• This record comes from PubMed

Role of ErbB and IL-1 signaling pathways in the dermonecrotic lesion induced by Loxosceles sphingomyelinases D

. 2023 Dec ; 97 (12) : 3285-3301. [epub] 20230914

Language English Country Germany Media print-electronic

Document type Journal Article

Grant support
2013/07467-1 Fundação de Amparo à Pesquisa do Estado de São Paulo

Links

PubMed 37707622
DOI 10.1007/s00204-023-03602-4
PII: 10.1007/s00204-023-03602-4
Knihovny.cz E-resources

Sphingomyelinase D (SMase D), the main toxic component of Loxosceles venom, has a well-documented role on dermonecrotic lesion triggered by envenomation with these species; however, the intracellular mechanisms involved in this event are still poorly known. Through differential transcriptomics of human keratinocytes treated with L. laeta or L. intermedia SMases D, we identified 323 DEGs, common to both treatments, as well as upregulation of molecules involved in the IL-1 and ErbB signaling. Since these pathways are related to inflammation and wound healing, respectively, we investigated the relative expression of some molecules related to these pathways by RT-qPCR and observed different expression profiles over time. Although, after 24 h of treatment, both SMases D induced similar modulation of these pathways in keratinocytes, L. intermedia SMase D induced earlier modulation compared to L. laeta SMase D treatment. Positive expression correlations of the molecules involved in the IL-1 signaling were also observed after SMases D treatment, confirming their inflammatory action. In addition, we detected higher relative expression of the inhibitor of the ErbB signaling pathway, ERRFI1, and positive correlations between this molecule and pro-inflammatory mediators after SMases D treatment. Thus, herein, we describe the cell pathways related to the exacerbation of inflammation and to the failure of the wound healing, highlighting the contribution of the IL-1 signaling pathway and the ERRFI1 for the development of cutaneous loxoscelism.

See more in PubMed

Acuner Ozbabacan SE, Gursoy A, Nussinov R, Keskin O (2014) The structural pathway of interleukin 1 (IL-1) initiated signaling reveals mechanisms of oncogenic mutations and SNPs in inflammation and cancer. PLoS Comput Biol 10(2):e1003470. https://doi.org/10.1371/journal.pcbi.1003470 PubMed DOI PMC

Anastasi S, Fiorentino L, Fiorini M et al (2003) Feedback inhibition by RALT controls signal output by the ErbB network. Oncogene 22(27):4221–4234. https://doi.org/10.1038/sj.onc.1206516 PubMed DOI

Aronesty E (2011) Fastq-mcf sequence quality filter, clipping and processor. 2011. http://code.Google.com/p/ea-utils/wiki/fastqmcf

Benjamin Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B (methodol) 57:289–300

Blobel CP (2005) ADAMs: key components in EGFR signalling and development. Nat Rev Mol Cell Biol 6(1):32–43. https://doi.org/10.1038/nrm1548 PubMed DOI

Bullard KM, Lund L, Mudgett JS et al (1999) Impaired wound contraction in stromelysin-1-deficient mice. Ann Surg 230(2):260–265. https://doi.org/10.1097/00000658-199908000-00017 PubMed DOI PMC

Cairns J, Fridley BL, Jenkins GD, Zhuang Y, Yu J, Wang L (2018) Differential roles of ERRFI1 in EGFR and AKT pathway regulation affect cancer proliferation. EMBO Rep 19(3):e44767. https://doi.org/10.15252/embr.201744767 PubMed DOI PMC

Caley MP, Martins VL, O’Toole EA (2015) Metalloproteinases and wound healing. Adv Wound Care 4(4):225–234. https://doi.org/10.1089/wound.2014.0581 DOI

Chen Y, Lun ATL, Smyth GK (2014) Differential expression analysis of complex RNA-seq experiments using edgeR. In: Datta S, Nettleton DS (eds) Statistical analysis of next generation sequence data. Springer, New York, pp 51–74 DOI

Chen J, Zeng F, Forrester SJ, Eguchi S, Zhang MZ, Harris RC (2016) Expression and function of the epidermal growth factor receptor in physiology and disease. Physiol Rev 96(3):1025–1069. https://doi.org/10.1152/physrev.00030.2015 PubMed DOI

