirksamkeit von Neurofeedback auf die Impulsivität bei ADHS. Kindh. Entwickl. 18, 95–104 (2009).
Sugimoto F. & Katayama J. ’ichi. Somatosensory P2 reflects resource allocation in a game task: assessment with an irrelevant probe technique using electrical probe stimuli to shoulders. Int. J. Psychophysiol. Off. J. Int. Organ. Psychophysiol. 87, 200–204 (2013). PubMed
Fallgatter A. J. & Herrmann M. J. Electrophysiological assessment of impulsive behavior in healthy subjects. Neuropsychologia 39, 328–333 (2001). PubMed
Micoulaud-Franchi J.-A. et al.. Electroencephalographic neurofeedback: Level of evidence in mental and brain disorders and suggestions for good clinical practice. Clin. Neurophysiol. 10.1016/j.neucli.2015.10.077 (2015). PubMed DOI
Kropotov J. D. et al.. ERPs correlates of EEG relative beta training in ADHD children. Int. J. Psychophysiol. 55, 23–34 (2005). PubMed
Döpfner M., Görtz-Dorten A. & Lehmkuhl G. Diagnostik-System für Psychische Störungen im Kindes- und Jugendalter nach ICD-10 und DSM-IV, DISYPS-II. (Huber, 2008).
Conners K. Conners’ Comprehensive Behaviour Rating Scale Manual. (Multi-Health Systems, 2008).
Chmielewski W. X., Mückschel M., Stock A.-K. & Beste C. The impact of mental workload on inhibitory control subprocesses. NeuroImage 112, 96–104 (2015). PubMed
Nunez P. L. & Pilgreen K. L. The spline-Laplacian in clinical neurophysiology: a method to improve EEG spatial resolution. J. Clin. Neurophysiol. Off. Publ. Am. Electroencephalogr. Soc. 8, 397–413 (1991). PubMed
Mückschel M., Stock A.-K. & Beste C. Psychophysiological mechanisms of interindividual differences in goal activation modes during action cascading. Cereb. Cortex N. Y. N 1991 24, 2120–2129 (2014). PubMed
Pascual-Marqui R. D. Standardized low-resolution brain electromagnetic tomography (sLORETA): technical details. Methods Find. Exp. Clin. Pharmacol. 24 Suppl D, 5–12 (2002). PubMed
Sekihara K., Sahani M. & Nagarajan S. S. Localization bias and spatial resolution of adaptive and non-adaptive spatial filters for MEG source reconstruction. NeuroImage 25, 1056–1067 (2005). PubMed PMC
Dippel G. & Beste C. A causal role of the right inferior frontal cortex in implementing strategies for multi-component behaviour. Nat. Commun. 6, 6587 (2015). PubMed