Unmasking cryptic biodiversity in polyploids: origin and diversification of Aster amellus aggregate
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
30107389
PubMed Central
PMC6266133
DOI
10.1093/aob/mcy149
PII: 5068832
Knihovny.cz E-zdroje
- MeSH
- Aster genetika MeSH
- biologická evoluce * MeSH
- biologické modely MeSH
- DNA chloroplastová analýza MeSH
- fylogeneze * MeSH
- fylogeografie MeSH
- genetické markery MeSH
- mezerníky ribozomální DNA analýza MeSH
- polyploidie * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Evropa MeSH
- Názvy látek
- DNA chloroplastová MeSH
- genetické markery MeSH
- mezerníky ribozomální DNA MeSH
BACKGROUND AND AIMS: The origin of different cytotypes by autopolyploidy may be an important mechanism in plant diversification. Although cryptic autopolyploids probably comprise the largest fraction of overlooked plant diversity, our knowledge of their origin and evolution is still rather limited. Here we study the presumed autopolyploid aggregate of Aster amellus, which encompasses diploid and hexaploid cytotypes. Although the cytotypes of A. amellus are not morphologically distinguishable, previous studies showed spatial segregation and limited gene flow between them, which could result in different evolutionary trajectories for each cytotype. METHODS: We combine macroevolutionary, microevolutionary and niche modelling tools to disentangle the origin and the demographic history of the cytotypes, using chloroplast and nuclear markers in a dense population sampling in central Europe. KEY RESULTS: Our results revealed a segregation between diploid and hexaploid cytotypes in the nuclear genome, where each cytotype represents a monophyletic lineage probably homogenized by concerted evolution. In contrast, the chloroplast genome showed intermixed connections between the cytotypes, which may correspond to shared ancestral relationships. Phylogeny, demographic analyses and ecological niche modelling supported an ongoing differentiation of the cytotypes, where the hexaploid cytotype is experiencing a demographic expansion and niche differentiation with respect to its diploid relative. CONCLUSIONS: The two cytotypes may be considered as two different lineages at the onset of their evolutionary diversification. Polyploidization led to the occurrence of hexaploids, which expanded and changed their ecological niche.
Department of Botany and Zoology Stellenbosch University Matieland South Africa
Department of Botany Faculty of Science Charles University Prague Czech Republic
Department of Population Ecology Czech Academy of Science Průhonice Czech Republic
Zobrazit více v PubMed
Alix K, Gérard PR, Schwarzacher T, Heslop-Harrison JS. 2017. Polyploidy and interspecific hybridization: partners for adaptation, speciation and evolution in plants. Annals of Botany 120: 183–194. PubMed PMC
Allouche O, Tsoar A, Kadmon R. 2006. Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). Journal of Applied Ecology 43: 1223–1232.
Araújo MB, New M. 2007. Ensemble forecasting of species distributions. Trends in Ecology and Evolution 22: 42–47. PubMed
Arrigo N, Barker MS. 2012. Rarely successful polyploids and their legacy in plant genomes. Current Opinion in Plant Biology 15: 140–146. PubMed
Baele G, Lemey P, Bedford T, Rambaut A, Suchard MA, Alekseyenko AV. 2012. Improving the accuracy of demographic and molecular clock model comparison while accommodating phylogenetic uncertainty. Molecular Biology and Evolution 29: 2157–2167. PubMed PMC
Barker MS, Arrigo N, Baniaga AE, Li Z, Levin DA. 2016. On the relative abundance of autopolyploids and allopolyploids. New Phytologist 210: 391–398. PubMed
Broennimann O, Fitzpatrick MC, Pearman PB, et al. . 2012. Measuring ecological niche overlap from occurrence and spatial environmental data. Global Ecology and Biogeography 21: 481–497.