Corrêa MA, Okamoto CK, Gonçalves-de-Andrade RM, van den Berg CW, Tambourgi DV (2016) Sphingomyelinase D from Loxosceles laeta venom induces the expression of MMP7 in human keratinocytes: contribution to dermonecrosis. PLoS ONE 11(4):e0153090. https://doi.org/10.1371/journal.pone.0153090 PubMed DOI PMC

Cui M, Liu D, Xiong W, Wang Y, Mi J (2021) ERRFI1 induces apoptosis of hepatocellular carcinoma cells in response to tryptophan deficiency. Cell Death Discov 7(1):274. https://doi.org/10.1038/s41420-021-00666-y PubMed DOI PMC

de Oliveira KC, Gonçalves de Andrade RM, Piazza RM, Ferreira JM, van den Berg CW, Tambourgi DV (2005) Variations in Loxosceles spider venom composition and toxicity contribute to the severity of envenomation. Toxicon 45(4):421–429. https://doi.org/10.1016/j.toxicon.2004.08.022 PubMed DOI

de Santi Ferrara GI, Fernandes-Pedrosa MDF, Junqueira-de-Azevedo IL et al (2009) SMase II, a new sphingomyelinase D from Loxosceles laeta venom gland: molecular cloning, expression, function and structural analysis. Toxicon 53(7–8):743–753. https://doi.org/10.1016/j.toxicon.2009.02.013 PubMed DOI

Dobin A, Davis CA, Schlesinger F et al (2013) STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29(1):15–21. https://doi.org/10.1093/bioinformatics/bts635 PubMed DOI

Ferby I, Reschke M, Kudlacek O et al (2006) Mig6 is a negative regulator of EGF receptor-mediated skin morphogenesis and tumor formation. Nat Med 12(5):568–573. https://doi.org/10.1038/nm1401 PubMed DOI

Fernandes Pedrosa MDF, Junqueira de Azevedo IL, Gonçalves-de-Andrade RM et al (2002) Molecular cloning and expression of a functional dermonecrotic and haemolytic factor from Loxosceles laeta venom. Biochem Biophys Res Commun 298(5):638–645. https://doi.org/10.1016/s0006-291x(02)02521-4 PubMed DOI

Fernandes Pedrosa MDF, Junqueira de Azevedo IDL, Gonçalves-de-Andrade RM, Kobashi LS, Almeida DD, Ho PL, Tambourgi DV (2008) Transcriptome analysis of Loxosceles laeta (Araneae, Sicariidae) spider venomous gland using expressed sequence tags. BMC Genom 12(9):279. https://doi.org/10.1186/1471-2164-9-279 DOI

Fleenor DL, Pang IH, Clark AF (2003) Involvement of AP-1 in interleukin-1alpha-stimulated MMP-3 expression in human trabecular meshwork cells. Invest Ophthalmol vis Sci 44(8):3494–3501. https://doi.org/10.1167/iovs.02-0757 PubMed DOI

Forrester LJ, Barrett JT, Campbell BJ (1978) Red blood cell lysis induced by the venom of the brown recluse spider: the role of sphingomyelinase D. Arch Biochem Biophys 187(2):355–365. https://doi.org/10.1016/0003-9861(78)90046-2 PubMed DOI

Frosi Y, Anastasi S, Ballarò C et al (2010) A two-tiered mechanism of EGFR inhibition by RALT/MIG6 via kinase suppression and receptor degradation. J Cell Biol 189(3):557–571. https://doi.org/10.1083/jcb.201002032 PubMed DOI PMC

Fujimoto S, Uratsuji H, Saeki H et al (2008) CCR4 and CCR10 are expressed on epidermal keratinocytes and are involved in cutaneous immune reaction. Cytokine 44(1):172–178. https://doi.org/10.1016/j.cyto.2008.07.472 PubMed DOI

Futrell JM (1992) Loxoscelism. Am J Med Sci 304(4):261–267. https://doi.org/10.1097/00000441-199210000-00008 PubMed DOI

Gomez HF, Miller MJ, Desai A, Warren JS (1999) Loxosceles spider venom induces the production of alpha and beta chemokines: implications for the pathogenesis of dermonecrotic arachnidism. Inflammation 23(3):207–215. https://doi.org/10.1023/a:1020217818245 PubMed DOI

