Oral stem cells, decoding and mapping the resident cells populations

. 2022 ; 3 (1) : 24-30. [epub] 20220328

Status PubMed-not-MEDLINE Jazyk angličtina Země Čína Médium electronic-ecollection

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid35837342

The teeth and their supporting tissues provide an easily accessible source of oral stem cells. These different stem cell populations have been extensively studied for their properties, such as high plasticity and clonogenicity, expressing stem cell markers and potency for multilineage differentiation in vitro. Such cells with stem cell properties have been derived and characterised from the dental pulp tissue, the apical papilla region of roots in development, as well as the supporting tissue of periodontal ligament that anchors the tooth within the alveolar socket and the soft gingival tissue. Studying the dental pulp stem cell populations in a continuously growing mouse incisor model, as a traceable in vivo model, enables the researchers to study the properties, origin and behaviour of mesenchymal stem cells. On the other side, the oral mucosa with its remarkable scarless wound healing phenotype, offers a model to study a well-coordinated system of healing because of coordinated actions between epithelial, mesenchymal and immune cells populations. Although described as homogeneous cell populations following their in vitro expansion, the increasing application of approaches that allow tracing of individual cells over time, along with single-cell RNA-sequencing, reveal that different oral stem cells are indeed diverse populations and there is a highly organised map of cell populations according to their location in resident tissues, elucidating diverse stem cell niches within the oral tissues. This review covers the current knowledge of diverse oral stem cells, focusing on the new approaches in studying these cells. These approaches "decode" and "map" the resident cells populations of diverse oral tissues and contribute to a better understanding of the "stem cells niche architecture and interactions. Considering the high accessibility and simplicity in obtaining these diverse stem cells, the new findings offer potential in development of translational tissue engineering approaches and innovative therapeutic solutions.

Zobrazit více v PubMed

Nanci A. Ten Cate’s oral histology: development, structure, and function. 8th ed. Elsevier; St. Louis: 2012.

Gronthos S., Mankani M., Brahim J., Robey P. G., Shi S. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci U S A. 2000;97:13625–13630. PubMed PMC

Gronthos S., Brahim J., Li W., Fisher L. W., Cherman N., Boyde A., DenBesten P., Robey P. G., Shi S. Stem cell properties of human dental pulp stem cells. J Dent Res. 2002;81:531–535. PubMed

Jo Y. Y., Lee H. J., Kook S. Y., Choung H. W., Park J. Y., Chung J. H., Choung Y. H., Kim E. S., Yang H. C., Choung P. H. Isolation and characterization of postnatal stem cells from human dental tissues. Tissue Eng. 2007;13:767–773. PubMed

Huang G. T., Gronthos S., Shi S. Mesenchymal stem cells derived from dental tissues vs. those from other sources: their biology and role in regenerative medicine. J Dent Res. 2009;88:792–806. PubMed PMC

Balic A., Aguila H. L., Caimano M. J., Francone V. P., Mina M. Characterization of stem and progenitor cells in the dental pulp of erupted and unerupted murine molars. Bone. 2010;46:1639–1651. PubMed PMC

Volponi A. A., Pang Y., Sharpe P. T. Stem cell-based biological tooth repair and regeneration. Trends Cell Biol. 2010;20:715–722. PubMed PMC

Volponi A. A., Sharpe P. T. The tooth -- a treasure chest of stem cells. Br Dent J. 2013;215:353–358. PubMed

Angelova Volponi A., Zaugg L. K., Neves V., Liu Y., Sharpe P. T. Tooth repair and regeneration. Curr Oral Health Rep. 2018;5:295–303. PubMed PMC

Yelick P. C., Sharpe P. T. Tooth bioengineering and regenerative dentistry. J Dent Res. 2019;98:1173–1182. PubMed PMC

Smith A. J., Lesot H. Induction and regulation of crown dentinogenesis: embryonic events as a template for dental tissue repair? Crit Rev Oral Biol Med. 2001;12:425–437. PubMed

