Egg characteristics vary longitudinally in Arctic shorebirds
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
37305692
PubMed Central
PMC10250164
DOI
10.1016/j.isci.2023.106928
PII: S2589-0042(23)01005-2
Knihovny.cz E-zdroje
- Klíčová slova
- Evolutionary biology, Ornithology, Zoology,
- Publikační typ
- časopisecké články MeSH
Arctic environments are changing rapidly and if we are to understand the resilience of species to future changes, we need to investigate alterations in their life histories. Egg size and egg shape are key life-history traits, reflecting parental investment as well as influencing future reproductive success. Here we focus on egg characteristics in two Arctic shorebirds, the Dunlin (Calidris alpina) and the Temminck's stint (Calidris temminckii). Using egg photos that encompass their full breeding ranges, we show that egg characteristics exhibit significant longitudinal variations, and the variation in the monogamous species (Dunlin) is significantly greater than the polygamous species (Temminck's stint). Our finding is consistent with the recent "disperse-to-mate" hypothesis which asserts that polygamous species disperse further to find mates than monogamous species, and by doing so they create panmictic populations. Taken together, Arctic shorebirds offer excellent opportunities to understand evolutionary patterns in life history traits.
All Russian Research Institute for Environmental Protection 36 km MKAD Moscow 117628 Russia
Milner Centre for Evolution University of Bath Claverton Down Bath BA2 7AY UK
Timiryazev State Biological Museum Malaya Grusinskaya 15 Moscow 123242 Russia
Zobrazit více v PubMed
Hauber M.E. University of Chicago Press; 2014. The Book of Eggs.
Birkhead T. Bloomsbury Publishing; 2016. The Most Perfect Thing: The inside and outside of a Bird’s Egg.
Stoddard M.C., Sheard C., Akkaynak D., Yong E.H., Mahadevan L., Tobias J.A. Evolution of avian egg shape: underlying mechanisms and the importance of taxonomic scale. Ibis. 2019;161:922–925. doi: 10.1111/ibi.12755. DOI
Stoddard M.C., Yong E.H., Akkaynak D., Sheard C., Tobias J.A., Mahadevan L. Avian egg shape: form, function, and evolution. Science. 2017;356:1249–1254. doi: 10.1126/science.aaj1945. PubMed DOI
Andersson M. Optimal egg shape in waders. Ornis Fenn. 1978;55:105–109.
Barta Z., Székely T. The optimal shape of avian eggs. Funct. Ecol. 1997;11:656–662. doi: 10.1046/j.1365-2435.1997.00136.x. DOI
Birkhead T.R., Thompson J.E., Biggins J.D. Egg shape in the Common Guillemot Uria aalge and Brunnich’s Guillemot U. lomvia: not a rolling matter? J. Ornithol. 2017;158:679–685. doi: 10.1007/s10336-017-1437-8. DOI
Birkhead T.R., Thompson J.E., Biggins J.D., Montgomerie R. The evolution of egg shape in birds: selection during the incubation period. Ibis. 2019;161:605–618. doi: 10.1111/ibi.12658. DOI
Duursma D.E., Gallagher R.V., Price J.J., Griffith S.C. Variation in avian egg shape and nest structure is explained by climatic conditions. Sci. Rep. 2018;8:1–10. doi: 10.1038/s41598-018-22436-0. PubMed DOI PMC
Bernardo J. The particular maternal effect of propagule size, especially egg size: patterns, models, quality of evidence and interpretations. Am. Zool. 1996;36:216–236.
Clutton-Brock T.H. Princeton University Press; 1991. The Evolution of Parental Care.
Royle N.J., Smiseth P.T., Kölliker M. Oxford University Press; 2012. The Evolution of Parental Care.
Lack D.L. Chapman & Hall; 1968. Ecological Adaptations for Breeding in Birds.
Williams T.D. Intraspecific variation in egg size and egg composition in birds: effects on offspring fitness. Biol. Rev. Camb. Philos. Soc. 1994;69:35–59. doi: 10.1111/j.1469-185X.1994.tb01485.x. PubMed DOI
Grant P.R. Variation in the size and shape of Darwin's finch eggs. The Auk. 1982;99:15–23. doi: 10.2307/4086017. DOI
Van Noordwijk A.J., Keizer L.C.P., Van Balen J.H., Scharloo W. Genetic variation in egg dimensions in natural populations of the Great Tit. Genetica. 1981;55:221–232. doi: 10.1007/BF00127206. DOI
Dittmann T., Hötker H., Hotker H. Intraspecific variation in the egg size of the Pied Avocet. Waterbirds. 2001;24:83–88. doi: 10.2307/1522246. DOI
Petersen M.R. Intraspecific variation in egg shape among individual Emperor Geese. J. Field Ornithol. 1992;63:344–354.
