Local retinoic acid signaling directs emergence of the extraocular muscle functional unit

. 2020 Nov ; 18 (11) : e3000902. [epub] 20201117

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid33201874

Coordinated development of muscles, tendons, and their attachment sites ensures emergence of functional musculoskeletal units that are adapted to diverse anatomical demands among different species. How these different tissues are patterned and functionally assembled during embryogenesis is poorly understood. Here, we investigated the morphogenesis of extraocular muscles (EOMs), an evolutionary conserved cranial muscle group that is crucial for the coordinated movement of the eyeballs and for visual acuity. By means of lineage analysis, we redefined the cellular origins of periocular connective tissues interacting with the EOMs, which do not arise exclusively from neural crest mesenchyme as previously thought. Using 3D imaging approaches, we established an integrative blueprint for the EOM functional unit. By doing so, we identified a developmental time window in which individual EOMs emerge from a unique muscle anlage and establish insertions in the sclera, which sets these muscles apart from classical muscle-to-bone type of insertions. Further, we demonstrate that the eyeballs are a source of diffusible all-trans retinoic acid (ATRA) that allow their targeting by the EOMs in a temporal and dose-dependent manner. Using genetically modified mice and inhibitor treatments, we find that endogenous local variations in the concentration of retinoids contribute to the establishment of tendon condensations and attachment sites that precede the initiation of muscle patterning. Collectively, our results highlight how global and site-specific programs are deployed for the assembly of muscle functional units with precise definition of muscle shapes and topographical wiring of their tendon attachments.

Zobrazit více v PubMed

Hasson P. "Soft" tissue patterning: muscles and tendons of the limb take their form. Developmental dynamics: an official publication of the American Association of Anatomists. 2011;240(5):1100–7. 10.1002/dvdy.22608 PubMed DOI

Huang AH. Coordinated development of the limb musculoskeletal system: Tendon and muscle patterning and integration with the skeleton. Developmental biology. 2017;429(2):420–8. 10.1016/j.ydbio.2017.03.028 PubMed DOI PMC

Noden DM, Francis-West P. The differentiation and morphogenesis of craniofacial muscles. Developmental dynamics: an official publication of the American Association of Anatomists. 2006;235(5):1194–218. 10.1002/dvdy.20697 . PubMed DOI

Suzuki DG, Fukumoto Y, Yoshimura M, Yamazaki Y, Kosaka J, Kuratani S, et al. Comparative morphology and development of extra-ocular muscles in the lamprey and gnathostomes reveal the ancestral state and developmental patterns of the vertebrate head. Zoological Lett. 2016;2:10 10.1186/s40851-016-0046-3 PubMed DOI PMC

Young GC. Number and arrangement of extraocular muscles in primitive gnathostomes: evidence from extinct placoderm fishes. Biology letters. 2008;4(1):110–4. 10.1098/rsbl.2007.0545 . PubMed DOI PMC

Spencer RF, Porter JD. Biological organization of the extraocular muscles. Progress in brain research. 2006;151:43–80. Epub 2005/10/14. 10.1016/S0079-6123(05)51002-1 . PubMed DOI

Ziermann JM, Diogo R, Noden DM. Neural crest and the patterning of vertebrate craniofacial muscles. Genesis. 2018;56(6–7):e23097 10.1002/dvg.23097 . PubMed DOI

Nassari S, Duprez D, Fournier-Thibault C. Non-myogenic Contribution to Muscle Development and Homeostasis: The Role of Connective Tissues. Front Cell Dev Biol. 2017;5:22 10.3389/fcell.2017.00022 PubMed DOI PMC

Bohnsack BL, Gallina D, Thompson H, Kasprick DS, Lucarelli MJ, Dootz G, et al. Development of extraocular muscles requires early signals from periocular neural crest and the developing eye. Archives of ophthalmology. 2011;129(8):1030–41. Epub 2011/04/13. 10.1001/archophthalmol.2011.75 PubMed DOI PMC

Ericsson R, Cerny R, Falck P, Olsson L. Role of cranial neural crest cells in visceral arch muscle positioning and morphogenesis in the Mexican axolotl, Ambystoma mexicanum. Developmental dynamics: an official publication of the American Association of Anatomists. 2004;231(2):237–47. 10.1002/dvdy.20127 . PubMed DOI

Noden DM. The role of the neural crest in patterning of avian cranial skeletal, connective, and muscle tissues. Developmental biology. 1983;96(1):144–65. 10.1016/0012-1606(83)90318-4 . PubMed DOI