Buckler ES, Ippolito A, Holtsford TP. 1997. The evolution of ribosomal DNA divergent paralogues and phylogenetic implications. Genetics 145: 821–832. PubMed PMC
Castro S, Münzbergová Z, Raabová J, Loureiro J. 2011. Breeding barriers at a diploid–hexaploid contact zone in Aster amellus. Evolutionary Ecology 25: 795–814. PubMed
Castro S, Loureiro J, Procházka T, Münzbergová Z. 2012. Cytotype distribution at a diploid–hexaploid contact zone in Aster amellus (Asteraceae). Annals of Botany 110: 1047–1055. PubMed PMC
Catalán P, Segarra-Moragues JG, Palop-Esteban M, Moreno C, González-Candelas F. 2006. A Bayesian approach for discriminating among alternative inheritance hypotheses in plant polyploids: the allotetraploid origin of genus Borderea (Dioscoreaceae). Genetics 172: 1939–1953. PubMed PMC
Catalán P, Müller J, Hasterok R, et al. . 2012. Evolution and taxonomic split of the model grass Brachypodium distachyon. Annals of Botany 109: 385–405. PubMed PMC
Clement M, Posada D, Crandall KA. 2000. TCS: a computer program to estimate gene genealogies. Molecular Ecology 9: 1657–1659. PubMed
Cuadrado Á, de Bustos A, Jouve N. 2017. On the allopolyploid origin and genome structure of the closely related species Hordeum secalinum and Hordeum capense inferred by molecular karyotyping. Annals of Botany 120: 245–255. PubMed PMC
De Queiroz K. 2007. Species concepts and species delimitation. Systematic Biology 56: 879–886. PubMed
Dong W, Liu J, Yu J, Wang L, Zhou S. 2012. Highly variable chloroplast markers for evaluating plant phylogeny at low taxonomic levels and for DNA barcoding. PLoS One 7: e35071. PubMed PMC
Doyle JJ, Egan AN. 2010. Dating the origins of polyploidy events. New Phytologist 186: 73–85. PubMed
Drummond AJ, Suchard MA, Xie D, Rambaut A. 2012. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Molecular Biology and Evolution 29: 1969–1973. PubMed PMC
Eidesen PB, Alsos IG, Popp M, Stensrud Ø, Suda J, Brochmann C. 2017. Nuclear vs. plastid data: complex Pleistocene history of a circumpolar key species. Molecular Ecology 16: 3902–3925. PubMed
Feldman M, Levy AA. 2005. Allopolyploidy – a shaping force in the evolution of wheat genomes. Cytogenetic and Genome Research 109: 250–258. PubMed
Feliner GN, Rosselló JA. 2007. Better the devil you know? Guidelines for insightful utilization of nrDNA ITS in species-level evolutionary studies in plants. Molecular Phylogenetics and Evolution 44: 911–919. PubMed
Fu YX. 1996. New statistical tests of neutrality for DNA samples from a population. Genetics 143: 557–570. PubMed PMC
Fu YX, Li WH. 1993. Statistical tests of neutrality of mutations. Genetics 133: 693–709. PubMed PMC
Grant V. 1981. Plant speciation. New York: Columbia University Press.
Halverson K, Heard SB, Nason JD, Stireman JO. 2008. Origins, distribution, and local co-occurrence of polyploid cytotypes in Solidago altissima (Asteraceae). American Journal of Botany 95: 50–58. PubMed
Harrell JFE. 2016. rms: regression modeling strategies. R package version 3.4-0. https://cran.r-project.org/web/packages/ rms/rms.pdf
Harpending H. 1994. Signature of ancient population growth in a low-resolution mitochondrial DNA mismatch distribution. Human Biology 66: 591–600. PubMed
Hastie T. 2016. gam: generalized additive models. R package version, 1. https://cran.r-project.org/web/packages/gam/ gam.pdf.
Hijmans RJ, van Etten J. 2016. raster: geographic data analysis and modeling. R package version, 2–15. https://cran.r-project.org/web/packages/raster/ras- ter.pdf
Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A. 2005. Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology 25: 1965–1978.
Hijmans RJ, Phillips S, Leathwick J, Elith J. 2016. dismo: species distribution modeling. R package version 0.8–17. https://cran.r-project.org/web/packages/dismo/dismo.pdf
Hudson RR. 1990. Gene genealogies and the coalescent process. Oxford Surveys in Evolutionary Biology 7: 44.
Husband BC, Baldwin SJ, Suda J. 2013. The incidence of polyploidy in natural plant populations: major patterns and evolutionary processes. In: Greilhuber J, Dolezel J, Wendel J, eds. Plant genome diversity, Vol. 2 Vienna: Springer, 255–276.