Moss R., Watson A. Heritability of egg size, hatch weight, body weight, and viability in Red Grouse (Lagopus lagopus scoticus) The Auk. 1982;99:683–686. doi: 10.1093/auk/99.4.683. DOI
Ojanen M., Orell M., Väisänen R.A. Role of heredity in egg size variation in the great tit Parus major and the pied flycatcher Ficedula hypoleuca. Ornis Scand. 1979;10:22–28. doi: 10.2307/3676340. DOI
Montgomerie R., Hemmings N., Thompson J.E., Birkhead T.R. The shapes of birds’ eggs: evolutionary constraints and adaptations. Am. Nat. 2021;198:E215–E231. doi: 10.1086/716928. PubMed DOI
Christians J.K. Avian egg size: variation within species and inflexibility within individuals. Biol. Rev. 2002;77:1–26. doi: 10.1017/S1464793101005784. PubMed DOI
Deeming D.C. Effect of composition on shape of bird eggs. J. Avian Biol. 2018;49 doi: 10.1111/jav.01528. jav-01528. DOI
Gosler A.G., Higham J.P., James Reynolds S. Why are birds’ eggs speckled? Ecol. Lett. 2005;8:1105–1113. doi: 10.1111/j.1461-0248.2005.00816.x. DOI
Eberhart-Phillips L.J., Hoffman J.I., Brede E.G., Zefania S., Kamrad M.J., Székely T., Bruford M.W. Contrasting genetic diversity and population structure among three sympatric Madagascan shorebirds: parallels with rarity, endemism, and dispersal. Ecol. Evol. 2015;5:997–1010. doi: 10.1002/ece3.1393. PubMed DOI PMC
D'Urban Jackson J., dos Remedios N., Maher K.H., Zefania S., Haig S., Oyler-McCance S., Blomqvist D., Burke T., Bruford M.W., Székely T., Küpper C. Polygamy slows down population divergence in shorebirds. Evolution. 2017;71:1313–1326. doi: 10.1111/evo.13212. PubMed DOI PMC
Kempenaers B., Valcu M. Breeding site sampling across the Arctic by individual males of a polygynous shorebird. Nature. 2017;541:528–531. doi: 10.1038/nature20813. PubMed DOI
Sanz J.J. Geographic variation in breeding parameters of the Pied Flycatcher Ficedula hypoleuca. Ibis. 2008;139:107–114. doi: 10.1111/j.1474-919X.1997.tb04509.x. DOI
Sander M.M., Chamberlain D. Evidence for intraspecific phenotypic variation in songbirds along elevation gradients in central Europe. Ibis. 2020;162:1355–1362. doi: 10.1111/ibi.12843. DOI
Lawson A.M., Weir J.T. Latitudinal gradients in climatic-niche evolution accelerate trait evolution at high latitudes. Ecol. Lett. 2014;17:1427–1436. doi: 10.1111/ele.12346. PubMed DOI
Blackburn T.M., Gaston K.J., Loder N. Geographic gradients in body size: a clarification of Bergmann's rule. Divers. Distrib. 1999;5:165–174. doi: 10.1046/j.1472-4642.1999.00046.x. DOI
Thomas G.H., Wills M.A., Székely T. A supertree approach to shorebird phylogeny. BMC Evol. Biol. 2004;4:1–18. doi: 10.1186/1471-2148-4-28. PubMed DOI PMC
Hildén O. Breeding system of temminck's stint Calidris temminckii. Ornis Fenn. 1975;52:117–146.
Soikkeli M. Breeding cycle and population dynamics in the dunlin (Calidris alpina) Ann. Zool. Fenn. 1967;4:158–198.
Van Gils J., Wiersma P., Kirwan G.M. In: Birds of the World. del Hoyo J., Elliott A., Sargatal J., Christie D.A., de Juana E., editors. Cornell Lab of Ornithology; 2020. Temminck's Stint (Calidris temminckii), version 1.0.