Rinon A, Lazar S, Marshall H, Buchmann-Moller S, Neufeld A, Elhanany-Tamir H, et al. Cranial neural crest cells regulate head muscle patterning and differentiation during vertebrate embryogenesis. Development. 2007;134(17):3065–75. 10.1242/dev.002501 . PubMed DOI

Tokita M, Schneider RA. Developmental origins of species-specific muscle pattern. Developmental biology. 2009;331(2):311–25. 10.1016/j.ydbio.2009.05.548 PubMed DOI PMC

von Scheven G, Alvares LE, Mootoosamy RC, Dietrich S. Neural tube derived signals and Fgf8 act antagonistically to specify eye versus mandibular arch muscles. Development. 2006;133(14):2731–45. 10.1242/dev.02426 . PubMed DOI

McGurk PD, Swartz ME, Chen JW, Galloway JL, Eberhart JK. In vivo zebrafish morphogenesis shows Cyp26b1 promotes tendon condensation and musculoskeletal patterning in the embryonic jaw. PLoS Genet. 2017;13(12):e1007112 10.1371/journal.pgen.1007112 PubMed DOI PMC

Shimizu M, Narboux-Neme N, Gitton Y, de Lombares C, Fontaine A, Alfama G, et al. Probing the origin of matching functional jaws: roles of Dlx5/6 in cranial neural crest cells. Scientific reports. 2018;8(1):14975 10.1038/s41598-018-33207-2 PubMed DOI PMC

Evans AL, Gage PJ. Expression of the homeobox gene Pitx2 in neural crest is required for optic stalk and ocular anterior segment development. Human molecular genetics. 2005;14(22):3347–59. Epub 2005/10/06. 10.1093/hmg/ddi365 . PubMed DOI

Heude E, Bellessort B, Fontaine A, Hamazaki M, Treier AC, Treier M, et al. Etiology of craniofacial malformations in mouse models of blepharophimosis, ptosis and epicanthus inversus syndrome. Human molecular genetics. 2015;24(6):1670–81. 10.1093/hmg/ddu579 . PubMed DOI

Iwata J, Suzuki A, Pelikan RC, Ho TV, Chai Y. Noncanonical transforming growth factor beta (TGFbeta) signaling in cranial neural crest cells causes tongue muscle developmental defects. The Journal of biological chemistry. 2013;288(41):29760–70. 10.1074/jbc.M113.493551 PubMed DOI PMC

Kardon G. Muscle and tendon morphogenesis in the avian hind limb. Development. 1998;125(20):4019–32. Epub 1998/09/15. . PubMed

Kardon G, Harfe BD, Tabin CJ. A Tcf4-positive mesodermal population provides a prepattern for vertebrate limb muscle patterning. Developmental cell. 2003;5(6):937–44. 10.1016/s1534-5807(03)00360-5 . PubMed DOI

Sefton EM, Kardon G. Connecting muscle development, birth defects, and evolution: An essential role for muscle connective tissue. Current topics in developmental biology. 2019;132:137–76. 10.1016/bs.ctdb.2018.12.004 PubMed DOI PMC

Murchison ND, Price BA, Conner DA, Keene DR, Olson EN, Tabin CJ, et al. Regulation of tendon differentiation by scleraxis distinguishes force-transmitting tendons from muscle-anchoring tendons. Development. 2007;134(14):2697–708. 10.1242/dev.001933 . PubMed DOI

Schweitzer R, Chyung JH, Murtaugh LC, Brent AE, Rosen V, Olson EN, et al. Analysis of the tendon cell fate using Scleraxis, a specific marker for tendons and ligaments. Development. 2001;128(19):3855–66. . PubMed

Diogo R, Kelly RG, Christiaen L, Levine M, Ziermann JM, Molnar JL, et al. A new heart for a new head in vertebrate cardiopharyngeal evolution. Nature. 2015;520(7548):466–73. Epub 2015/04/24. 10.1038/nature14435 . PubMed DOI PMC

Sambasivan R, Kuratani S, Tajbakhsh S. An eye on the head: the development and evolution of craniofacial muscles. Development. 2011;138(12):2401–15. 10.1242/dev.040972 . PubMed DOI