Smith J. G., Smith A. J., Shelton R. M., Cooper P. R. Recruitment of dental pulp cells by dentine and pulp extracellular matrix components. Exp Cell Res. 2012;318:2397–2406. PubMed

Smith A. J., Cassidy N., Perry H., Bàgue-Kirn C., Ruch J. V., Lesot H. Reactionary dentinogenesis. Int J Dev Biol. 1995;39:273–280. PubMed

Couve E., Osorio R., Schmachtenberg O. Reactionary dentinogenesis and neuroimmune response in dental caries. J Dent Res. 2014;93:788–793. PubMed PMC

Teaford M. F., Smith M. M., Ferguson M. W. J. Development, function and evolution of teeth. Cambridge University Press; Cambridge: 2000.

Feng J., Mantesso A., De Bari C., Nishiyama A., Sharpe P. T. Dual origin of mesenchymal stem cells contributing to organ growth and repair. Proc Natl Acad Sci U S A. 2011;108:6503–6508. PubMed PMC

Vidovic I., Banerjee A., Fatahi R., Matthews B. G., Dyment N. A., Kalajzic I., Mina M. αSMA-expressing perivascular cells represent dental pulp progenitors in vivo. J Dent Res. 2017;96:323–330. PubMed PMC

Kaukua N., Shahidi M. K., Konstantinidou C., Dyachuk V., Kaucka M., Furlan A., An Z., Wang L., Hultman I., Ahrlund-Richter L., Blom H., Brismar H., Lopes N. A., Pachnis V., Suter U., Clevers H., Thesleff I., Sharpe P., Ernfors P., Fried K., Adameyko I. Glial origin of mesenchymal stem cells in a tooth model system. Nature. 2014;513:551–554. PubMed

Miura M., Gronthos S., Zhao M., Lu B., Fisher L. W., Robey P. G., Shi S. SHED: stem cells from human exfoliated deciduous teeth. Proc Natl Acad Sci U S A. 2003;100:5807–5812. PubMed PMC

Shi S., Bartold P. M., Miura M., Seo B. M., Robey P. G., Gronthos S. The efficacy of mesenchymal stem cells to regenerate and repair dental structures. Orthod Craniofac Res. 2005;8:191–199. PubMed

Sakai V. T., Zhang Z., Dong Z., Neiva K. G., Machado M. A., Shi S., Santos C. F., Nör J. E. SHED differentiate into functional odontoblasts and endothelium. J Dent Res. 2010;89:791–796. PubMed

Cordeiro M. M., Dong Z., Kaneko T., Zhang Z., Miyazawa M., Shi S., Smith A. J., Nör J. E. Dental pulp tissue engineering with stem cells from exfoliated deciduous teeth. J Endod. 2008;34:962–969. PubMed

Wang J., Wang X., Sun Z., Wang X., Yang H., Shi S., Wang S. Stem cells from human-exfoliated deciduous teeth can differentiate into dopaminergic neuron-like cells. Stem Cells Dev. 2010;19:1375–1383. PubMed PMC

Nakamura S., Yamada Y., Katagiri W., Sugito T., Ito K., Ueda M. Stem cell proliferation pathways comparison between human exfoliated deciduous teeth and dental pulp stem cells by gene expression profile from promising dental pulp. J Endod. 2009;35:1536–1542. PubMed

Laing A. G., Fanelli G., Ramirez-Valdez A., Lechler R. I., Lombardi G., Sharpe P. T. Mesenchymal stem cells inhibit T-cell function through conserved induction of cellular stress. PLoS One. 2019;14:e0213170. PubMed PMC

Laing A. G., Riffo-Vasquez Y., Sharif-Paghaleh E., Lombardi G., Sharpe P. T. Immune modulation by apoptotic dental pulp stem cells in vivo. Immunotherapy. 2018;10:201–211. PubMed PMC