Warnock N.D., Gill R.E. In: Birds of the World. Billerman S.M., editor. Cornell Lab of Ornithology; 2020. Dunlin (Calidris alpina), version 1.0.
Miller M.P., Haig S.M., Mullins T.D., Ruan L., Casler B., Dondua A., Gates H.R., Johnson J.M., Kendall S., Tomkovich P.S., et al. Intercontinental genetic structure and gene flow in Dunlin (Calidris alpina), a potential vector of avian influenza. Evol. Appl. 2015;8:149–171. doi: 10.1111/eva.12239. PubMed DOI PMC
Rönkä A., Kvist L., Karvonen J., Koivula K., Pakanen V.-M., Schamel D., Tracy D.M. Population genetic structure in the Temminck’s Stint Calidris temminckii, with an emphasis on Fennoscandian populations. Conserv. Genet. 2008;9:29–37. doi: 10.1007/s10592-007-9299-x. DOI
Rönkä N., Kvist L., Pakanen V.-M., Rönkä A., Degtyaryev V., Tomkovich P., Tracy D., Koivula K. Phylogeography of the Temminck’s Stint (Calidris temminckii): historical vicariance but little present genetic structure in a regionally endangered Palearctic wader. Divers. Distrib. 2012;18:704–716. doi: 10.1111/j.1472-4642.2011.00865.x. DOI
Wenink P.W., Baker A.J., Rösner H.U., Tilanus M.G.J. Global mitochondrial DNA phylogeography of holarctic breeding dunlins (Calidris alpina) Evolution. 1996;50:318–330. doi: 10.1111/j.1558-5646.1996.tb04495.x. PubMed DOI
Wenink P.W., Baker A.J., Tilanus M.G. Hypervariable-control-region sequences reveal global population structuring in a long-distance migrant shorebird, the Dunlin (Calidris alpina) Proc. Natl. Acad. Sci. USA. 1993;90:94–98. doi: 10.1073/pnas.90.1.94. PubMed DOI PMC
Küpper C., Edwards S.V., Kosztolányi A., Alrashidi M., Burke T., Herrmann P., Argüelles-Tico A., Amat J.A., Amezian M., Rocha A., et al. High gene flow on a continental scale in the polyandrous Kentish plover Charadrius alexandrinus. Mol. Ecol. 2012;21:5864–5879. doi: 10.1111/mec.12064. PubMed DOI
Buehler D.M., Baker A.J. Population divergence times and historical demography in Red Knots and Dunlins. Condor. 2005;107:497–513. doi: 10.1093/condor/107.3.497. DOI
Pakanen V.-M., Hildén O., Rönkä A., Belda E.J., Luukkonen A., Kvist L., Koivula K. Breeding dispersal strategies following reproductive failure explain low apparent survival of immigrant Temminck's stints. Oikos. 2011;120:615–622. doi: 10.1111/j.1600-0706.2010.18953.x. DOI
Pakanen V.-M., Rönkä A., Belda E.J., Luukkonen A., Kvist L., Koivula K. Impact of dispersal status on estimates of local population growth rates in a Temminck's stint Calidris temminckii population. Oikos. 2010;119:1493–1503. doi: 10.1111/j.1600-0706.2010.18320.x. DOI
Pakanen V.-M., Koivula K., Doligez B., Flodin L.-Å., Pauliny A., Rönkä N., Blomqvist D. Natal dispersal does not entail survival costs but is linked to breeding dispersal in a migratory shorebird, the southern dunlin Calidris alpina schinzii. Oikos. 2022;2022:e08951. doi: 10.1111/oik.08951. DOI
Thorup O.L.E. Breeding dispersal and site-fidelity in Dunlin Calidris alpina at Tipperne, Denmark. Dansk Orn. Foren. Tidsskr. 1999;93:255–265.
Oring L.W., Lank D.B. In: Breeding Area Fidelity, Natal Philopatry, and the Social Systems of Sandpipers. Shorebirds J.B., Olla B.L., editors. Springer; 1984.
Song Z., Lin X., Que P., Halimubieke N., Huang Q., Zhang Z., Székely T., Liu Y. The allocation between egg size and clutch size depends on local nest survival rate in a mean of bet-hedging in a shorebird. Avian Res. 2020;11:40. doi: 10.1186/s40657-020-00225-6. DOI
Chylarecki P., Kuczynski L., Vogrin M., Tryjanowski P. Geographic variation in egg measurements of the Lapwing Vanellus vanellus. Acta Ornithol. 1997;2:137–148.