Jiao Y, Wickett NJ, Ayyampalayam S, et al. . 2011. Ancestral polyploidy in seed plants and angiosperms. Nature 473: 97–100. PubMed
Kelchner SA. 2000. The evolution of non-coding chloroplast DNA and its application in plant systematics. Annals of the Missouri Botanical Garden 87: 482–498.
Kellogg EA. 2016. Has the connection between polyploidy and diversification actually been tested?Current Opinion in Plant Biology 30: 25–32. PubMed
Kolář F, Čertner M, Suda J, Schönswetter P, Husband BC. 2017. Mixed-ploidy species: progress and opportunities in polyploid research. Trends in Plant Science 22: 1041–1055. PubMed
Levin DA. 1975. Minority cytotype exclusion in local plant populations. Taxon 24: 35–43.
Levin DA. 1983. Polyploidy and novelty in flowering plants. American Naturalist 122: 1–25.
Lewis WH. 1980. Polyploidy in species populations. In: Lewis, WH, ed. Polyploidy: biological relevance. New York: Plenum Press, 103–144.
Lexer C, van Loo M. 2006. Contact zones: natural labs for studying evolutionary transitions. Current Biology 16: 407–409. PubMed
Li WP, Yang FS, Jivkova T, Yin GS. 2012. Phylogenetic relationships and generic delimitation of Eurasian Aster (Asteraceae: Astereae) inferred from ITS, ETS and trnL-F sequence data. Annals of Botany 109: 1341–1357. PubMed PMC
Liaw A, Wiener M. 2002. Classification and regression by randomForest. R News 2: 18–22.
Librado P, Rozas J. 2009. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25: 1451–1452. PubMed
Maddison WP, Knowles LL. 2006. Inferring phylogeny despite incomplete lineage sorting. Systematic Biology 55: 21–30. PubMed
Magallón S, Gómez–Acevedo S, Sánchez–Reyes LL, Hernández–Hernández T. 2015. A metacalibrated time‐tree documents the early rise of flowering plant phylogenetic diversity. New Phytologist 207: 437–453. PubMed
Mairal M, Pokorny L, Aldasoro JJ, Alarcón M, Sanmartín I. 2015a Ancient vicariance and climate-driven extinction explain continental-wide disjunctions in Africa: the case of the Rand Flora genus Canarina (Campanulaceae). Molecular Ecology 24: 1335–1354. PubMed
Mairal M, Sanmartín I, Aldasoro JJ, Culshaw V, Manolopoulou I, Alarcón M. 2015b Palaeo-islands as refugia and sources of genetic diversity within volcanic archipelagos: the case of the widespread endemic Canarina canariensis (Campanulaceae). Molecular Ecology 24: 3944–3963. PubMed
Mandáková T, Münzbergová Z. 2006. Distribution and ecology of cytotypes of the Aster amellus aggregates in the Czech Republic. Annals of Botany 98: 845–856. PubMed PMC
Mandáková T, Münzbergová Z. 2008. Morphometric and genetic differentiation of diploid and hexaploid populations of Aster amellus agg. in a contact zone. Plant Systematics and Evolution 274: 155–170.
Masterson J. 1994. Stomatal size in fossil plants: evidence for polyploidy in majority of angiosperms. Science 264: 421–423. PubMed
McMillen-Jackson AL, Bert TM. 2003. Disparate patterns of population genetic structure and population history in two sympatric penaeid shrimp species (Farfantepenaeus aztecus and Litopenaeus setiferus) in the eastern United States. Molecular Ecology 12: 2895–2905. PubMed
Müntzing A. 1932. Cytogenetic investigations on synthetic Galeopsis tetrahit. Hereditas 16: 105–154.
Münzbergová Z. 2006. Ploidy level interacts with population size and habitat conditions to determine the degree of herbivory damage in plant populations. Oikos 115: 443–452.
Münzbergová Z. 2007. Population dynamics of diploid and hexaploid populations of a perennial herb. Annals of Botany 100: 1259–1270. PubMed PMC
Münzbergová Z, Raabová J, Castro S, Pánková H. 2011. Biological flora of central Europe: Aster amellus L. (Asteraceae). Perspectives in Plant Ecology, Evolution and Systematics 13: 151–162.
