Hypomagnetic Field and Its Effect on the Growth and Survival of Microorganisms
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
VEGA 1/0018/22
Slovak Grant Agency
PubMed
40572250
PubMed Central
PMC12195262
DOI
10.3390/microorganisms13061362
PII: microorganisms13061362
Knihovny.cz E-resources
- Keywords
- bacteria, environmental stress, growth inhibition, hypomagnetic field, microorganisms, yeast,
- Publication type
- Journal Article MeSH
As humanity embarks on interplanetary exploration and envisions future colonies beyond Earth, understanding the impact of extreme environments on life becomes paramount. Among these factors, the hypomagnetic field (HMF)-a condition where the protective geomagnetic field is absent-remains poorly understood, especially regarding its effects on (micro)organisms. To our knowledge, this is the first study to examine how short-term exposure to an HMF (24 h to 7 days) affects the growth of three different microorganisms, Saccharomyces cerevisiae, Acidithiobacillus ferrooxidans, and Lactobacillus plantarum, using a specialized hypomagnetic chamber and advanced spectrophotometric analysis. We demonstrate significant growth inhibition in S. cerevisiae (23%) and A. ferrooxidans (68%), with L. plantarum remaining unaffected. This inhibitory effect appears reversible, diminishing as organisms return to normal geomagnetic conditions. These findings reveal that the HMF acts as a temporary environmental stressor, underscoring the need for deeper exploration of its biological effects. Our work sets the stage for further research into how the space environment may shape microbial ecosystems critical to future human endeavors in space.
See more in PubMed
Saliev T., Begimbetova D., Masoud A.-R., Matkarimov B. Biological effects of non-ionizing electromagnetic fields: Two sides of a coin. Prog. Biophys. Mol. Biol. 2018;141:25–36. doi: 10.1016/j.pbiomolbio.2018.07.009. PubMed DOI
Dabros M., Schuler M.M., Marison I.W. Simple control of specific growth rate in biotechnological fed-batch processes based on enhanced online measurements of biomass. Bioprocess Biosyst. Eng. 2010;33:1109–1118. doi: 10.1007/s00449-010-0438-2. PubMed DOI
Sinčák M., Sedlakova-Kadukova J. Hypomagnetic fields and their multilevel effects on living organisms. Processes. 2023;11:282. doi: 10.3390/pr11010282. DOI
Mo W., Liu Y., He R. Hypomagnetic field, an ignorable environmental factor in space. Sci. China Life Sci. 2014;57:726–728. doi: 10.1007/s11427-014-4662-x. PubMed DOI
Binhi V.N., Prato F.S. Biological effects of the Hypomagnetic field: An analytical review of experiments and theories. PLoS ONE. 2017;12:e0179340. doi: 10.1371/journal.pone.0179340. PubMed DOI PMC
Fu J.P., Mo W.C., Liu Y., Bartlett P.F., He R.Q. Elimination of the geomagnetic field stimulates the proliferation of mouse neural progenitor and stem cells. Protein Cell. 2016;7:624–637. doi: 10.1007/s13238-016-0300-7. PubMed DOI PMC
Ogneva I.V., Usik M.A., Burtseva M.V., Biryukov N.S., Zhdankina Y.S., Sychev V.N., Orlov O.I. Drosophila melanogaster sperm under simulated microgravity and a Hypomagnetic field: Motility and cell respiration. Int. J. Mol. Sci. 2020;21:5985. doi: 10.3390/ijms21175985. PubMed DOI PMC
Xu C., Wei S., Lu Y., Zhang Y., Chen C., Song T. Removal of the local geomagnetic field affects reproductive growth in Arabidopsis. Bioelectromagnetics. 2013;34:437–442. doi: 10.1002/bem.21788. PubMed DOI
Islam M., Maffei M.E., Vigani G. The geomagnetic field is a contributing factor for an efficient iron uptake in Arabidopsis thaliana. Front. Plant Sci. 2020;11:325. doi: 10.3389/fpls.2020.00325. PubMed DOI PMC
Zhang B., Lu H., Xi W., Zhou X., Xu S., Zhang K., Jiang J., Li Y., Guo A. Exposure to hypomagnetic field space for multiple generations causes amnesia in Drosophila melanogaster. Neurosci. Lett. 2004;371:190–195. doi: 10.1016/j.neulet.2004.08.072. PubMed DOI
Poiata A., Creanga D.E., Morariu V.V. Life in zero magnetic field. E. coli resistance to antibiotics. Electromagn. Biol. Med. 2003;22:171–182. doi: 10.1081/JBC-120024626. DOI
Wang X.K., Ma Q.F., Jiang W., Lv J., Pan W.D., Song T., Wu L.F. Effects of hypomagnetic field on magnetosome formation of Magnetospirillum magneticum AMB-1. Geomicrobiol. J. 2008;25:296–303. doi: 10.1080/01490450802258295. DOI
Zhang A., Luo Y., Qin H., Lin W., Tian L. Hypomagnetic field exposure affecting gut microbiota, reactive oxygen species levels, and colonic cell proliferation in mice. Bioelectromagnetics. 2022;43:462–475. doi: 10.1002/bem.22427. PubMed DOI
Santomartino R., Zea L., Cockell C.S. The smallest space miners: Principles of space biomining. Extremophiles. 2022;26:7. doi: 10.1007/s00792-021-01253-w. PubMed DOI PMC
Eaton S.S., Eaton G.R. The world as viewed by and with unpaired electrons. J. Magn. Reson. 2012;223:151–163. doi: 10.1016/j.jmr.2012.07.025. PubMed DOI PMC
Gerloch M. Magnetism and Ligand-Field Analysis. CUP Archive; Cambridge, UK: 1983.