Gazarian K. G., Ramírez-García L. R. Human deciduous teeth stem cells (SHED) display neural crest signature characters. PLoS One. 2017;12:e0170321. PubMed PMC

Huang G. T., Sonoyama W., Liu Y., Liu H., Wang S., Shi S. The hidden treasure in apical papilla: the potential role in pulp/dentin regeneration and bioroot engineering. J Endod. 2008;34:645–651. PubMed PMC

Sonoyama W., Liu Y., Yamaza T., Tuan R. S., Wang S., Shi S., Huang G. T. Characterization of the apical papilla and its residing stem cells from human immature permanent teeth: a pilot study. J Endod. 2008;34:166–171. PubMed PMC

Hilkens P., Bronckaers A., Ratajczak J., Gervois P., Wolfs E., Lambrichts I. The angiogenic potential of DPSCs and SCAPs in an in vivo model of dental pulp regeneration. Stem Cells Int. 2017;2017:2582080. PubMed PMC

Liu C., Xiong H., Chen K., Huang Y., Huang Y., Yin X. Long-term exposure to pro-inflammatory cytokines inhibits the osteogenic/ dentinogenic differentiation of stem cells from the apical papilla. Int Endod J. 2016;49:950–959. PubMed

Chen H., Fu H., Wu X., Duan Y., Zhang S., Hu H., Liao Y., Wang T., Yang Y., Chen G., Li Z., Tian W. Regeneration of pulpo-dentinal-like complex by a group of unique multipotent CD24a(+) stem cells. Sci Adv. 2020;6:eaay1514. PubMed PMC

Nada O. A., El Backly R. M. Stem cells from the apical papilla (SCAP) as a tool for endogenous tissue regeneration. Front Bioeng Biotechnol. 2018;6:103. PubMed PMC

Jeon B. G., Kang E. J., Kumar B. M., Maeng G. H., Ock S. A., Kwack D. O., Park B. W., Rho G. J. Comparative analysis of telomere length, telomerase and reverse transcriptase activity in human dental stem cells. Cell Transplant. 2011;20:1693–1705. PubMed

Volponi A. A., Gentleman E., Fatscher R., Pang Y. W., Gentleman M. M., Sharpe P. T. Composition of mineral produced by dental mesenchymal stem cells. J Dent Res. 2015;94:1568–1574. PubMed PMC

Bakopoulou A., Kritis A., Andreadis D., Papachristou E., Leyhausen G., Koidis P., Geurtsen W., Tsiftsoglou A. Angiogenic potential and secretome of human apical papilla mesenchymal stem cells in various stress microenvironments. Stem Cells Dev. 2015;24:2496–2512. PubMed PMC

Yu S., Zhao Y., Ma Y., Ge L. Profiling the secretome of human stem cells from dental apical papilla. Stem Cells Dev. 2016;25:499–508. PubMed

Diogenes A., Hargreaves K. M. Microbial modulation of stem cells and future directions in regenerative endodontics. J Endod. 2017;43:S95–S101. PubMed

Yi B., Ding T., Jiang S., Gong T., Chopra H., Sha O., Dissanayaka W. L., Ge S., Zhang C. Conversion of stem cells from apical papilla into endothelial cells by small molecules and growth factors. Stem Cell Res Ther. 2021;12:266. PubMed PMC

Pereira D., Sequeira I. A scarless healing tale: comparing homeostasis and wound healing of oral mucosa with skin and oesophagus. Front Cell Dev Biol. 2021;9:682143. PubMed PMC

Lindhe J., Lang N. P., Karring T. Clinical periodontology and implant dentistry. 5th ed. Wiley-Blackwell; 2008.

