Exploring the impact of magnetic fields on biomass production efficiency under aerobic and anaerobic batch fermentation of Saccharomyces cerevisiae
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
VEGA 1/0018/22
Slovak Grant agency
PubMed
38834614
PubMed Central
PMC11150259
DOI
10.1038/s41598-024-63628-1
PII: 10.1038/s41598-024-63628-1
Knihovny.cz E-zdroje
- Klíčová slova
- Aerobic, Anaerobic, Batch fermentation, Biomass, Magnetic field, Metabolism acceleration, Yeast,
- MeSH
- aerobióza MeSH
- anaerobióza MeSH
- biomasa * MeSH
- bioreaktory mikrobiologie MeSH
- dusík metabolismus MeSH
- ethanol * metabolismus MeSH
- fermentace * MeSH
- glukosa metabolismus MeSH
- glycerol metabolismus MeSH
- kyslík metabolismus MeSH
- magnetické pole * MeSH
- Saccharomyces cerevisiae * metabolismus růst a vývoj MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- dusík MeSH
- ethanol * MeSH
- glukosa MeSH
- glycerol MeSH
- kyslík MeSH
In this work, the effect of moderate electromagnetic fields (2.5, 10, and 15 mT) was studied using an immersed coil inserted directly into a bioreactor on batch cultivation of yeast under both aerobic and anaerobic conditions. Throughout the cultivation, parameters, including CO2 levels, O2 saturation, nitrogen consumption, glucose uptake, ethanol production, and yeast growth (using OD 600 measurements at 1-h intervals), were analysed. The results showed that 10 and 15 mT magnetic fields not only statistically significantly boosted and sped up biomass production (by 38-70%), but also accelerated overall metabolism, accelerating glucose, oxygen, and nitrogen consumption, by 1-2 h. The carbon balance analysis revealed an acceleration in ethanol and glycerol production, albeit with final concentrations by 22-28% lower, with a more pronounced effect in aerobic cultivation. These findings suggest that magnetic fields shift the metabolic balance toward biomass formation rather than ethanol production, showcasing their potential to modulate yeast metabolism. Considering coil heating, opting for the 10 mT magnetic field is preferable due to its lower heat generation. In these terms, we propose that magnetic field can be used as novel tool to increase biomass yield and accelerate yeast metabolism.
ALGAJAS s r o Prazská 16 04011 Kosice Slovakia
Institute of Geotechnics Slovak Academy of Sciences Watsonova 45 04001 Kosice Slovakia
Zobrazit více v PubMed
Chen GQ, Jiang XR. Next generation industrial biotechnology based on extremophilic bacteria. Curr. Opin. Biotechnol. 2018;50:94–100. doi: 10.1016/j.copbio.2017.11.016. PubMed DOI
Sedlakova-Kadukova J. Microorganisms in metal recovery—Tools or teachers? Microb. Syntrophy-Mediat. Eco-enterpris. Acad Press. 2022;41:71–86. doi: 10.1016/B978-0-323-99900-7.00002-X. DOI
Sincak M, Luptakova A, Matusikova I, Jandacka P, Sedlakova-Kadukova J. Application of a magnetic field to enhance the environmental sustainability and efficiency of microbial and plant biotechnological processes. Sustainability. 2023;15(19):1445. doi: 10.3390/su151914459. DOI
Dabros M, Schuler MM, Marison IW. Simple control of specific growth rate in biotechnological fed-batch processes based on enhanced online measurements of biomass. Bioprocess Biosyst. Eng. 2010;33:1109–1118. doi: 10.1007/s00449-010-0438-2. PubMed DOI
Saliev T, Begimbetova D, Masoud AR. Biological effects of non-ionizing electromagnetic fields: Two sides of a coin. Prog. Biophys. Mol. Biol. 2016;141:25–36. doi: 10.1016/j.pbiomolbio.2018.07.009. PubMed DOI
Sotirios-Spyridon V, Kapelos J. Factors affecting yeast ethanol tolerance and fermentation efficiency. World J. Microbiol. Biotechnol. 2020;36(8):114. doi: 10.1007/s11274-020-02881-8. PubMed DOI
Hocalar A, Türker M, Karakuzu C, Yüzgeç U. Comparison of different estimation techniques for biomass concentration in large scale yeast fermentation. ISA Transact. 2011;50(2):303–314. doi: 10.1016/j.isatra.2010.12.003. PubMed DOI
Mehedintu M, Berg H. Proliferation response of yeast Saccharomyces cerevisiae on electromagnetic field parameters. Bioelectrochem. Bioenerg. 1997;43(1):67–70. doi: 10.1016/S0302-4598(96)05184-7. DOI
da Motta MA, Muniz JBF, Schuler A, Da Motta M. Static magnetic fields enhancement of Saccharomyces cerevisae ethanolic fermentation. Biotechnol Prog. 2004;20(1):393–396. doi: 10.1021/bp034263j. PubMed DOI