Parker D., Suturina E.A., Kuprov I., Chilton N.F. How the ligand field in lanthanide coordination complexes determines magnetic susceptibility anisotropy, paramagnetic NMR shift, and relaxation behavior. Acc. Chem. Res. 2020;53:1520–1534. doi: 10.1021/acs.accounts.0c00275. PubMed DOI PMC
Iwasaka M., Ikehata M., Miyakoshi J., Ueno S. Strong static magnetic field effects on yeast proliferation and distribution. Bioelectrochemistry. 2004;65:59–68. doi: 10.1016/j.bioelechem.2004.04.002. PubMed DOI
Prieto-Barcia M., Ristori-Bogajo E., Ruiz-Gómez M., Martínez-Morillo M. Static and 50 Hz magnetic fields of 0.35 and 2.45 mT have no effect on the growth of Saccharomyces cerevisiae. Bioelectrochemistry. 2004;64:151–155. doi: 10.1016/j.bioelechem.2004.04.003. PubMed DOI
Ruiz-Gómez M.J., Sendra-Portero F., Martínez-Morillo M. Effect of 2.45 mT sinusoidal 50 Hz magnetic field on Saccharomyces cerevisiae strains deficient in DNA strand breaks repair. Int. J. Radiat. Biol. 2010;86:602–611. doi: 10.3109/09553001003734519. PubMed DOI
Kladko D.V., Zakharzhevskii M.A., Vinogradov V.V. Magnetic field-mediated control of whole-cell biocatalysis. J. Phys. Chem. Lett. 2020;11:8989–8996. doi: 10.1021/acs.jpclett.0c02564. PubMed DOI
Boeira C.Z., de Carvalho Silvello M.A., Remedi R.D., Feltrin A.C.P., Santos L.O., Garda-Buffon J. Mitigation of nivalenol using alcoholic fermentation and magnetic field application. Food Chem. 2021;340:127935. doi: 10.1016/j.foodchem.2020.127935. PubMed DOI
Santos L.O., Alegre R.M., Garcia-Diego C., Cuellar J. Effects of magnetic fields on biomass and glutathione production by the yeast Saccharomyces cerevisiae. Process Biochem. 2010;45:1362–1367. doi: 10.1016/j.procbio.2010.05.008. DOI
Canli O., Kurbanoğlu E.B. Application of low magnetic field on inulinase production by Geotrichum candidum under solid state fermentation using leek as substrate. Toxicol. Ind. Health. 2012;28:894–900. doi: 10.1177/0748233711425079. PubMed DOI
Pérez V.H., Reyes A.F., Justo O.R., Alvarez D.C., Alegre R.M. Bioreactor Coupled with Electromagnetic Field Generator: Effects of Extremely Low Frequency Electromagnetic Fields on Ethanol Production by Saccharomyces cerevisiae. Biotechnol. Prog. 2007;23:1091–1094. doi: 10.1021/bp070078k. PubMed DOI
Sincak M., Turker M., Derman Ü.C., Erdem A., Jandacka P., Luptak M., Luptakova A., Sedlakova-Kadukova J. Exploring the impact of magnetic fields on biomass production efficiency under aerobic and anaerobic batch fermentation of Saccharomyces cerevisiae. Sci. Rep. 2024;14:12869. doi: 10.1038/s41598-024-63628-1. PubMed DOI PMC
Da Motta M.A., Muniz J.B.F., Schuler A., Da Motta M. Static magnetic fields enhancement of Saccharomyces cerevisae ethanolic fermentation. Biotechnol. Prog. 2004;20:393–396. doi: 10.1021/bp034263j. PubMed DOI
Bajtos M., Radil R., Štefaňáková M., Janoušek L., Skurčák Ľ. Bioimpact of Hypomagnetic Fields. Lékař A Tech.-Clin. Technol. 2024;54:12–16. doi: 10.14311/CTJ.2024.1.02. DOI
Buchachenko A.L., Kuznetsov D.A. Magnetic field affects enzymatic ATP synthesis. J. Am. Chem. Soc. 2008;130:12868–12869. doi: 10.1021/ja804819k. PubMed DOI
Zhao G., Chen S., Wang L., Zhao Y., Wang J., Wang X., Zhang W., Wu R., Wu L., Wu Y., et al. Cellular ATP content was decreased by a homogeneous 8.5 T static magnetic field exposure: Role of reactive oxygen species. Bioelectromagnetics. 2011;32:94–101. doi: 10.1002/bem.20617. PubMed DOI