Gitton Y, Heude E, Vieux-Rochas M, Benouaiche L, Fontaine A, Sato T, et al. Evolving maps in craniofacial development. Seminars in cell & developmental biology. 2010;21(3):301–8. 10.1016/j.semcdb.2010.01.008 . PubMed DOI

Rhinn M, Dolle P. Retinoic acid signalling during development. Development. 2012;139(5):843–58. 10.1242/dev.065938 . PubMed DOI

Cunningham TJ, Duester G. Mechanisms of retinoic acid signalling and its roles in organ and limb development. Nature reviews Molecular cell biology. 2015;16(2):110–23. 10.1038/nrm3932 PubMed DOI PMC

Bohnsack BL, Kasprick DS, Kish PE, Goldman D, Kahana A. A zebrafish model of axenfeld-rieger syndrome reveals that pitx2 regulation by retinoic acid is essential for ocular and craniofacial development. Investigative ophthalmology & visual science. 2012;53(1):7–22. 10.1167/iovs.11-8494 PubMed DOI PMC

Harding P, Moosajee M. The Molecular Basis of Human Anophthalmia and Microphthalmia. J Dev Biol. 2019;7(3):16 10.3390/jdb7030016 PubMed DOI PMC

See AW, Kaiser ME, White JC, Clagett-Dame M. A nutritional model of late embryonic vitamin A deficiency produces defects in organogenesis at a high penetrance and reveals new roles for the vitamin in skeletal development. Developmental biology. 2008;316(2):171–90. 10.1016/j.ydbio.2007.10.018 . PubMed DOI

Cvekl A, Wang WL. Retinoic acid signaling in mammalian eye development. Exp Eye Res. 2009;89(3):280–91. 10.1016/j.exer.2009.04.012 PubMed DOI PMC

Matt N, Dupe V, Garnier JM, Dennefeld C, Chambon P, Mark M, et al. Retinoic acid-dependent eye morphogenesis is orchestrated by neural crest cells. Development. 2005;132(21):4789–800. Epub 2005/10/07. 10.1242/dev.02031 . PubMed DOI

Matt N, Ghyselinck NB, Pellerin I, Dupe V. Impairing retinoic acid signalling in the neural crest cells is sufficient to alter entire eye morphogenesis. Developmental biology. 2008;320(1):140–8. Epub 2008/06/10. 10.1016/j.ydbio.2008.04.039 . PubMed DOI

Molotkov A, Molotkova N, Duester G. Retinoic acid guides eye morphogenetic movements via paracrine signaling but is unnecessary for retinal dorsoventral patterning. Development. 2006;133(10):1901–10. Epub 2006/04/14. 10.1242/dev.02328 PubMed DOI PMC

Williams AL, Bohnsack BL. Neural crest derivatives in ocular development: discerning the eye of the storm. Birth defects research Part C, Embryo today: reviews. 2015;105(2):87–95. 10.1002/bdrc.21095 PubMed DOI PMC

Couly GF, Coltey PM, Douarin NML. The developmental fate of the cephalic mesoderm in quail-chick chimeras. Development. 1992;114:1–15. PubMed

Creuzet S, Couly G, Le Douarin NM. Patterning the neural crest derivatives during development of the vertebrate head: insights from avian studies. J Anat. 2005;207(5):447–59. 10.1111/j.1469-7580.2005.00485.x PubMed DOI PMC

Gage PJ, Rhoades W, Prucka SK, Hjalt T. Fate maps of neural crest and mesoderm in the mammalian eye. Investigative ophthalmology & visual science. 2005;46(11):4200–8. Epub 2005/10/27. 10.1167/iovs.05-0691 . PubMed DOI

Grenier J, Teillet MA, Grifone R, Kelly RG, Duprez D. Relationship between neural crest cells and cranial mesoderm during head muscle development. PLoS ONE. 2009;4(2):e4381 10.1371/journal.pone.0004381 . PubMed DOI PMC

Johnston MC, Noden DM, Hazelton RD, Coulombre JL, Coulombre AJ. Origins of avian ocular and periocular tissues. Exp Eye Res. 1979;29(1):27–43. 10.1016/0014-4835(79)90164-7 . PubMed DOI

Noden DM. The embryonic origins of avian cephalic and cervical muscles and associated connective tissues. Am J Anat. 1983;168:257–76. 10.1002/aja.1001680302 PubMed DOI

Sevel D. The origins and insertions of the extraocular muscles: development, histologic features, and clinical significance. Trans Am Ophthalmol Soc. 1986;84:488–526. PubMed PMC