Griesenauer B, Paczesny S (2017) The ST2/IL-33 axis in immune cells during inflammatory diseases. Front Immunol 8:475. https://doi.org/10.3389/fimmu.2017.00475 PubMed DOI PMC

Groves RW, Sherman L, Mizutani H, Dower SK, Kupper TS (1994) Detection of interleukin-1 receptors in human epidermis. Induction of the type II receptor after organ culture and in psoriasis. Am J Pathol 145(5):1048–1056 PubMed PMC

Han Y, Huard A, Mora J, da Silva P, Brüne B, Weigert A (2020) IL-36 family cytokines in protective versus destructive inflammation. Cell Signal 75:109773. https://doi.org/10.1016/j.cellsig.2020.109773 PubMed DOI

Harris MA, Clark J, Ireland A, Lomax J, Ashburner M, Foulger R, Eilbeck K, Lewis S, Marshall B, Mungall C, Richter J, Rubin GM, Blake JA, Bult C, Dolan M, Drabkin H, Eppig JT, Hill DP, Ni L, Ringwald M, Balakrishnan R, Cherry JM, Christie KR, Costanzo MC, Dwight SS, Engel S, Fisk DG, Hirschman JE, Hong EL, Nash RS, Sethuraman A, Theesfeld CL, Botstein D, Dolinski K, Feierbach B, Berardini T, Mundodi S, Rhee SY, Apweiler R, Barrell D, Camon E, Dimmer E, Lee V, Chisholm R, Gaudet P, Kibbe W, Kishore R, Schwarz EM, Sternberg P, Gwinn M, Hannick L, Wortman J, Berriman M, Wood V, de la Cruz N, Tonellato P, Jaiswal P, Seigfried T, White R, Gene Ontology Consortium (2004) The Gene Ontology (GO) database and informatics resource. Nucleic Acids Res 32(Database issue):D258–D261. https://doi.org/10.1093/nar/gkh036 PubMed DOI

Horiuchi K, Zhou HM, Kelly K, Manova K, Blobel CP (2005) Evaluation of the contributions of ADAMs 9, 12, 15, 17, and 19 to heart development and ectodomain shedding of neuregulins beta1 and beta2. Dev Biol 283(2):459–471. https://doi.org/10.1016/j.ydbio.2005.05.004 PubMed DOI

Hosur V, Farley ML, Burzenski LM, Shultz LD, Wiles MV (2018) ADAM17 is essential for ectodomain shedding of the EGF-receptor ligand amphiregulin. FEBS Open Bio 8(4):702–710. https://doi.org/10.1002/2211-5463.12407 PubMed DOI PMC

Inokuma D, Abe R, Fujita Y et al (2006) CTACK/CCL27 accelerates skin regeneration via accumulation of bone marrow-derived keratinocytes. Stem Cells 24(12):2810–2816. https://doi.org/10.1634/stemcells.2006-0264 PubMed DOI

Johnson BZ, Stevenson AW, Prêle CM, Fear MW, Wood FM (2020) The role of IL-6 in skin fibrosis and cutaneous wound healing. Biomedicines 8(5):101. https://doi.org/10.3390/biomedicines8050101 PubMed DOI PMC

Krämer A, Green J, Pollard J, Tugendreich S (2014) Causal analysis approaches in ingenuity pathway analysis. Bioinformatics 30(4):523–530. https://doi.org/10.1093/bioinformatics/btt703 PubMed DOI

Kuleshov MV, Jones MR, Rouillard AD, Fernandez NF, Duan Q, Wang Z, Koplev S, Jenkins SL, Jagodnik KM, Lachmann A, McDermott MG, Monteiro CD, Gundersen GW, Ma’ayan A (2016) Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res 44(W1):W90–W97. https://doi.org/10.1093/nar/gkw377 PubMed DOI PMC

Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227(5259):680–685. https://doi.org/10.1038/227680a0 PubMed DOI

Langmead B, Trapnell C, Pop M, Salzberg SL (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10(3):R25. https://doi.org/10.1186/gb-2009-10-3-r25 PubMed DOI PMC

Liao Y, Smyth GK, Shi W (2014) featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30(7):923–930. https://doi.org/10.1093/bioinformatics/btt656 PubMed DOI

Lin CI, Du J, Shen WT et al (2011) Mitogen-inducible gene-6 is a multifunctional adaptor protein with tumor suppressor-like activity in papillary thyroid cancer. J Clin Endocrinol Metab 96(3):E554–E565. https://doi.org/10.1210/jc.2010-1800 PubMed DOI