Münzbergová Z, Šurinová M, Castro S. 2013. Absence of gene flow between diploids and hexaploids of Aster amellus at multiple spatial scales. Heredity 110: 123–130. PubMed PMC
Nesom GL. 1994. Subtribal classification of the Astereae (Asteraceae). Phytologia 76: 193–274.
Nordborg M. 2003. Coalescent theory. In: Balding D, Bishop M, Cannings C, eds. Handbook of statistical genetics, 2nd edn. New York: John Wiley and Sons, 602–635.
Noyes RD, Rieseberg LH. 1999. ITS sequence data support a single origin for North American Astereae (Asteraceae) and reflect deep geographic divisions in Aster sl. American Journal of Botany 86: 398–412. PubMed
Parisod C, Holderegger R, Brochmann C. 2010. Evolutionary consequences of autopolyploidy. New Phytologist 186: 5–17. PubMed
Patwardhan A, Ray S, Roy A. 2014. Molecular markers in phylogenetic studies – a review. Journal of Phylogenetics & Evolutionary Biology 2: 131. doi: 10.4172/2329-9002-2-131 DOI
Paun O, Forest F, Fay MF, Chase MW. 2009. Hybrid speciation in angiosperms: parental divergence drives ploidy. New Phytologist 182: 507–518. PubMed PMC
Pokorny L, Oliván G, Shaw A. 2011. Phylogeographic patterns in two southern hemisphere species of Calyptrochaeta (Daltoniaceae, Bryophyta). Systematic Botany 36: 542–553.
Posada D. 2008. jModelTest: phylogenetic model averaging. Molecular Biology and Evolution 25: 1253–1256. PubMed
Raabová J, Fischer M, Münzbergová Z. 2008. Niche differentiation between diploid and hexaploid Aster amellus. Oecologia 158: 463–472. PubMed
Rambaut A, Drummond AJ. 2013. TreeAnnotator v1. 7.0.
Rambaut A, Drummond AJ, Suchard M. 2013. Tracer v1. 6.
Ramsey J. 2011. Polyploidy and ecological adaptation in wild yarrow. Proceedings of the National Academy of Sciences, USA 108: 7096–7101. PubMed PMC
Ramsey J, Robertson A, Husband B. 2008. Rapid adaptive divergence in New World Achillea, an autopolyploid complex of ecological races. Evolution 62: 639–653. PubMed
R Core Team 2014. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria: URL http://www.R-project.org/
Rieseberg LH, Willis JH. 2007. Plant Dpeciation. Science 317: 910–914. PubMed PMC
Ridgeway G. 2015. Generalized boosted regression models. Documentation on the R Package ‘gbm’, version 1? 5, 7. https://cran.r-project.org/web/packages/gbm/gbm.pdf
Robertson FM, Gundappa MK, Grammes F, et al. . 2017. Lineage-specific rediploidization is a mechanism to explain time-lags between genome duplication and evolutionary diversification. Genome Biology 18: 111. doi: 10.1186/s13059-017-1241-z. PubMed DOI PMC
Rogers AR, Harpending H. 1992. Population growth makes waves in the distribution of pairwise genetic differences. Molecular Biology and Evolution 9: 552–569. PubMed
Rogers J, Gibbs RA. 2014. Comparative primate genomics: emerging patterns of genome content and dynamics. Nature Reviews Genetics 15: 347. PubMed PMC
Ronquist F, Teslenko M, van der Mark P, et al. . 2012. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61: 539–542. PubMed PMC
Rosato M, Castro M, Rosselló. 2008. Relationships of the woody Medicago species (section Dendrotelis) assessed by molecular cytogenetic analyses. Annals of Botany 102: 15–22. PubMed PMC
Ryan WB, Carbotte SM, Coplan JO, et al. . 2009. Global multi-resolution topography synthesis. Geochemistry, Geophysics, Geosystems 10: Q03014. doi.org/10.1029/2008GC002332. DOI
Schlötterer C, Harr B. 2001. Microsatellite instability. eLS. doi.org/10.1038/npg.els.0000840. DOI
Schneider S, Excoffier L. 1999. Estimation of past demographic parameters from the distribution of pairwise differences when the mutation rates vary among sites: application to human mitochondrial DNA. Genetics 152: 1079–1089. PubMed PMC
Schoener TW. 1970. Nonsynchronous spatial overlap of lizards in patchy habitats. Ecology 51: 408–418.