Li D.W., Wei X.D., Lu L.L., Jiang J.L., Liao C.J., Su L. The effects of Static Magnetic Field in leaching Cadmium and Arsenic by Acidithiobacillus ferrooxidans. Appl. Mech. Mater. 2014;675:90–93. doi: 10.4028/www.scientific.net/amm.675-677.90. DOI
Silva J.G., da Silva M.T., Dias R.M., Cardoso V.L., de Resende M.M. Biolixiviation of metals from computer printed circuit boards by Acidithiobacillus ferrooxidans and bioremoval of metals by mixed culture subjected to a magnetic field. Curr. Microbiol. 2023;80:197. doi: 10.1007/s00284-023-03307-y. PubMed DOI
Zhang S., Yan L., Xing W.J., Chen P., Zhang Y., Wang W.D. Acidithiobacillus ferrooxidans and its potential application. Extremophiles. 2018;22:563–579. doi: 10.1007/s00792-018-1024-9. PubMed DOI
Zhao D., Yang J., Zhang G., Lu D., Zhang S., Wang W., Yan L. Potential and whole-genome sequence-based mechanism of elongated-prismatic magnetite magnetosome formation in Acidithiobacillus ferrooxidans BYM. World J. Microbiol. Biotechnol. 2022;38:121. doi: 10.1007/s11274-022-03308-2. PubMed DOI
Chi A., Valenzuela L., Beard S., Mackey A.J., Shabanowitz J., Hunt D.F., Jerez C.A. Periplasmic proteins of the extremophile Acidithiobacillus ferrooxidans: A high throughput proteomics analysis. Mol. Cell. Proteom. 2007;6:2239–2251. doi: 10.1074/mcp.M700042-MCP200. PubMed DOI PMC
Moisescu C., Ardelean I.I., Benning L.G. The effect and role of environmental conditions on magnetosome synthesis. Front. Microbiol. 2014;5:49. doi: 10.3389/fmicb.2014.00049. PubMed DOI PMC
Zadeh-Haghighi H., Simon C. Magnetic field effects in biology from the perspective of the radical pair mechanism. J. R. Soc. Interface. 2022;19:20220325. doi: 10.1098/rsif.2022.0325. PubMed DOI PMC
Ji W., Tang X., Du W., Lu Y., Wang N., Wu Q., Wei W., Liu J., Yu H., Ma B., et al. Optical/electrochemical methods for detecting mitochondrial energy metabolism. Chem. Soc. Rev. 2022;51:71–127. doi: 10.1039/D0CS01610A. PubMed DOI
Weinberg E.D. The Lactobacillus anomaly: Total iron abstinence. Perspect. Biol. Med. 1997;40:578–583. doi: 10.1353/pbm.1997.0072. PubMed DOI
Macklaim J.M., Gloor G.B., Anukam K.C., Cribby S., Reid G. At the crossroads of vaginal health and disease, the genome sequence of Lactobacillus iners AB-1. Proc. Natl. Acad. Sci. USA. 2011;108((Suppl. 1)):4688–4695. doi: 10.1073/pnas.1000086107. PubMed DOI PMC
Zhang B., Wang M., Wang L., Pan Y., Guo W., Tian L., Zhan A. Long-term exposure to a hypomagnetic field attenuates adult hippocampal neurogenesis and cognition. Nat. Commun. 2021;12:1174. doi: 10.1038/s41467-021-21468-x. PubMed DOI PMC
Orlov O., Ilyin V., Skedina M., Morozova Y., Artamonov A., Plotnikov E., Vladimirov S. Prognostic model for bacterial drug resistance genes horizontal spread in space-crews. Acta Astronaut. 2022;190:388–394. doi: 10.1016/j.actaastro.2021.10.016. DOI
Sedlakova-Kadukova J. Microbial Syntrophy-Mediated Eco-Enterprising. Academic Press; Cambridge, MA, USA: 2022. Microorganisms in metal recovery—Tools or teachers? pp. 71–86. DOI
Biz A., Mahadevan R. Overcoming challenges in expressing iron–sulfur enzymes in yeast. Trends Biotechnol. 2021;39:665–677. doi: 10.1016/j.tibtech.2020.11.005. PubMed DOI