Lopes PH, Murakami MT, Portaro FCV, Mesquita Pasqualoto KF, van den Berg C, Tambourgi DV (2019) Targeting loxosceles spider sphingomyelinase D with small-molecule inhibitors as a potential therapeutic approach for loxoscelism. J Enzyme Inhib Med Chem 34(1):310–321. https://doi.org/10.1080/14756366.2018.1546698 PubMed DOI PMC

Lopes PH, Squaiella-Baptistão CC, Thá Marques MO, Tambourgi DV (2020a) Clinical aspects, diagnosis and management of Loxosceles spider envenomation: literature and case review. Arch Toxicol 94:1461–1477. https://doi.org/10.1007/s00204-020-02719-0 PubMed DOI

Lopes PH, van den Berg CW, Tambourgi DV (2020b) Sphingomyelinases D from Loxosceles spider venoms and cell membranes: action on lipid rafts and activation of endogenous metalloproteinases. Front Pharmacol 11:14. https://doi.org/10.3389/fphar.2020.00636 DOI

Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193(1):265–275 PubMed DOI

Lulli D, Carbone ML, Pastore S (2016) Epidermal growth factor receptor inhibitors trigger a type I interferon response in human skin. Oncotarget 7(30):47777–47793. https://doi.org/10.18632/oncotarget.10013 PubMed DOI PMC

Macleod T, Berekmeri A, Bridgewood C, Stacey M, McGonagle D, Wittmann M (2021) The immunological impact of IL-1 family cytokines on the epidermal barrier. Front Immunol 12:808012. https://doi.org/10.3389/fimmu.2021.808012 PubMed DOI PMC

Mascia F, Mariani V, Girolomoni G, Pastore S (2003) Blockade of the EGF receptor induces a deranged chemokine expression in keratinocytes leading to enhanced skin inflammation. Am J Pathol 163(1):303–312. https://doi.org/10.1016/S0002-9440(10)63654-1 PubMed DOI PMC

McCarthy DJ, Chen Y, Smyth GK (2012) Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation. Nucleic Acids Res 40:4288–4297. https://doi.org/10.1093/nar/gks042 PubMed DOI PMC

Melenhorst WB, van den Heuvel MC, Timmer A et al (2006) ADAM19 expression in human nephrogenesis and renal disease: associations with clinical and structural deterioration. Kidney Int 70(7):1269–1278. https://doi.org/10.1038/sj.ki.5001753 PubMed DOI

Mora-Buch R, Dotti I, Planell N et al (2016) Epithelial IL-1R2 acts as a homeostatic regulator during remission of ulcerative colitis. Mucosal Immunol 9(4):950–959. https://doi.org/10.1038/mi.2015.108 PubMed DOI

Paixao-Cavalcante D, van den Berg CW, Fernandes-Pedrosa MD, de Andrade RMG, Tambourgi DV (2006) Role of matrix metalloproteinases in HaCaT keratinocytes apoptosis induced by Loxosceles venom sphingomyelinase D. J Invest Dermatol 126(1):61–68. https://doi.org/10.1038/sj.jid.5700049 PubMed DOI

Paixao-Cavalcante D, van den Berg CW, Goncalves-de-Andrade RM, Fernandes-Pedrosa MD, Okamoto CK, Tambourgi DV (2007) Tetracycline protects against dermonecrosis induced by Loxosceles spider venom. J Invest Dermatol 127(6):1410–1418. https://doi.org/10.1038/sj.jid.5700688 PubMed DOI

Pang IH, Hellberg PE, Fleenor DL, Jacobson N, Clark AF (2003) Expression of matrix metalloproteinases and their inhibitors in human trabecular meshwork cells. Invest Ophthalmol vis Sci 44(8):3485–3493. https://doi.org/10.1167/iovs.02-0756 PubMed DOI

Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29(9):e45. https://doi.org/10.1093/nar/29.9.e45 PubMed DOI PMC

Phipson B, Lee S, Majewski IJ, Alexander WS, Smyth GK (2016) Robust hyperparameter estimation protects against hypervariable genes and improves power to detect differential expression. Ann Appl Stat 10(2):946–963. https://doi.org/10.1214/16-AOAS920 PubMed DOI PMC