Novák J, Strašák L, Fojt L, Slaninová I, Vetterl V. Effects of low-frequency magnetic fields on the viability of yeast Saccharomyces cerevisiae. Bioelectrochemistry. 2007;70(1):115–121. doi: 10.1016/j.bioelechem.2006.03.029. PubMed DOI
Iwasaka M, Ikehata M, Miyakoshi J, Ueno S. Strong static magnetic field effects on yeast proliferation and distribution. Bioelectrochemistry. 2004;65(1):59–68. doi: 10.1016/j.bioelechem.2004.04.002. PubMed DOI
Ruiz-Gómez MJ, Sendra-Portero F, Martínez-Morillo M. Effect of 2.45 mT sinusoidal 50 Hz magnetic field on Saccharomyces cerevisiae strains deficient in DNA strand breaks repair. Int. J. Radiat. Biol. 2010;86(7):602–611. doi: 10.3109/09553001003734519. PubMed DOI
Perez VH, Reyes AF, Justo OR, Alvarez DC, Alegre RM. Bioreactor coupled with electromagnetic field generator: effects of extremely low frequency electromagnetic fields on ethanol production by saccharomyces cerevisiae. Biotechnol. Prog. 2007;23(5):1091–1094. doi: 10.1021/bp070078k. PubMed DOI
Binhi VN, Prato FS. A physical mechanism of magnetoreception: extension and analysis. Bioelectromagnetics. 2016;38(1):41–52. doi: 10.1002/bem.22011. PubMed DOI
Brice C, Cubillos FA, Dequin S, Camarasa C, Martínez C. Adaptability of the Saccharomyces cerevisiae yeasts to wine fermentation conditions relies on their strong ability to consume nitrogen. PLoS ONE. 2018;13(2):e0192383. doi: 10.1371/journal.pone.0192383. PubMed DOI PMC
Gorte O, Kugel M, Ochsenreither K. Optimization of carbon source efficiency for lipid production with the oleaginous yeast Saitozyma podzolica DSM 27192 applying automated continuous feeding. Biotechnol. Biofuels. 2020;13:1–17. doi: 10.1186/s13068-020-01824-7. PubMed DOI PMC
Mutton MJR, Ferrari FC, Freita LAD. Interaction between the production of ethanol and glycerol in fed-batch bioreactors. Braz. J. Microbiol. 2019;50:389–394. doi: 10.1007/s42770-019-00051-z. PubMed DOI PMC
González-Hernández Y, Michiels E, Perré PA. Comprehensive mechanistic yeast model able to switch metabolism according to growth conditions. Fermentation. 2022;8(12):710. doi: 10.3390/fermentation8120710. DOI
Halász A., Lásztity R. Use of yeast biomass in food production. Routledge. (2017)
Ogneva IV, Usik MA, Burtseva MV, Biryukov NS, Zhdankina YS, Sychev VN, Orlov OI. Drosophila melanogaster sperm under simulated microgravity and a hypomagnetic field: Motility and cell respiration. Int. J. Mol. Sci. 2020;21(17):5985. doi: 10.3390/ijms21175985. PubMed DOI PMC
Binhi VN, Prato FS. Biological effects of the hypomagnetic field: An analytical review of experiments and theories. PLoS ONE. 2017;12(6):e0179340. doi: 10.1371/journal.pone.0179340. PubMed DOI PMC
Ruiz-Gómez MJ, Prieto-Barcia MI, Ristori-Bogajo E, Martınez-Morillo M. Static and 50 Hz magnetic fields of 035 and 245 mT have no effect on the growth of Saccharomyces cerevisiae. Bioelectrochemistry. 2004;64(2):151–155. doi: 10.1016/j.bioelechem.2004.04.003. PubMed DOI
Kladko DV, Zakharzhevskii MA, Vinogradov VV. Magnetic field-mediated control of whole-cell biocatalysis. J. Phys. Chem. Lett. 2020;11(21):8989–8996. doi: 10.1021/acs.jpclett.0c02564. PubMed DOI
Boeira CZ, de Carvalho Silvello MA, Remedi RD, Feltrin ACP, Santos LO, Garda-Buffon J. Mitigation of nivalenol using alcoholic fermentation and magnetic field application. Food Chem. 2021;340:127935. doi: 10.1016/j.foodchem.2020.127935. PubMed DOI
Santos LO, Alegre RM, Garcia-Diego C, Cuellar J. Effects of magnetic fields on biomass and glutathione production by the yeast Saccharomyces cerevisiae. Process Biochem. 2010;45(8):1362–1367. doi: 10.1016/j.procbio.2010.05.008. DOI
Canli O, Kurbanoğlu EB. Application of low magnetic field on inulinase production by Geotrichum candidum under solid state fermentation using leek as substrate. Toxicol. Ind. Health. 2012;28(10):894–900. doi: 10.1177/0748233711425079. PubMed DOI
Buchachenko AL, Kuznetsov DA. Magnetic field affects enzymatic ATP synthesis. J. Am. Chem. Soc. 2008;130(39):12868–12869. doi: 10.1021/ja804819k. PubMed DOI
Zhao G, et al. Cellular ATP content was decreased by a homogeneous 85 T static magnetic field exposure: role of reactive oxygen species. Bioelectromagnetics. 2011;32(2):94–101. doi: 10.1002/bem.2061. PubMed DOI