Soltis DE, Soltis PS, Schemske DW, et al. . 2007. Autopolyploidy in angiosperms: have we grossly underestimated the number of species?Taxon 56: 13–30.
Soltis DE, Buggs RJ, Doyle JJ, Soltis PS. 2010. What we still don’t know about polyploidy. Taxon 59: 1387–1403.
Soltis DE, Visger CJ, Marchant DB, Soltis PS. 2016. Polyploidy: pitfalls and paths to a paradigm. American Journal of Botany 103: 1146–1166. PubMed
Soltis PS, Soltis DE. 2000. The role of genetic and genomic attributes in the success of polyploids. Proceedings of the National Academy of Sciences, USA 97: 7051–7057. PubMed PMC
Soltis PS, Liu X, Marchant DB, Visger CJ, Soltis DE. 2014. Polyploidy and novelty: Gottlieb’s legacy. Philosophical Transactions of the Royal Society B: Biological Sciences 369: 20130351. doi:10.1098/rstb.2013.0351. PubMed DOI PMC
Stamatakis A, Hoover P, Rougemont J. 2008. A rapid bootstrap algorithm for the RAxML web servers. Systematic Biology 57: 758–771. PubMed
Stebbins GL. 1947. Types of polyploids: their classification and significance. Advances in Genetics 1: 403–429. PubMed
Stebbins GL. 1970. Variation and evolution in plants: progress during the past twenty years. In: Hecht MK, Steere WC, eds. Essays in evolution and genetics in honor of Theodosius Dobzhansky: a supplement to Evolutionary Biology. New York: Appleton-Century-Crofts, 173–208.
Sudová R, Pánková H, Rydlová J, Münzbergová Z, Suda J. 2014. Intraspecific ploidy variation: a hidden, minor player in plant–soil–mycorrhizal fungi interactions. American Journal of Botany 101: 26–33. PubMed
Tajima F. 1989. Statistical method for testing the neutral mutation hypothesis pDNA polymorphism. Genetics 123: 585–595. PubMed PMC
Templeton AR, Crandall KA, Sing CF. 1992. A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping and DNA sequence data. III. Cladogram estimation. Genetics 132: 619–633. PubMed PMC
Thuiller W, Georges D, Engler R. 2013. biomod2: ensemble platform for species distribution modeling. R package version, 2, r560. http://www2.uaem.mx/r-mirror/web/ packages/biomod2/biomod2.pdf
Urbanek S. 2010. rJava: Low-level R to Java interface. https://cran.r-project.org/web/packages/rJava/rJava.pdf
Van de Peer Y, Mizrachi E, Marchal K. 2017. The evolutionary significance of polyploidy. Nature Reviews. Genetics 18: 411–424. PubMed
Wallace RK. 1981. An assessment of diet-overlap indexes. Transactions of the American Fisheries Society 110: 72–76.
VanDerWal J, Falconi L, Januchowski S, Shoo L, Storlie C. 2011. SDMTools: species distribution modelling tools: tools for processing data associated with species distribution modelling exercises. R package version, 1.
Warren DL, Glor RE, Turelli M. 2010. ENMTools: a toolbox for comparative studies of environmental niche models. Ecography 33: 607–611.
Wendel JF. 2000. Genome evolution in polyploids. Plant Molecular Biology 42: 22–249. PubMed
Wendel JF. 2015. The wondrous cycles of polyploidy in plants. American Journal of Botany 102: 1753–1756. PubMed
Wolfe KH, Li W-H, Sharp PM. 1987. Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast, and nuclear DNAs. Proceedings of the National Academy of Sciences, USA 84: 9054–9058. PubMed PMC
Wood TE, Takebayashi N, Barker MS, Mayrose I, Greenspoon PB, Rieseberg LH. 2009. The frequency of polyploid speciation in vascular plants. Proceedings of the National Academy of Sciences, USA 106: 13875–13879. PubMed PMC
Zurawski G, Clegg MT. 1987. Evolution of higher plant chloroplast DNA-encoded genes: Implications for structure–function and phylogenetic studies. Annual Review of Plant Physiology and Plant Molecular Biology 38: 391–418.