Qi B, Newcomer RG, Sang QX (2009) ADAM19/adamalysin 19 structure, function, and role as a putative target in tumors and inflammatory diseases. Curr Pharm Des 15(20):2336–2348. https://doi.org/10.2174/138161209788682352 PubMed DOI

Rauschmayr T, Groves RW, Kupper TS (1997) Keratinocyte expression of the type 2 interleukin 1 receptor mediates local and specific inhibition of interleukin 1-mediated inflammation. Proc Natl Acad Sci USA 94(11):5814–5819. https://doi.org/10.1073/pnas.94.11.5814 PubMed DOI PMC

Risso D, Ngai J, Speed TP, Dudoit S (2014) Normalization of RNA-seq data using factor analysis of control genes or samples. Nat Biotechnol 32(9):896–902. https://doi.org/10.1038/nbt.2931 PubMed DOI PMC

Robinson MD, Oshlack A (2010) A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol 11(3):R25. https://doi.org/10.1186/gb-2010-11-3-r25 PubMed DOI PMC

Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26(1):139–140. https://doi.org/10.1093/bioinformatics/btp616 PubMed DOI

Sahin U, Weskamp G, Kelly K et al (2004) Distinct roles for ADAM10 and ADAM17 in ectodomain shedding of six EGFR ligands. J Cell Biol 164(5):769–779. https://doi.org/10.1083/jcb.200307137 PubMed DOI PMC

Schenone H, Saavedra T, Rojas A, Villarroel F (1989) Loxoscelism in Chile—epidemiological, clinical and experimental studies. Rev Inst Med Trop Sao Paulo 31(6):403–415. https://doi.org/10.1590/s0036-46651989000600007 PubMed DOI

Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13(11):2498–2504. https://doi.org/10.1101/gr.1239303 PubMed DOI PMC

Shirakabe K, Wakatsuki S, Kurisaki T, Fujisawa-Sehara A (2001) Roles of Meltrin beta/ADAM19 in the processing of neuregulin. J Biol Chem 276(12):9352–9358. https://doi.org/10.1074/jbc.M007913200 PubMed DOI

Smith CW, Micks DW (1970) The role of polymorphonuclear leukocytes in the lesion caused by the venom of the brown spider, Loxosceles reclusa. Lab Invest 22(1):90–93 PubMed

Stoll SW, Benedict M, Mitra R, Hiniker A, Elder JT, Nuñez G (1998) EGF receptor signaling inhibits keratinocyte apoptosis: evidence for mediation by Bcl-XL. Oncogene 16(11):1493–1499. https://doi.org/10.1038/sj.onc.1201657 PubMed DOI

Sunnarborg SW, Hinkle CL, Stevenson M et al (2002) Tumor necrosis factor-alpha converting enzyme (TACE) regulates epidermal growth factor receptor ligand availability. J Biol Chem 277(15):12838–12845. https://doi.org/10.1074/jbc.M112050200 PubMed DOI

Supino D, Minute L, Mariancini A, Riva F, Magrini E, Garlanda C (2022) Negative regulation of the IL-1 system by IL-1R2 and IL-1R8: relevance in pathophysiology and disease. Front Immunol 13:804641. https://doi.org/10.3389/fimmu.2022.804641 PubMed DOI PMC

Swanson DL, Vetter RS (2006) Loxoscelism. Clin Dermatol 24(3):213–221. https://doi.org/10.1016/j.clindermatol.2005.11.006 PubMed DOI

Szklarczyk D, Gable AL, Nastou KC, Lyon D, Kirsch R, Pyysalo S, Doncheva NT, Legeay M, Fang T, Bork P, Jensen LJ, von Mering C (2021) The STRING database in 2021: customizable protein–protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res 49(D1):D605–D612. https://doi.org/10.1093/nar/gkaa1074 PubMed DOI

Tambourgi DV, Magnoli FC, Von Eickstedt VR, Benedetti ZC, Petricevich VL, da Silva WD (1995) Incorporation of a 35-kilodalton purified protein from Loxosceles intermedia spider venom transforms human erythrocytes into activators of autologous complement alternative pathway. J Immunol 155(9):4459–4466 PubMed DOI

