Generation and characterization of DSPP-Cerulean/DMP1-Cherry reporter mice

. 2019 Oct ; 57 (10) : e23324. [epub] 20190704

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural

Perzistentní odkaz   https://www.medvik.cz/link/pmid31271259

Grantová podpora
R01 DE016689 NIDCR NIH HHS - United States
R56 DE016689 NIDCR NIH HHS - United States
R90 DE022526 NIDCR NIH HHS - United States
T90 DE021989 NIDCR NIH HHS - United States

To gain a better understanding of the progression of progenitor cells in the odontoblast lineage, we have examined and characterized the expression of a series of GFP reporters during odontoblast differentiation. However, previously reported GFP reporters (pOBCol2.3-GFP, pOBCol3.6-GFP, and DMP1-GFP), similar to the endogenous proteins, are also expressed by bone-forming cells, which made it difficult to delineate the two cell types in various in vivo and in vitro studies. To overcome these difficulties we generated DSPP-Cerulean/DMP1-Cherry transgenic mice using a bacterial recombination strategy with the mouse BAC clone RP24-258g7. We have analyzed the temporal and spatial expression of both transgenes in tooth and bone in vivo and in vitro. This transgenic animal enabled us to visualize the interactions between odontoblasts and surrounding tissues including dental pulp, ameloblasts and cementoblasts. Our studies showed that DMP1-Cherry, similar to Dmp1, was expressed in functional and fully differentiated odontoblasts as well as osteoblasts, osteocytes and cementoblasts. Expression of DSPP-Cerulean transgene was limited to functional and fully differentiated odontoblasts and correlated with the expression of Dspp. This transgenic animal can help in the identification and isolation of odontoblasts at later stages of differentiation and help in better understanding of developmental disorders in dentin and odontoblasts.

Zobrazit více v PubMed

Arana-Chavez VE, & Massa LF (2004). Odontoblasts: the cells forming and maintaining dentine. Int J Biochem Cell Biol, 36(8), 1367–1373. doi:10.1016/j.biocel.2004.01.006 PubMed DOI

Balic A, Aguila HL, & Mina M (2010). Identification of cells at early and late stages of polarization during odontoblast differentiation using pOBCol3.6GFP and pOBCol2.3GFP transgenic mice. Bone, 47(5), 948–958. doi:10.1016/j.bone.2010.08.009 PubMed DOI PMC

Balic A, & Mina M (2011). Identification of secretory odontoblasts using DMP1-GFP transgenic mice. Bone, 48(4), 927–937. doi:10.1016/j.bone.2010.12.008 PubMed DOI PMC

Bleicher F (2014). Odontoblast physiology. Exp Cell Res, 325(2), 65–71. doi:10.1016/j.yexcr.2013.12.012 PubMed DOI

Dyment NA, Jiang X, Chen L, Hong SH, Adams DJ, Ackert-Bicknell C, … Rowe DW. (2016). High-Throughput, Multi-Image Cryohistology of Mineralized Tissues. J Vis Exp(115). doi:10.3791/54468 PubMed DOI PMC

Farahani RM, Simonian M, & Hunter N (2011). Blueprint of an ancestral neurosensory organ revealed in glial networks in human dental pulp. J Comp Neurol, 519(16), 3306–3326. doi:10.1002/cne.22701 PubMed DOI

Fisher LW, & Fedarko NS (2003). Six genes expressed in bones and teeth encode the current members of the SIBLING family of proteins. Connect Tissue Res, 44 Suppl 1, 33–40. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/12952171 PubMed

Gong S, Yang XW, Li C, & Heintz N (2002). Highly efficient modification of bacterial artificial chromosomes (BACs) using novel shuttle vectors containing the R6Kgamma origin of replication. Genome Res, 12(12), 1992–1998. doi:10.1101/gr.476202 PubMed DOI PMC

Kalajzic I, Braut A, Guo D, Jiang X, Kronenberg MS, Mina M, … Rowe DW. (2004). Dentin matrix protein 1 expression during osteoblastic differentiation, generation of an osteocyte GFP-transgene. Bone, 35(1), 74–82. doi:10.1016/j.bone.2004.03.006 PubMed DOI

Kalajzic I, Kalajzic Z, Kaliterna M, Gronowicz G, Clark SH, Lichtler AC, & Rowe D (2002). Use of type I collagen green fluorescent protein transgenes to identify subpopulations of cells at different stages of the osteoblast lineage. J Bone Miner Res, 17(1), 15–25. doi:10.1359/jbmr.2002.17.1.15 PubMed DOI

