Exploring the impact of magnetic fields on biomass production efficiency under aerobic and anaerobic batch fermentation of Saccharomyces cerevisiae

. 2024 Jun 04 ; 14 (1) : 12869. [epub] 20240604

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38834614

Grantová podpora
VEGA 1/0018/22 Slovak Grant agency

Odkazy

PubMed 38834614
PubMed Central PMC11150259
DOI 10.1038/s41598-024-63628-1
PII: 10.1038/s41598-024-63628-1
Knihovny.cz E-zdroje

In this work, the effect of moderate electromagnetic fields (2.5, 10, and 15 mT) was studied using an immersed coil inserted directly into a bioreactor on batch cultivation of yeast under both aerobic and anaerobic conditions. Throughout the cultivation, parameters, including CO2 levels, O2 saturation, nitrogen consumption, glucose uptake, ethanol production, and yeast growth (using OD 600 measurements at 1-h intervals), were analysed. The results showed that 10 and 15 mT magnetic fields not only statistically significantly boosted and sped up biomass production (by 38-70%), but also accelerated overall metabolism, accelerating glucose, oxygen, and nitrogen consumption, by 1-2 h. The carbon balance analysis revealed an acceleration in ethanol and glycerol production, albeit with final concentrations by 22-28% lower, with a more pronounced effect in aerobic cultivation. These findings suggest that magnetic fields shift the metabolic balance toward biomass formation rather than ethanol production, showcasing their potential to modulate yeast metabolism. Considering coil heating, opting for the 10 mT magnetic field is preferable due to its lower heat generation. In these terms, we propose that magnetic field can be used as novel tool to increase biomass yield and accelerate yeast metabolism.

Zobrazit více v PubMed

Chen GQ, Jiang XR. Next generation industrial biotechnology based on extremophilic bacteria. Curr. Opin. Biotechnol. 2018;50:94–100. doi: 10.1016/j.copbio.2017.11.016. PubMed DOI

Sedlakova-Kadukova J. Microorganisms in metal recovery—Tools or teachers? Microb. Syntrophy-Mediat. Eco-enterpris. Acad Press. 2022;41:71–86. doi: 10.1016/B978-0-323-99900-7.00002-X. DOI

Sincak M, Luptakova A, Matusikova I, Jandacka P, Sedlakova-Kadukova J. Application of a magnetic field to enhance the environmental sustainability and efficiency of microbial and plant biotechnological processes. Sustainability. 2023;15(19):1445. doi: 10.3390/su151914459. DOI

Dabros M, Schuler MM, Marison IW. Simple control of specific growth rate in biotechnological fed-batch processes based on enhanced online measurements of biomass. Bioprocess Biosyst. Eng. 2010;33:1109–1118. doi: 10.1007/s00449-010-0438-2. PubMed DOI

Saliev T, Begimbetova D, Masoud AR. Biological effects of non-ionizing electromagnetic fields: Two sides of a coin. Prog. Biophys. Mol. Biol. 2016;141:25–36. doi: 10.1016/j.pbiomolbio.2018.07.009. PubMed DOI

Sotirios-Spyridon V, Kapelos J. Factors affecting yeast ethanol tolerance and fermentation efficiency. World J. Microbiol. Biotechnol. 2020;36(8):114. doi: 10.1007/s11274-020-02881-8. PubMed DOI

Hocalar A, Türker M, Karakuzu C, Yüzgeç U. Comparison of different estimation techniques for biomass concentration in large scale yeast fermentation. ISA Transact. 2011;50(2):303–314. doi: 10.1016/j.isatra.2010.12.003. PubMed DOI

Mehedintu M, Berg H. Proliferation response of yeast Saccharomyces cerevisiae on electromagnetic field parameters. Bioelectrochem. Bioenerg. 1997;43(1):67–70. doi: 10.1016/S0302-4598(96)05184-7. DOI

da Motta MA, Muniz JBF, Schuler A, Da Motta M. Static magnetic fields enhancement of Saccharomyces cerevisae ethanolic fermentation. Biotechnol Prog. 2004;20(1):393–396. doi: 10.1021/bp034263j. PubMed DOI

Novák J, Strašák L, Fojt L, Slaninová I, Vetterl V. Effects of low-frequency magnetic fields on the viability of yeast Saccharomyces cerevisiae. Bioelectrochemistry. 2007;70(1):115–121. doi: 10.1016/j.bioelechem.2006.03.029. PubMed DOI

Iwasaka M, Ikehata M, Miyakoshi J, Ueno S. Strong static magnetic field effects on yeast proliferation and distribution. Bioelectrochemistry. 2004;65(1):59–68. doi: 10.1016/j.bioelechem.2004.04.002. PubMed DOI