Väisänen R.A. Geographic variation in timing of breeding and egg size in eight European species of waders. Ann. Zool. Fenn. 1977;14:1–25.
Martin J.-L., Smith P.A., Béchet A., Daufresne T. Late snowmelt can result in smaller eggs in Arctic shorebirds. Polar Biol. 2018;41:2289–2295. doi: 10.1007/s00300-018-2365-7. DOI
Piersma T., Lindström Å., Drent R.H., Tulp I., Jukema J., Morrison R.I.G., Reneerkens J., Schekkerman H., Visser G.H. High daily energy expenditure of incubating shorebirds on High Arctic tundra: a circumpolar study. Funct. Ecol. 2003;17:356–362. doi: 10.1046/j.1365-2435.2003.00741.x. DOI
Weiser E.L., Brown S.C., Lanctot R.B., Gates H.R., Abraham K.F., Bentzen R.L., Bêty J., Boldenow M.L., Brook R.W., Donnelly T.F., et al. Effects of environmental conditions on reproductive effort and nest success of Arctic-breeding shorebirds. Ibis. 2018;160:608–623. doi: 10.1111/ibi.12571. DOI
Engelmoer M., Roselaar C.S. Springer; 2012. Geographical Variation in Waders.
McQueen A., Klaassen M., Tattersall G.J., Atkinson R., Jessop R., Hassell C.J., Christie M., Victorian Wader Study Group. Australasian Wader Studies Group. Symonds M.R.E. Thermal adaptation best explains Bergmann's and Allen's Rules across ecologically diverse shorebirds. Nat. Commun. 2022;13:4727. doi: 10.1038/s41467-022-32108-3. PubMed DOI PMC
McCollin D., Hodgson J., Crockett R. Do British birds conform to Bergmann's and Allen's rules? An analysis of body size variation with latitude for four species. Bird Stud. 2015;62:404–410. doi: 10.1080/00063657.2015.1061476. DOI
Sebastianelli M., Lukhele S.M., Nwankwo E.C., Hadjioannou L., Kirschel A.N.G. Continent-wide patterns of song variation predicted by classical rules of biogeography. Ecol. Lett. 2022;25:2448–2462. doi: 10.1111/ele.14102. PubMed DOI PMC
Cohen J., Screen J.A., Furtado J.C., Barlow M., Whittleston D., Coumou D., Francis J., Dethloff K., Entekhabi D., Overland J., Jones J. Recent Arctic amplification and extreme mid-latitude weather. Nat. Geosci. 2014;7:627–637. doi: 10.1038/ngeo2234. DOI
van Gils J.A., Lisovski S., Lok T., Meissner W., Ożarowska A., de Fouw J., Rakhimberdiev E., Soloviev M.Y., Piersma T., Klaassen M. Body shrinkage due to Arctic warming reduces Red Knot fitness in tropical wintering range. Science. 2016;352:819–821. doi: 10.1126/science.aad6351. PubMed DOI
Kubelka V., Šálek M., Tomkovich P., Végvári Z., Freckleton R.P., Székely T. Global pattern of nest predation is disrupted by climate change in shorebirds. Science. 2018;362:680–683. doi: 10.1126/science.aat8695. PubMed DOI
Kubelka V., Sandercock B.K., Székely T., Freckleton R.P. Animal migration to northern latitudes: environmental changes and increasing threats. Trends Ecol. Evol. 2022;37:30–41. doi: 10.1016/j.tree.2021.08.010. PubMed DOI
Biggins J.D., Thompson J.E., Birkhead T.R. Accurately quantifying the shape of birds’ eggs. Ecol. Evol. 2018;8:9728–9738. doi: 10.1002/ece3.4412. PubMed DOI PMC
Biggins J.D., Thompson J.E., Birkhead T.R. Data from: accurately quantifying the shape of birds' eggs. Dryad Digital Repository. 2019 doi: 10.5061/dryad.8kv2b20. PubMed DOI PMC
R Core Team . R Foundation for Statistical Computing; 2022. R: A Language and Environment for Statistical Computing.https://www.R-project.org/
Dryad
10.5061/dryad.8kv2b20