Kawashima N, & Okiji T (2016). Odontoblasts: Specialized hard-tissue-forming cells in the dentin-pulp complex. Congenit Anom (Kyoto), 56(4), 144–153. doi:10.1111/cga.12169 PubMed DOI

Khatibi Shahidi M, Krivanek J, Kaukua N, Ernfors P, Hladik L, Kostal V, … Fried K. (2015). Three-dimensional Imaging Reveals New Compartments and Structural Adaptations in Odontoblasts. J Dent Res, 94(7), 945–954. doi:10.1177/0022034515580796 PubMed DOI

Lesot H, Lisi S, Peterkova R, Peterka M, Mitolo V, & Ruch JV (2001). Epigenetic signals during odontoblast differentiation. Adv Dent Res, 15, 8–13. PubMed

MacDougall M, Simmons D, Luan X, Nydegger J, Feng J, & Gu TT (1997). Dentin phosphoprotein and dentin sialoprotein are cleavage products expressed from a single transcript coded by a gene on human chromosome 4. Dentin phosphoprotein DNA sequence determination. J Biol Chem, 272(2), 835–842. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/8995371 PubMed

Maye P, Stover ML, Liu Y, Rowe DW, Gong S, & Lichtler AC (2009). A BAC-bacterial recombination method to generate physically linked multiple gene reporter DNA constructs. BMC Biotechnol, 9, 20. doi:10.1186/1472-6750-9-20 PubMed DOI PMC

Narayanan K, Gajjeraman S, Ramachandran A, Hao J, & George A (2006). Dentin matrix protein 1 regulates dentin sialophosphoprotein gene transcription during early odontoblast differentiation. J Biol Chem, 281(28), 19064–19071. doi:10.1074/jbc.M600714200 PubMed DOI

Prasad M, Butler WT, & Qin C (2010). Dentin sialophosphoprotein in biomineralization. Connect Tissue Res, 51(5), 404–417. doi:10.3109/03008200903329789 PubMed DOI PMC

Qin C, D’Souza R, & Feng JQ (2007). Dentin matrix protein 1 (DMP1): new and important roles for biomineralization and phosphate homeostasis. J Dent Res, 86(12), 1134–1141. doi:10.1177/154405910708601202 PubMed DOI

Ruch JV, Lesot H, & Begue-Kirn C (1995). Odontoblast differentiation. Int J Dev Biol, 39(1), 51–68. PubMed

Sagomonyants K, Kalajzic I, Maye P, & Mina M (2015). Enhanced Dentinogenesis of Pulp Progenitors by Early Exposure to FGF2. J Dent Res, 94(11), 1582–1590. doi:10.1177/0022034515599768 PubMed DOI PMC

Sagomonyants K, & Mina M (2014). Stage-specific effects of fibroblast growth factor 2 on the differentiation of dental pulp cells. Cells Tissues Organs, 199(5-6), 311–328. doi:10.1159/000371343 PubMed DOI PMC

Staines KA, MacRae VE, & Farquharson C (2012). The importance of the SIBLING family of proteins on skeletal mineralisation and bone remodelling. J Endocrinol, 214(3), 241–255. doi:10.1530/JOE-12-0143 PubMed DOI

Suzuki S, Haruyama N, Nishimura F, & Kulkarni AB (2012). Dentin sialophosphoprotein and dentin matrix protein-1: Two highly phosphorylated proteins in mineralized tissues. Arch Oral Biol, 57(9), 1165–1175. doi:10.1016/j.archoralbio.2012.03.005 PubMed DOI PMC

Thesleff I, Keranen S, & Jernvall J (2001). Enamel knots as signaling centers linking tooth morphogenesis and odontoblast differentiation. Adv Dent Res, 15, 14–18. doi:10.1177/08959374010150010401 PubMed DOI

Wang YH, Liu Y, Maye P, & Rowe DW (2006). Examination of mineralized nodule formation in living osteoblastic cultures using fluorescent dyes. Biotechnol Prog, 22(6), 1697–1701. doi:10.1021/bp060274b PubMed DOI PMC

Ye L, MacDougall M, Zhang S, Xie Y, Zhang J, Li Z, … Feng JQ. (2004). Deletion of dentin matrix protein-1 leads to a partial failure of maturation of predentin into dentin, hypomineralization, and expanded cavities of pulp and root canal during postnatal tooth development. J Biol Chem, 279(18), 19141–19148. doi:10.1074/jbc.M400490200 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...