Zhang Q., Shi S., Liu Y., Uyanne J., Shi Y., Shi S., Le A. D. Mesenchymal stem cells derived from human gingiva are capable of immunomodulatory functions and ameliorate inflammation-related tissue destruction in experimental colitis. J Immunol. 2009;183:7787–7798. PubMed PMC

Yang H., Gao L. N., An Y., Hu C. H., Jin F., Zhou J., Jin Y., Chen F. M. Comparison of mesenchymal stem cells derived from gingival tissue and periodontal ligament in different incubation conditions. Biomaterials. 2013;34:7033–7047. PubMed

Nakamura T., Inatomi T., Sotozono C., Amemiya T., Kanamura N., Kinoshita S. Transplantation of cultivated autologous oral mucosal epithelial cells in patients with severe ocular surface disorders. Br J Ophthalmol. 2004;88:1280–1284. PubMed PMC

Nakamura T., Takeda K., Inatomi T., Sotozono C., Kinoshita S. Long-term results of autologous cultivated oral mucosal epithelial transplantation in the scar phase of severe ocular surface disorders. Br J Ophthalmol. 2011;95:942–946. PubMed

Nagata M., Chu A. K. Y., Ono N., Welch J. D., Ono W. Single-cell transcriptomic analysis reveals developmental relationships and specific markers of mouse periodontium cellular subsets. Front Dent Med. 2021;2:679937. PubMed PMC

Wada N., Menicanin D., Shi S., Bartold P. M., Gronthos S. Immunomodulatory properties of human periodontal ligament stem cells. J Cell Physiol. 2009;219:667–676. PubMed

Zhao J., Volponi A. A., Caetano A., Sharpe P. T. Encyclopedia of Bone Biology. Elsevier; 2020. Mesenchymal stem cells in teeth; pp. 109–118.

Iwasaki K., Komaki M., Yokoyama N., Tanaka Y., Taki A., Kimura Y., Takeda M., Oda S., Izumi Y., Morita I. Periodontal ligament stem cells possess the characteristics of pericytes. J Periodontol. 2013;84:1425–1433. PubMed

Caetano A. J., Yianni V., Volponi A., Booth V., D’Agostino E. M., Sharpe P. Defining human mesenchymal and epithelial heterogeneity in response to oral inflammatory disease. eLife. 2021;10:e62810. PubMed PMC

Human cell atlas. https://www.humancellatlas.org/. Access March 1.2022.

An Z., Sabalic M., Bloomquist R. F., Fowler T. E., Streelman T., Sharpe P. T. A quiescent cell population replenishes mesenchymal stem cells to drive accelerated growth in mouse incisors. Nat Commun. 2018;9:378. PubMed PMC

An Z., Akily B., Sabalic M., Zong G., Chai Y., Sharpe P. T. Regulation of mesenchymal stem to transit-amplifying cell transition in the continuously growing mouse incisor. Cell Rep. 2018;23:3102–3111. PubMed PMC

Seidel K., Marangoni P., Tang C., Houshmand B., Du W., Maas R. L., Murray S., Oldham M. C., Klein O. D. Resolving stem and progenitor cells in the adult mouse incisor through gene co-expression analysis. eLife. 2017;6:e24712. PubMed PMC

Krivanek J., Soldatov R. A., Kastriti M. E., Chontorotzea T., Herdina A. N., Petersen J., Szarowska B., Landova M., Matejova V. K., Holla L. I., Kuchler U., Zdrilic I. V., Vijaykumar A., Balic A., Marangoni P., Klein O. D., Neves V. C. M., Yianni V., Sharpe P. T., Harkany T., Metscher B. D., Bajénoff M., Mina M., Fried K., Kharchenko P. V., Adameyko I. Dental cell type atlas reveals stem and differentiated cell types in mouse and human teeth. Nat Commun. 2020;11:4816. PubMed PMC

Yu T., Volponi A. A., Babb R., An Z., Sharpe P. T. Stem cells in tooth development, growth, repair, and regeneration. Curr Top Dev Biol. 2015;115:187–212. PubMed

Zhao J., Faure L., Adameyko I., Sharpe P. T. Stem cell contributions to cementoblast differentiation in healthy periodontal ligament and periodontitis. Stem Cells. 2021;39:92–102. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...