Ruiz-Gómez MJ, Sendra-Portero F, Martínez-Morillo M. Effect of 2.45 mT sinusoidal 50 Hz magnetic field on Saccharomyces cerevisiae strains deficient in DNA strand breaks repair. Int. J. Radiat. Biol. 2010;86(7):602–611. doi: 10.3109/09553001003734519. PubMed DOI

Perez VH, Reyes AF, Justo OR, Alvarez DC, Alegre RM. Bioreactor coupled with electromagnetic field generator: effects of extremely low frequency electromagnetic fields on ethanol production by saccharomyces cerevisiae. Biotechnol. Prog. 2007;23(5):1091–1094. doi: 10.1021/bp070078k. PubMed DOI

Binhi VN, Prato FS. A physical mechanism of magnetoreception: extension and analysis. Bioelectromagnetics. 2016;38(1):41–52. doi: 10.1002/bem.22011. PubMed DOI

Brice C, Cubillos FA, Dequin S, Camarasa C, Martínez C. Adaptability of the Saccharomyces cerevisiae yeasts to wine fermentation conditions relies on their strong ability to consume nitrogen. PLoS ONE. 2018;13(2):e0192383. doi: 10.1371/journal.pone.0192383. PubMed DOI PMC

Gorte O, Kugel M, Ochsenreither K. Optimization of carbon source efficiency for lipid production with the oleaginous yeast Saitozyma podzolica DSM 27192 applying automated continuous feeding. Biotechnol. Biofuels. 2020;13:1–17. doi: 10.1186/s13068-020-01824-7. PubMed DOI PMC

Mutton MJR, Ferrari FC, Freita LAD. Interaction between the production of ethanol and glycerol in fed-batch bioreactors. Braz. J. Microbiol. 2019;50:389–394. doi: 10.1007/s42770-019-00051-z. PubMed DOI PMC

González-Hernández Y, Michiels E, Perré PA. Comprehensive mechanistic yeast model able to switch metabolism according to growth conditions. Fermentation. 2022;8(12):710. doi: 10.3390/fermentation8120710. DOI

Halász A., Lásztity R. Use of yeast biomass in food production. Routledge. (2017)

Ogneva IV, Usik MA, Burtseva MV, Biryukov NS, Zhdankina YS, Sychev VN, Orlov OI. Drosophila melanogaster sperm under simulated microgravity and a hypomagnetic field: Motility and cell respiration. Int. J. Mol. Sci. 2020;21(17):5985. doi: 10.3390/ijms21175985. PubMed DOI PMC

Binhi VN, Prato FS. Biological effects of the hypomagnetic field: An analytical review of experiments and theories. PLoS ONE. 2017;12(6):e0179340. doi: 10.1371/journal.pone.0179340. PubMed DOI PMC

Ruiz-Gómez MJ, Prieto-Barcia MI, Ristori-Bogajo E, Martınez-Morillo M. Static and 50 Hz magnetic fields of 035 and 245 mT have no effect on the growth of Saccharomyces cerevisiae. Bioelectrochemistry. 2004;64(2):151–155. doi: 10.1016/j.bioelechem.2004.04.003. PubMed DOI

Kladko DV, Zakharzhevskii MA, Vinogradov VV. Magnetic field-mediated control of whole-cell biocatalysis. J. Phys. Chem. Lett. 2020;11(21):8989–8996. doi: 10.1021/acs.jpclett.0c02564. PubMed DOI

Boeira CZ, de Carvalho Silvello MA, Remedi RD, Feltrin ACP, Santos LO, Garda-Buffon J. Mitigation of nivalenol using alcoholic fermentation and magnetic field application. Food Chem. 2021;340:127935. doi: 10.1016/j.foodchem.2020.127935. PubMed DOI

Santos LO, Alegre RM, Garcia-Diego C, Cuellar J. Effects of magnetic fields on biomass and glutathione production by the yeast Saccharomyces cerevisiae. Process Biochem. 2010;45(8):1362–1367. doi: 10.1016/j.procbio.2010.05.008. DOI

Canli O, Kurbanoğlu EB. Application of low magnetic field on inulinase production by Geotrichum candidum under solid state fermentation using leek as substrate. Toxicol. Ind. Health. 2012;28(10):894–900. doi: 10.1177/0748233711425079. PubMed DOI

Buchachenko AL, Kuznetsov DA. Magnetic field affects enzymatic ATP synthesis. J. Am. Chem. Soc. 2008;130(39):12868–12869. doi: 10.1021/ja804819k. PubMed DOI

Zhao G, et al. Cellular ATP content was decreased by a homogeneous 85 T static magnetic field exposure: role of reactive oxygen species. Bioelectromagnetics. 2011;32(2):94–101. doi: 10.1002/bem.2061. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...