Danielian PS, Muccino D, Rowitch DH, Michael SK, McMahon AP. Modification of gene activity in mouse embryos in utero by a tamoxifen-inducible form of Cre recombinase. Curr Biol. 1998;8(24):1323–6. 10.1016/s0960-9822(07)00562-3 . PubMed DOI

Saga Y, Miyagawa-Tomita S, Takagi A, Kitajima S, Miyazaki J, Inoue T. MesP1 is expressed in the heart precursor cells and required for the formation of a single heart tube. Development. 1999;126(15):3437–47. . PubMed

Mathew SJ, Hansen JM, Merrell AJ, Murphy MM, Lawson JA, Hutcheson DA, et al. Connective tissue fibroblasts and Tcf4 regulate myogenesis. Development. 2011;138(2):371–84. Epub 2010/12/24. 10.1242/dev.057463 PubMed DOI PMC

Pryce BA, Brent AE, Murchison ND, Tabin CJ, Schweitzer R. Generation of transgenic tendon reporters, ScxGFP and ScxAP, using regulatory elements of the scleraxis gene. Developmental dynamics: an official publication of the American Association of Anatomists. 2007;236(6):1677–82. Epub 2007/05/15. 10.1002/dvdy.21179 . PubMed DOI

Deries M, Schweitzer R, Duxson MJ. Developmental fate of the mammalian myotome. Developmental dynamics: an official publication of the American Association of Anatomists. 2010;239(11):2898–910. 10.1002/dvdy.22425 . PubMed DOI

Stricker S, Mathia S, Haupt J, Seemann P, Meier J, Mundlos S. Odd-skipped related genes regulate differentiation of embryonic limb mesenchyme and bone marrow mesenchymal stromal cells. Stem Cells Dev. 2012;21(4):623–33. 10.1089/scd.2011.0154 . PubMed DOI

Sulik KK, Dehart DB, Johnson CS, Ellis SL, Chen SY, Dunty WC Jr., et al. Programmed cell death in extraocular muscle tendon/sclera precursors. Molecular vision. 2001;7:184–91. Epub 2001/08/15. . PubMed

Fogel JL, Thein TZ, Mariani FV. Use of LysoTracker to detect programmed cell death in embryos and differentiating embryonic stem cells. J Vis Exp. 2012;(68). 10.3791/4254 PubMed DOI PMC

Blitz E, Sharir A, Akiyama H, Zelzer E. Tendon-bone attachment unit is formed modularly by a distinct pool of Scx- and Sox9-positive progenitors. Development. 2013;140(13):2680–90. 10.1242/dev.093906 . PubMed DOI

Blitz E, Viukov S, Sharir A, Shwartz Y, Galloway JL, Pryce BA, et al. Bone ridge patterning during musculoskeletal assembly is mediated through SCX regulation of Bmp4 at the tendon-skeleton junction. Developmental cell. 2009;17(6):861–73. 10.1016/j.devcel.2009.10.010 PubMed DOI PMC

Roberts RR, Bobzin L, Teng CS, Pal D, Tuzon CT, Schweitzer R, et al. FGF signaling patterns cell fate at the interface between tendon and bone. Development. 2019;146(15). 10.1242/dev.170241 PubMed DOI PMC

Sugimoto Y, Takimoto A, Akiyama H, Kist R, Scherer G, Nakamura T, et al. Scx+/Sox9+ progenitors contribute to the establishment of the junction between cartilage and tendon/ligament. Development. 2013;140(11):2280–8. 10.1242/dev.096354 . PubMed DOI

Thompson H, Griffiths JS, Jeffery G, McGonnell IM. The retinal pigment epithelium of the eye regulates the development of scleral cartilage. Developmental biology. 2010;347(1):40–52. 10.1016/j.ydbio.2010.08.006 PubMed DOI PMC

Grindley JC, Davidson DR, Hill RE. The role of Pax-6 in eye and nasal development. Development. 1995;121(5):1433–42. . PubMed

Roberts RC. Small eyes—a new dominant eye mutant in the mouse. Genet Res, Cam. 1967;9:121–2. 10.1017/S0016672300010387 DOI

Kaufman MH, Chang HH, Shaw JP. Craniofacial abnormalities in homozygous Small eye (Sey/Sey) embryos and newborn mice. J Anat. 1995;186(Pt 3):607–17. PubMed PMC