Tambourgi DV, Magnoli FC, van den Berg CW et al (1998a) Sphingomyelinases in the venom of the spider Loxosceles intermedia are responsible for both dermonecrosis and complement-dependent hemolysis. Biochem Biophys Res Commun 251(1):366–373. https://doi.org/10.1006/bbrc.1998.9474 PubMed DOI

Tambourgi DV, Petricevich VL, Magnoli FC, Assaf SL, Jancar S, Dias Da Silva W (1998b) Endotoxemic-like shock induced by Loxosceles spider venoms: pathological changes and putative cytokine mediators. Toxicon 36(2):391–403. https://doi.org/10.1016/s0041-0101(97)00063-9 PubMed DOI

Tambourgi DV, Morgan BP, de Andrade RM, Magnoli FC, van Den Berg CW (2000) Loxosceles intermedia spider envenomation induces activation of an endogenous metalloproteinase, resulting in cleavage of glycophorins from the erythrocyte surface and facilitating complement-mediated lysis. Blood 95(2):683–691 PubMed DOI

Tambourgi DV, Fernandes Pedrosa MDF, van den Berg CW et al (2004) Molecular cloning, expression, function and immunoreactivities of members of a gene family of sphingomyelinases from Loxosceles venom glands. Mol Immunol 41(8):831–840. https://doi.org/10.1016/j.molimm.2004.03.027 PubMed DOI

Tambourgi DV, Paixao-Cavalcante D, de Andrade RMG et al (2005) Loxosceles sphingomyelinase induces complement-dependent dermonecrosis, neutrophil infiltration, and endogenous gelatinase expression. J Invest Dermatol 124(4):725–731. https://doi.org/10.1111/j.0022-202X.2005.23654.x PubMed DOI

Tambourgi DV, Gonçalves-de-Andrade RM, van den Berg CW (2010) Loxoscelism: from basic research to the proposal of new therapies. Toxicon 56(7):1113–1119. https://doi.org/10.1016/j.toxicon.2010.01.021 PubMed DOI

van den Berg CW, De Andrade RM, Magnoli FC, Marchbank KJ, Tambourgi DV (2002) Loxosceles spider venom induces metalloproteinase mediated cleavage of MCP/CD46 and MHCI and induces protection against C-mediated lysis. Immunology 107(1):102–110. https://doi.org/10.1046/j.1365-2567.2002.01468.x PubMed DOI PMC

van den Berg CW, Gonçalves-de-Andrade RM, Okamoto CK, Tambourgi DV (2012) C5a receptor is cleaved by metalloproteases induced by sphingomyelinase D from Loxosceles spider venom. Immunobiology 217(9):935–941. https://doi.org/10.1016/j.imbio.2012.01.005 PubMed DOI

van Meeteren LA, Frederiks F, Giepmans BN et al (2004) Spider and bacterial sphingomyelinases D target cellular lysophosphatidic acid receptors by hydrolyzing lysophosphatidylcholine. J Biol Chem 279(12):10833–10836. https://doi.org/10.1074/jbc.C300563200 PubMed DOI

Wang W, Yu X, Wu C, Jin H (2017) IL-36γ inhibits differentiation and induces inflammation of keratinocyte via Wnt signaling pathway in psoriasis. Int J Med Sci 14(10):1002–1007. https://doi.org/10.7150/ijms.20809 PubMed DOI PMC

Wasserman GS, Anderson PC (1983) Loxoscelism and necrotic arachnidism. J Toxicol Clin Toxicol 21(4–5):451–472. https://doi.org/10.3109/15563658308990434 PubMed DOI

Xu D, Makkinje A, Kyriakis JM (2005) Gene 33 is an endogenous inhibitor of epidermal growth factor (EGF) receptor signaling and mediates dexamethasone-induced suppression of EGF function. J Biol Chem 280(4):2924–2933. https://doi.org/10.1074/jbc.M408907200 PubMed DOI

Zhang X, Pickin KA, Bose R, Jura N, Cole PA, Kuriyan J (2007) Inhibition of the EGF receptor by binding of MIG6 to an activating kinase domain interface. Nature 450(7170):741–744. https://doi.org/10.1038/nature05998 PubMed DOI PMC

Zheng L, Amano K, Iohara K et al (2009) Matrix metalloproteinase-3 accelerates wound healing following dental pulp injury. Am J Pathol 175(5):1905–1914. https://doi.org/10.2353/ajpath.2009.080705 PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...