Hagglund AC, Dahl L, Carlsson L. Lhx2 is required for patterning and expansion of a distinct progenitor cell population committed to eye development. PLoS ONE. 2011;6(8):e23387 10.1371/journal.pone.0023387 PubMed DOI PMC

Twitty VC. Influence of the eye on the growth of its associated structures, studied by means of heteroplastic transplantation. Journal of Experimental Zoology. 1932;61:333–74. 10.1002/jez.1400610302 DOI

Duester G. Keeping an eye on retinoic acid signaling during eye development. Chem Biol Interact. 2009;178(1–3):178–81. 10.1016/j.cbi.2008.09.004 PubMed DOI PMC

Dupe V, Matt N, Garnier JM, Chambon P, Mark M, Ghyselinck NB. A newborn lethal defect due to inactivation of retinaldehyde dehydrogenase type 3 is prevented by maternal retinoic acid treatment. Proceedings of the National Academy of Sciences of the United States of America. 2003;100(24):14036–41. 10.1073/pnas.2336223100 PubMed DOI PMC

Rhinn M, Schuhbaur B, Niederreither K, Dolle P. Involvement of retinol dehydrogenase 10 in embryonic patterning and rescue of its loss of function by maternal retinaldehyde treatment. Proceedings of the National Academy of Sciences of the United States of America. 2011;108(40):16687–92. 10.1073/pnas.1103877108 PubMed DOI PMC

Osumi-Yamashita N, Ninomiya Y, Doi H, Eto K. The contribution of both forebrain and midbrain crest cells to the mesenchyme in the frontonasal mass of mouse embryos. Developmental biology. 1994;164(2):409–19. 10.1006/dbio.1994.1211 . PubMed DOI

Serbedzija GN, Bronner-Fraser M, Fraser SE. Vital dye analysis of cranial neural crest cell migration in the mouse embryo. Development. 1992;116(2):297–307. . PubMed

Chawla B, Schley E, Williams AL, Bohnsack BL. Retinoic Acid and Pitx2 Regulate Early Neural Crest Survival and Migration in Craniofacial and Ocular Development. Birth Defects Res B Dev Reprod Toxicol. 2016;107(3):126–35. 10.1002/bdrb.21177 . PubMed DOI

Sandell LL, Sanderson BW, Moiseyev G, Johnson T, Mushegian A, Young K, et al. RDH10 is essential for synthesis of embryonic retinoic acid and is required for limb, craniofacial, and organ development. Genes & development. 2007;21(9):1113–24. 10.1101/gad.1533407 PubMed DOI PMC

Colasanto MP, Eyal S, Mohassel P, Bamshad M, Bonnemann CG, Zelzer E, et al. Development of a subset of forelimb muscles and their attachment sites requires the ulnar-mammary syndrome gene Tbx3. Dis Model Mech. 2016;9(11):1257–69. 10.1242/dmm.025874 PubMed DOI PMC

Hasson P, DeLaurier A, Bennett M, Grigorieva E, Naiche LA, Papaioannou VE, et al. Tbx4 and tbx5 acting in connective tissue are required for limb muscle and tendon patterning. Developmental cell. 2010;18(1):148–56. 10.1016/j.devcel.2009.11.013 PubMed DOI PMC

Swinehart IT, Schlientz AJ, Quintanilla CA, Mortlock DP, Wellik DM. Hox11 genes are required for regional patterning and integration of muscle, tendon and bone. Development. 2013;140(22):4574–82. 10.1242/dev.096693 PubMed DOI PMC

Chassot AA, Le Rolle M, Jolivet G, Stevant I, Guigonis JM, Da Silva F, et al. Retinoic acid synthesis by ALDH1A proteins is dispensable for meiosis initiation in the mouse fetal ovary. Sci Adv. 2020;6(21):eaaz1261 Epub 2020/06/05. 10.1126/sciadv.aaz1261 PubMed DOI PMC

Madisen L, Zwingman TA, Sunkin SM, Oh SW, Zariwala HA, Gu H, et al. A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. Nature neuroscience. 2010;13(1):133–40. Epub 2009/12/22. 10.1038/nn.2467 PubMed DOI PMC

Muzumdar MD, Tasic B, Miyamichi K, Li L, Luo L. A global double-fluorescent Cre reporter mouse. Genesis. 2007;45(9):593–605. 10.1002/dvg.20335 . PubMed DOI

Nakamura E, Nguyen MT, Mackem S. Kinetics of tamoxifen-regulated Cre activity in mice using a cartilage-specific CreER(T) to assay temporal activity windows along the proximodistal limb skeleton. Developmental dynamics: an official publication of the American Association of Anatomists. 2006;235(9):2603–12. 10.1002/dvdy.20892 . PubMed DOI

Nguyen MT, Zhu J, Nakamura E, Bao X, Mackem S. Tamoxifen-dependent, inducible Hoxb6CreERT recombinase function in lateral plate and limb mesoderm, CNS isthmic organizer, posterior trunk neural crest, hindgut, and tailbud. Developmental dynamics: an official publication of the American Association of Anatomists. 2009;238(2):467–74. 10.1002/dvdy.21846 PubMed DOI PMC

Rajaii F, Bitzer ZT, Xu Q, Sockanathan S. Expression of the dominant negative retinoid receptor, RAR403, alters telencephalic progenitor proliferation, survival, and cell fate specification. Developmental biology. 2008;316(2):371–82. 10.1016/j.ydbio.2008.01.041 . PubMed DOI

Wood WM, Etemad S, Yamamoto M, Goldhamer DJ. MyoD-expressing progenitors are essential for skeletal myogenesis and satellite cell development. Developmental biology. 2013;384(1):114–27. Epub 2013/09/24. 10.1016/j.ydbio.2013.09.012 PubMed DOI PMC

Kastner P, Grondona JM, Mark M, Gansmuller A, LeMeur M, Decimo D, et al. Genetic analysis of RXR alpha developmental function: convergence of RXR and RAR signaling pathways in heart and eye morphogenesis. Cell. 1994;78(6):987–1003. 10.1016/0092-8674(94)90274-7 . PubMed DOI

Mori M, Ghyselinck NB, Chambon P, Mark M. Systematic immunolocalization of retinoid receptors in developing and adult mouse eyes. Investigative ophthalmology & visual science. 2001;42(6):1312–8. . PubMed

Oh SP, Griffith CM, Hay ED, Olsen BR. Tissue-specific expression of type XII collagen during mouse embryonic development. Developmental dynamics: an official publication of the American Association of Anatomists. 1993;196(1):37–46. 10.1002/aja.1001960105 . PubMed DOI

Sambasivan R, Gayraud-Morel B, Dumas G, Cimper C, Paisant S, Kelly R, et al. Distinct regulatory cascades govern extraocular and pharyngeal arch muscle progenitor cell fates. Developmental cell. 2009;16(6):810–21. 10.1016/j.devcel.2009.05.008 . PubMed DOI

Huang AH, Riordan TJ, Pryce B, Weibel JL, Watson SS, Long F, et al. Musculoskeletal integration at the wrist underlies the modular development of limb tendons. Development. 2015;142(14):2431–41. 10.1242/dev.122374 PubMed DOI PMC

McBratney-Owen B, Iseki S, Bamforth SD, Olsen BR, Morriss-Kay GM. Development and tissue origins of the mammalian cranial base. Developmental biology. 2008;322(1):121–32. 10.1016/j.ydbio.2008.07.016 PubMed DOI PMC

Heude E, Tesarova M, Sefton EM, Jullian E, Adachi N, Grimaldi A, et al. Unique morphogenetic signatures define mammalian neck muscles and associated connective tissues. Elife. 2018;7 10.7554/eLife.40179 PubMed DOI PMC

Germain P, Gaudon C, Pogenberg V, Sanglier S, Van Dorsselaer A, Royer CA, et al. Differential action on coregulator interaction defines inverse retinoid agonists and neutral antagonists. Chem Biol. 2009;16(5):479–89. 10.1016/j.chembiol.2009.03.008 . PubMed DOI

Chambers D, Wilson L, Maden M, Lumsden A. RALDH-independent generation of retinoic acid during vertebrate embryogenesis by CYP1B1. Development. 2007;134(7):1369–83. 10.1242/dev.02815 . PubMed DOI

Rossant J, Zirngibl R, Cado D, Shago M, Giguere V. Expression of a retinoic acid response element-hsplacZ transgene defines specific domains of transcriptional activity during mouse embryogenesis. Genes & development. 1991;5(8):1333–44. 10.1101/gad.5.8.1333 . PubMed DOI

Comai G, Sambasivan R, Gopalakrishnan S, Tajbakhsh S. Variations in the efficiency of lineage marking and ablation confound distinctions between myogenic cell populations. Developmental cell. 2014;31(5):654–67. Epub 2014/12/10. 10.1016/j.devcel.2014.11.005 . PubMed DOI

Liu J, Willet SG, Bankaitis ED, Xu Y, Wright CV, Gu G. Non-parallel recombination limits Cre-LoxP-based reporters as precise indicators of conditional genetic manipulation. Genesis. 2013;51(6):436–42. Epub 2013/02/27. 10.1002/dvg.22384 PubMed DOI PMC

Long MA, Rossi FM. Silencing inhibits Cre-mediated recombination of the Z/AP and Z/EG reporters in adult cells. PLoS ONE. 2009;4(5):e5435 10.1371/journal.pone.0005435 PubMed DOI PMC

Ma Q, Zhou B, Pu WT. Reassessment of Isl1 and Nkx2-5 cardiac fate maps using a Gata4-based reporter of Cre activity. Developmental biology. 2008;323(1):98–104. Epub 2008/09/09. 10.1016/j.ydbio.2008.08.013 PubMed DOI PMC

Chevallier A, Kieny M. On the role of the connective tissue in the patterning of the chick limb musculature. Wilehm Roux Arch Dev Biol. 1982;191(4):277–80. 10.1007/BF00848416 . PubMed DOI

Rodriguez-Guzman M, Montero JA, Santesteban E, Ganan Y, Macias D, Hurle JM. Tendon-muscle crosstalk controls muscle bellies morphogenesis, which is mediated by cell death and retinoic acid signaling. Developmental biology. 2007;302(1):267–80. 10.1016/j.ydbio.2006.09.034 . PubMed DOI

Gilbert P. The origin and development of the human extrinsic ocular muscles. 1957. Carnegie Inst. Wash. Publ. 611, Contrib. Embryol. 36: 59–78.

Gilbert PW. The origin and development of the extrinsic ocular muscles in the domestic cat. Journal of morphology. 1947;81(2):151–93. Epub 1947/09/01. . PubMed

Jernvall J, Aberg T, Kettunen P, Keranen S, Thesleff I. The life history of an embryonic signaling center: BMP-4 induces p21 and is associated with apoptosis in the mouse tooth enamel knot. Development. 1998;125(2):161–9. . PubMed

Nonomura K, Yamaguchi Y, Hamachi M, Koike M, Uchiyama Y, Nakazato K, et al. Local apoptosis modulates early mammalian brain development through the elimination of morphogen-producing cells. Developmental cell. 2013;27(6):621–34. 10.1016/j.devcel.2013.11.015 . PubMed DOI

Moreno E, Valon L, Levillayer F, Levayer R. Competition for Space Induces Cell Elimination through Compaction-Driven ERK Downregulation. Curr Biol. 2019;29(1):23–34 e8. 10.1016/j.cub.2018.11.007 PubMed DOI PMC

Franz-Odendaal TA, Vickaryous MK. Skeletal elements in the vertebrate eye and adnexa: morphological and developmental perspectives. Developmental dynamics: an official publication of the American Association of Anatomists. 2006;235(5):1244–55. 10.1002/dvdy.20718 . PubMed DOI

Eyal S, Kult S, Rubin S, Krief S, Felsenthal N, Pineault KM, et al. Bone morphology is regulated modularly by global and regional genetic programs. Development. 2019;146(14). 10.1242/dev.167882 PubMed DOI PMC

Kish PE, Bohnsack BL, Gallina D, Kasprick DS, Kahana A. The eye as an organizer of craniofacial development. Genesis. 2011;49(4):222–30. Epub 2011/02/11. 10.1002/dvg.20716 PubMed DOI PMC

Langenberg T, Kahana A, Wszalek JA, Halloran MC. The eye organizes neural crest cell migration. Developmental dynamics: an official publication of the American Association of Anatomists. 2008;237(6):1645–52. 10.1002/dvdy.21577 PubMed DOI PMC

Zein WM, Lewanda AF, Traboulsi EI, Jabs EW. Ocular Manifestations of Syndromes with Craniofacial Abnormalities In: Traboulsi EI, editor. Genetic Diseases of the Eye (2nd ed). New York: Oxford University Press; 2012. p. 174–89

Durand JP. Ocular development and involution in the European cave salamander, Proteus anguinus laurenti. Biol Bull. 1976;151(3):450–66. 10.2307/1540499 . PubMed DOI

Yamamoto Y, Stock DW, Jeffery WR. Hedgehog signalling controls eye degeneration in blind cavefish. Nature. 2004;431(7010):844–7. 10.1038/nature02864 . PubMed DOI

Lamb TD, Collin SP, Pugh EN Jr. Evolution of the vertebrate eye: opsins, photoreceptors, retina and eye cup. Nature reviews Neuroscience. 2007;8(12):960–76. 10.1038/nrn2283 PubMed DOI PMC

Tajbakhsh S, Rocancourt D, Buckingham M. Muscle progenitor cells failing to respond to positional cues adopt non-myogenic fates in myf-5 null mice. Nature. 1996;384:266–70. 10.1038/384266a0 PubMed DOI

Yamamoto M, Shook NA, Kanisicak O, Yamamoto S, Wosczyna MN, Camp JR, et al. A multifunctional reporter mouse line for Cre- and FLP-dependent lineage analysis. Genesis. 2009;47(2):107–14. 10.1002/dvg.20474 . PubMed DOI PMC

Chapellier B, Mark M, Bastien J, Dierich A, LeMeur M, Chambon P, et al. A conditional floxed (loxP-flanked) allele for the retinoic acid receptor beta (RARbeta) gene. Genesis. 2002;32(2):91–4. 10.1002/gene.10073 . PubMed DOI

Chapellier B, Mark M, Garnier JM, Dierich A, Chambon P, Ghyselinck NB. A conditional floxed (loxP-flanked) allele for the retinoic acid receptor gamma (RARgamma) gene. Genesis. 2002;32(2):95–8. 10.1002/gene.10072 . PubMed DOI

Comai G, Heude E, Mella S, Paisant S, Pala F, Gallardo M, et al. A distinct cardiopharyngeal mesoderm genetic hierarchy establishes antero-posterior patterning of esophagus striated muscle. Elife. 2019;8 10.7554/eLife.47460 PubMed DOI PMC

Yokomizo T, Yamada-Inagawa T, Yzaguirre AD, Chen MJ, Speck NA, Dzierzak E. Whole-mount three-dimensional imaging of internally localized immunostained cells within mouse embryos. Nat Protoc. 2012;7(3):421–31. 10.1038/nprot.2011.441 PubMed DOI PMC

Zucker RM, Hunter ES, 3rd, Rogers JM. Apoptosis and morphology in mouse embryos by confocal laser scanning microscopy. Methods. 1999;18(4):473–80. 10.1006/meth.1999.0815 . PubMed DOI

Babai F, Musevi-Aghdam J, Schurch W, Royal A, Gabbiani G. Coexpression of alpha-sarcomeric actin, alpha-smooth muscle actin and desmin during myogenesis in rat and mouse embryos I. Skeletal muscle. Differentiation. 1990;44(2):132–42. 10.1111/j.1432-0436.1990.tb00546.x . PubMed DOI

Li L, Miano JM, Cserjesi P, Olson EN. SM22 alpha, a marker of adult smooth muscle, is expressed in multiple myogenic lineages during embryogenesis. Circulation research. 1996;78(2):188–95. 10.1161/01.res.78.2.188 . PubMed DOI

Sawtell NM, Lessard JL. Cellular distribution of smooth muscle actins during mammalian embryogenesis: expression of the alpha-vascular but not the gamma-enteric isoform in differentiating striated myocytes. The Journal of cell biology. 1989;109(6 Pt 1):2929–37. 10.1083/jcb.109.6.2929 PubMed DOI PMC

Li Z, Marchand P, Humbert J, Babinet C, Paulin D. Desmin sequence elements regulating skeletal muscle-specific expression in transgenic mice. Development. 1993;117(3):947–59. . PubMed

Bader D, Masaki T, Fischman DA. Immunochemical analysis of myosin heavy chain during avian myogenesis in vivo and in vitro. The Journal of cell biology. 1982;95(3):763–70. 10.1083/jcb.95.3.763 PubMed DOI PMC

Metscher BD. MicroCT for developmental biology: a versatile tool for high-contrast 3D imaging at histological resolutions. Developmental dynamics: an official publication of the American Association of Anatomists. 2009;238(3):632–40. 10.1002/dvdy.21857 . PubMed DOI

Kaucka M, Petersen J, Tesarova M, Szarowska B, Kastriti ME, Xie M, et al. Signals from the brain and olfactory epithelium control shaping of the mammalian nasal capsule cartilage. Elife. 2018;7 10.7554/eLife.34465 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace