Anoxygenic photosynthesis with emphasis on green sulfur bacteria and a perspective for hydrogen sulfide detoxification of anoxic environments
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic-ecollection
Document type Journal Article, Review
PubMed
39056005
PubMed Central
PMC11269200
DOI
10.3389/fmicb.2024.1417714
Knihovny.cz E-resources
- Keywords
- anaerobes, anoxygenic bacteria, bacterial photosynthesis, bacterial physiology, biotechnology, microbiology,
- Publication type
- Journal Article MeSH
- Review MeSH
The bacterial light-dependent energy metabolism can be divided into two types: oxygenic and anoxygenic photosynthesis. Bacterial oxygenic photosynthesis is similar to plants and is characteristic for cyanobacteria. Bacterial anoxygenic photosynthesis is performed by anoxygenic phototrophs, especially green sulfur bacteria (GSB; family Chlorobiaceae) and purple sulfur bacteria (PSB; family Chromatiaceae). In anoxygenic photosynthesis, hydrogen sulfide (H2S) is used as the main electron donor, which differs from plants or cyanobacteria where water is the main source of electrons. This review mainly focuses on the microbiology of GSB, which may be found in water or soil ecosystems where H2S is abundant. GSB oxidize H2S to elemental sulfur. GSB possess special structures-chlorosomes-wherein photosynthetic pigments are located. Chlorosomes are vesicles that are surrounded by a lipid monolayer that serve as light-collecting antennas. The carbon source of GSB is carbon dioxide, which is assimilated through the reverse tricarboxylic acid cycle. Our review provides a thorough introduction to the comparative eco-physiology of GSB and discusses selected application possibilities of anoxygenic phototrophs in the fields of environmental management, bioremediation, and biotechnology.
Department of Experimental Biology Faculty of Science Masaryk University Brno Czechia
School of Pharmacy and Biomolecular Sciences Royal College of Surgeons in Ireland Dublin Ireland
See more in PubMed
Antranikian G., Herzberg C., Gottschalk G. (1982). Characterization of ATP citrate lyase from Chlorobium limicola. J. Bacteriol. 152, 1284–1287. doi: 10.1128/jb.152.3.1284-1287.1982, PMID: PubMed DOI PMC
Atlas R. M. (2010). Handbook of Microbiological Media, Fourth Edition. 4th Edn. Washington, D.C.: Boca Raton, FL: CRC Press.
Badalamenti J. P., Torres C. I., Krajmalnik-Brown R. (2014). Coupling dark metabolism to electricity generation using photosynthetic cocultures. Biotechnol. Bioeng. 111, 223–231. doi: 10.1002/bit.25011, PMID: PubMed DOI
Baymann F., Brugna M., Mühlenhoff U., Nitschke W. (2001). Daddy, where did (PS)I come from? Biochim. Biophys. Acta Bioenerg. 1507, 291–310. doi: 10.1016/S0005-2728(01)00209-2, PMID: PubMed DOI
Bello S., Howard-Azzeh M., Schellhorn H. E., Gupta R. S. (2022). Phylogenomic analyses and molecular signatures elucidating the evolutionary relationships amongst the Chlorobia and Ignavibacteria species: robust demarcation of two family-level clades within the order Chlorobiales and proposal for the family Chloroherpetonaceae fam. Nov. Microorganisms 10:1312. doi: 10.3390/microorganisms10071312, PMID: PubMed DOI PMC
Bertsova Y. V., Mamedov M. D., Bogachev A. V. (2019). Na+−translocating ferredoxin: NAD+ oxidoreductase is a component of photosynthetic Electron transport chain in green sulfur Bacteria. Biochem. Mosc. 84, 1403–1410. doi: 10.1134/S0006297919110142, PMID: PubMed DOI
Brune D. C. (1989). Sulfur oxidation by phototrophic bacteria. Biochim. Biophys. Acta Bioenerg. 975, 189–221. doi: 10.1016/S0005-2728(89)80251-8 PubMed DOI
Bryant D. A. (2019). “Phototrophy and phototrophs” in Reference module in life sciences, encyclopedia of microbiology (Fourth Edition). ed. Schmidt T. M. (Academic Press; ), 527–537.
Bryant D. A., Frigaard N.-U. (2006). Prokaryotic photosynthesis and phototrophy illuminated. Trends Microbiol. 14, 488–496. doi: 10.1016/j.tim.2006.09.001 PubMed DOI
Buchanan B. B., Arnon D. I. (1990). A reverse KREBS cycle in photosynthesis: consensus at last. Photosynth. Res. 24, 47–53. doi: 10.1007/BF00032643, PMID: PubMed DOI
Černý M., Vítězová M., Vítěz T., Bartoš M., Kushkevych I. (2018). Variation in the distribution of hydrogen producers from the Clostridiales order in biogas reactors depending on different input substrates. Energies 11:3270. doi: 10.3390/en11123270 DOI
Chen J.-H., Wu H., Xu C., Liu X.-C., Huang Z., Chang S., et al. . (2020). Architecture of the photosynthetic complex from a green sulfur bacterium. Science 370:eabb6350. doi: 10.1126/science.abb6350, PMID: PubMed DOI
Cole J. A., Hughes D. E. (1965). The metabolism of polyphosphates in Chlorobium thiosulfatophilum. J. Gen. Microbiol. 38, 65–72. doi: 10.1099/00221287-38-1-65 PubMed DOI
Cui L., Lu J., Song X., Tang L., Li Y., Dong Y. (2021). Energy conservation and efficiency improvement by coupling wet flue gas desulfurization with condensation desulfurization. Fuel 285:119209. doi: 10.1016/j.fuel.2020.119209 DOI
Davenport C., Ussery D. W., Tümmler B. (2010). Comparative genomics of green sulfur bacteria. Photosynth. Res. 104, 137–152. doi: 10.1007/s11120-009-9515-2 PubMed DOI
De Leon S. A., Jackson A. E., Black W., Thomas W., Kruback M., Baxter J., et al. . (2023). An analysis of great salt Lake Winogradsky columns. J. Oceanol. Limnol. 41, 1352–1368. doi: 10.1007/s00343-022-2140-z DOI
Desvaux M. (2005). Clostridium cellulolyticum: model organism of mesophilic cellulolytic clostridia. FEMS Microbiol. Rev. 29, 741–764. doi: 10.1016/j.femsre.2004.11.003, PMID: PubMed DOI
Di Nezio F., Beney C., Roman S., Danza F., Buetti-Dinh A., Tonolla M., et al. . (2021). Anoxygenic photo- and chemo-synthesis of phototrophic sulfur bacteria from an alpine meromictic lake. FEMS Microbiol. Ecol. 97:fiab010. doi: 10.1093/femsec/fiab010, PMID: PubMed DOI PMC
Dordević D., Jančíková S., Vítězová M., Kushkevych I. (2020). Hydrogen sulfide toxicity in the gut environment: Meta-analysis of sulfate-reducing and lactic acid bacteria in inflammatory processes. J. Adv. Res. 27, 55–69. doi: 10.1016/j.jare.2020.03.003, PMID: PubMed DOI PMC
Eisen J. A., Nelson K. E., Paulsen I. T., Heidelberg J. F., Wu M., Dodson R. J., et al. . (2002). The complete genome sequence of Chlorobium tepidum TLS, a photosynthetic, anaerobic, green-sulfur bacterium. Proc. Natl. Acad. Sci. USA 99, 9509–9514. doi: 10.1073/pnas.132181499, PMID: PubMed DOI PMC
Evans M. C., Buchanan B. B., Arnon D. I. (1966). A new ferredoxin-dependent carbon reduction cycle in a photosynthetic bacterium. Proc. Natl. Acad. Sci. USA 55, 928–934. doi: 10.1073/pnas.55.4.928, PMID: PubMed DOI PMC
Fatehbasharzad P., Aliasghari S., Shaterzadeh Tabrizi I., Khan J. A., Boczkaj G. (2022). Microbial fuel cell applications for removal of petroleum hydrocarbon pollutants: a review. Water Res. Indus. 28:100178. doi: 10.1016/j.wri.2022.100178 DOI
Figueras J. B., Garcia-Gil L. J., Abella C. A. (2006). Phylogeny of the genus Chlorobium based on 16S rDNA sequence. FEMS Microbiol. Lett. 152, 31–36. doi: 10.1111/j.1574-6968.1997.tb10405.x, PMID: PubMed DOI
Finster K., Coates J. D., Liesack W., Pfennig N. (1997). Desulfuromonas thiophila sp. nov., a new Obligately sulfur-reducing bacterium from anoxic freshwater sediment. Int. J. Syst. Bacteriol. 47, 754–758. doi: 10.1099/00207713-47-3-754, PMID: PubMed DOI
Frank H. A., Cogdell R. J. (1996). Carotenoids in photosynthesis. Photochem. Photobiol. 63, 257–264. doi: 10.1111/j.1751-1097.1996.tb03022.x PubMed DOI
Frigaard N.-U. (2016). Biotechnology of Anoxygenic phototrophic Bacteria. Adv. Biochem. Eng. Biotechnol. 156, 139–154. doi: 10.1007/10_2015_5006 PubMed DOI
Frigaard N.-U., Dahl C. (2008). Sulfur metabolism in phototrophic sulfur bacteria. Adv. Microb. Physiol. 54, 103–200. doi: 10.1016/S0065-2911(08)00002-7 PubMed DOI
Fuchs G., Stupperich E., Eden G. (1980a). Autotrophic CO2 fixation in Chlorobium limicola. Evidence for the operation of a reductive tricarboxylic acid cycle in growing cells. Arch. Microbiol. 128, 64–71. doi: 10.1007/BF00422307 DOI
Fuchs G., Stupperich E., Jaenchen R. (1980b). Autotrophic CO2 fixation in Chlorobium limicola. Evidence against the operation of the Calvin cycle in growing cells. Arch. Microbiol. 128, 56–63. doi: 10.1007/BF00422306 DOI
Garcia C. V., Kim Y.-T. (2021). Spent coffee grounds and coffee Silverskin as potential materials for packaging: a review. J. Polym. Environ. 29, 2372–2384. doi: 10.1007/s10924-021-02067-9 DOI
Gorka M., Baldansuren A., Malnati A., Gruszecki E., Golbeck J. H., Lakshmi K. V. (2021). Shedding light on primary donors in photosynthetic reaction centers. Front. Microbiol. 12:735666. doi: 10.3389/fmicb.2021.735666, PMID: PubMed DOI PMC
Gregersen L., Bryant D., Frigaard N.-U. (2011). Mechanisms and evolution of oxidative sulfur metabolism in green sulfur Bacteria. Front. Microbiol. 2:116. doi: 10.3389/fmicb.2011.00116, PMID: PubMed DOI PMC
Gupta R. S. (2004). The phylogeny and signature sequences characteristics of Fibrobacteres, Chlorobi, and Bacteroidetes. Crit. Rev. Microbiol. 30, 123–143. doi: 10.1080/10408410490435133 PubMed DOI
Gupta R. S., Lorenzini E. (2007). Phylogeny and molecular signatures (conserved proteins and indels) that are specific for the Bacteroidetes and Chlorobi species. BMC Evol. Biol. 7:71. doi: 10.1186/1471-2148-7-71, PMID: PubMed DOI PMC
Guyoneaud R., Borrego C. M., Martínez-Planells A., Buitenhuis E. T., Garcia-Gil J. L. (2001). Light responses in the green sulfur bacterium Prosthecochloris aestuarii: changes in prosthecae length, ultrastructure, and antenna pigment composition. Arch. Microbiol. 176, 278–284. doi: 10.1007/s002030100320, PMID: PubMed DOI
Han S., Li Y., Gao H. (2022). Generation and physiology of hydrogen sulfide and reactive sulfur species in Bacteria. Antioxidants 11:2487. doi: 10.3390/antiox11122487, PMID: PubMed DOI PMC
Hanada S. (2016). Anoxygenic photosynthesis —a photochemical reaction that does not contribute to oxygen reproduction—. Microbes Environ. 31, 1–3. doi: 10.1264/jsme2.ME3101rh PubMed DOI PMC
Hanišáková N., Vítězová M., Rittmann S. K.-M. R. (2022). The historical development of cultivation techniques for methanogens and other strict anaerobes and their application in modern microbiology. Microorganisms 10:412. doi: 10.3390/microorganisms10020412, PMID: PubMed DOI PMC
Hassan R. Y. A., Febbraio F., Andreescu S. (2021). Microbial electrochemical systems: principles, construction and biosensing applications. Sensors 21:1279. doi: 10.3390/s21041279, PMID: PubMed DOI PMC
Hauska G., Schoedl T., Remigy H., Tsiotis G. (2001). The reaction center of green sulfur bacteria1Dedicated to the memory of Jan Amesz.1. Biochim. Biophys. Acta Bioenerg. 1507, 260–277. doi: 10.1016/S0005-2728(01)00200-6, PMID: PubMed DOI
Henshaw P. F., Zhu W. (2001). Biological conversion of hydrogen sulphide to elemental Sulphur in a fixed-film continuous flow photo-reactor. Water Res. 35, 3605–3610. doi: 10.1016/S0043-1354(01)00082-3, PMID: PubMed DOI
Holkenbrink C., Barbas S. O., Mellerup A., Otaki H., Frigaard N.-U. (2011). Sulfur globule oxidation in green sulfur bacteria is dependent on the dissimilatory sulfite reductase system. Microbiology 157, 1229–1239. doi: 10.1099/mic.0.044669-0 PubMed DOI
Hughes D. E., Conti S. F., Fuller R. C. (1963). Inorganic polyphosphate metabolism in Chlorobium thiosulphatophilum. J. Bacteriol. 85, 577–584. doi: 10.1128/jb.85.3.577-584.1963, PMID: PubMed DOI PMC
Hunter C. N., Daldal F., Thurnauer M. C., Beatty J. T. (Eds.) (2009). The Purple Phototrophic Bacteria. Dordrecht: Springer Netherlands.
Hurse T. J., Kappler U., Keller J. (2008). “Using Anoxygenic photosynthetic Bacteria for the removal of sulfide from wastewater” in Sulfur Metabolism in Phototrophic Organisms. eds. Hell R., Dahl C., Knaff D., Leustek T. (Dordrecht: Springer Netherlands; ), 437–460.
Hurse T. J., Keller J. (2004). Reconsidering the use of photosynthetic bacteria for removal of sulfide from wastewater. Biotechnol. Bioeng. 85, 47–55. doi: 10.1002/bit.10816, PMID: PubMed DOI
Imhoff J. F. (2006). “The Chromatiaceae” in The Prokaryotes. eds. Dworkin M., Falkow S., Rosenberg E., Schleifer K.-H., Stackebrandt E. (New York, NY: Springer New York; ), 846–873.
Imhoff J. F., Thiel V. (2010). Phylogeny and taxonomy of Chlorobiaceae. Photosynth. Res. 104, 123–136. doi: 10.1007/s11120-009-9510-7 PubMed DOI
Jagannathan B., Golbeck J. H. (2009). “Photosynthesis: microbial” in Reference module in biomedical sciences, encyclopedia of microbiology (Third Edition). ed. Schaechter M. (Academic Press; ), 325–341.
Jiang L., Yang Y., Jin H., Wang H., Swift C. M., Xie Y., et al. . (2022). Geobacter sp. strain IAE Dihaloeliminates 1,1,2-Trichloroethane and 1,2-Dichloroethane. Environ. Sci. Technol. 56, 3430–3440. doi: 10.1021/acs.est.1c05952, PMID: PubMed DOI
Jørgensen B. B., Nelson D. C. (2004). Sulfide oxidation in marine sediments: geochemistry meets microbiology. doi: 10.1130/0-8137-2379-5.63 DOI
Kobayashi H. A., Stenstrom M., Mah R. A. (1983). Use of photosynthetic bacteria for hydrogen sulfide removal from anaerobic waste treatment effluent. Water Res. 17, 579–587. doi: 10.1016/0043-1354(83)90117-3 DOI
Kohl A. L., Nielsen R. B. (1997). “Sulfur recovery processes” in Gas Purification (Elsevier; ), 670–730.
Kolber Z. S., Van Dover C. L., Niederman R. A., Falkowski P. G. (2000). Bacterial photosynthesis in surface waters of the open ocean. Nature 407, 177–179. doi: 10.1038/35025044, PMID: PubMed DOI
Kudryashev M., Aktoudianaki A., Dedoglou D., Stahlberg H., Tsiotis G. (2014). The ultrastructure of Chlorobaculum tepidum revealed by cryo-electron tomography. Biochim. Biophys. Acta Bioenerg. 1837, 1635–1642. doi: 10.1016/j.bbabio.2014.06.002, PMID: PubMed DOI
Kumari A. (2018). “Citric acid cycle” in Sweet Biochemistry (Academic Press; ), 7–11.
Kushkevych I., Bosáková V., Vítězová M., Rittmann S. K.-M. R. (2021a). Anoxygenic photosynthesis in Photolithotrophic sulfur Bacteria and their role in Detoxication of hydrogen sulfide. Antioxidants 10:829. doi: 10.3390/antiox10060829, PMID: PubMed DOI PMC
Kushkevych I., Dordević D., Vítězová M. (2020). Possible synergy effect of hydrogen sulfide and acetate produced by sulfate-reducing bacteria on inflammatory bowel disease development. J. Adv. Res. 27, 71–78. doi: 10.1016/j.jare.2020.03.007, PMID: PubMed DOI PMC
Kushkevych I., Kováč J., Vítězová M., Vítěz T., Bartoš M. (2018a). The diversity of sulfate-reducing bacteria in the seven bioreactors. Arch. Microbiol. 200, 945–950. doi: 10.1007/s00203-018-1510-6, PMID: PubMed DOI
Kushkevych I., Procházka J., Gajdács M., Rittmann S. K.-M. R., Vítězová M. (2021b). Molecular physiology of anaerobic phototrophic purple and green sulfur Bacteria. IJMS 22:6398. doi: 10.3390/ijms22126398 PubMed DOI PMC
Kushkevych I., Vítězová M., Vítěz T., Bartoš M. (2017). Production of biogas: relationship between methanogenic and sulfate-reducing microorganisms. Open Life Sci. 12, 82–91. doi: 10.1515/biol-2017-0009 DOI
Kushkevych I., Vítězová M., Vítěz T., Kováč J., Kaucká P., Jesionek W., et al. . (2018b). A new combination of substrates: biogas production and diversity of the methanogenic microorganisms. Open Life Sci. 13, 119–128. doi: 10.1515/biol-2018-0017, PMID: PubMed DOI PMC
Kyndt J. A., Van Beeumen J. J., Meyer T. E. (2020). Simultaneous genome sequencing of Prosthecochloris ethylica and Desulfuromonas acetoxidans within a syntrophic mixture reveals unique pili and protein interactions. Microorganisms 8:1939. doi: 10.3390/microorganisms8121939, PMID: PubMed DOI PMC
Lazar D., Stirbet A., Björn L. O., Govindjee G. (2022). Light quality, oxygenic photosynthesis and more. Photo-Dermatology 60, 25–58. doi: 10.32615/ps.2021.055 DOI
Levytska O., Gudz S. (2010). The glycogen accumulation in cells of Chlorobium limicola under the conditions of the disruption of some steps of the Arnon’ cycle. Biol. Stud. 4, 5–14. doi: 10.30970/sbi.0403.114 DOI
Li B., Steindel P., Haddad N., Elliott S. J. (2021). Maximizing (electro)catalytic CO 2 reduction with a ferredoxin-based reduction potential gradient. ACS Catal. 11, 4009–4023. doi: 10.1021/acscatal.1c00092 DOI
Logan B. E., Hamelers B., Rozendal R., Schröder U., Keller J., Freguia S., et al. . (2006). Microbial fuel cells: methodology and technology. Environ. Sci. Technol. 40, 5181–5192. doi: 10.1021/es0605016 PubMed DOI
Loka Bharathi P. A. (2008). “Sulfur Cycle” in Encyclopedia of Ecology. eds. Jørgensen S. E., Fath B. D. (Elsevier Science; ), 3424–3431.
Lovley D. R. (2011). Powering microbes with electricity: direct electron transfer from electrodes to microbes. Environ. Microbiol. Rep. 3, 27–35. doi: 10.1111/j.1758-2229.2010.00211.x, PMID: PubMed DOI
Lovley D. R. (2012). Electromicrobiology. Ann. Rev. Microbiol. 66, 391–409. doi: 10.1146/annurev-micro-092611-150104 PubMed DOI
Madigan M. T., Jung D. O. (2009). “An Overview of purple Bacteria: systematics, physiology, and habitats” in The Purple Phototrophic Bacteria. (eds.) Hunter C. N., Daldal F., Thurnauer M. C., Beatty J. T. (Dordrecht: Springer Netherlands; ), 1–15
Maki J. S. (2013). Bacterial intracellular sulfur globules: structure and function. Microb. Physiol. 23, 270–280. doi: 10.1159/000351335, PMID: PubMed DOI
Malik K. A. (1984). A new method for liquid nitrogen storage of phototrophic bacteria under anaerobic conditions. J. Microbiol. Methods 2, 41–47. doi: 10.1016/0167-7012(84)90029-0 DOI
Manske A. K., Glaeser J., Kuypers M. M. M., Overmann J. (2005). Physiology and phylogeny of green sulfur Bacteria forming a monospecific phototrophic assemblage at a depth of 100 meters in the Black Sea. Appl. Environ. Microbiol. 71, 8049–8060. doi: 10.1128/AEM.71.12.8049-8060.2005, PMID: PubMed DOI PMC
Maresca J. A., Romberger S. P., Bryant D. A. (2008). Isorenieratene biosynthesis in green sulfur Bacteria requires the cooperative actions of two carotenoid Cyclases. J. Bacteriol. 190, 6384–6391. doi: 10.1128/JB.00758-08, PMID: PubMed DOI PMC
Marnocha C. L., Levy A. T., Powell D. H., Hanson T. E., Chan C. S. (2016). Mechanisms of extracellular S0 globule production and degradation in Chlorobaculum tepidum via dynamic cell–globule interactions. Microbiology 162, 1125–1134. doi: 10.1099/mic.0.000294, PMID: PubMed DOI PMC
Mauerhofer L.-M., Pappenreiter P., Paulik C., Seifert A. H., Bernacchi S., Rittmann S. K.-M. R. (2019). Methods for quantification of growth and productivity in anaerobic microbiology and biotechnology. Folia Microbiol. 64, 321–360. doi: 10.1007/s12223-018-0658-4, PMID: PubMed DOI PMC
Mukhopadhyay B., Johnson E. F., Ascano M. (1999). Conditions for vigorous growth on sulfide and reactor-scale cultivation protocols for the thermophilic green sulfur bacterium Chlorobium tepidum. Appl. Environ. Microbiol. 65, 301–306. doi: 10.1128/AEM.65.1.301-306.1999, PMID: PubMed DOI PMC
Ng C., DeMaere M. Z., Williams T. J., Lauro F. M., Raftery M., Gibson J. A., et al. . (2010). Metaproteogenomic analysis of a dominant green sulfur bacterium from ace Lake, Antarctica. ISME J. 4, 1002–1019. doi: 10.1038/ismej.2010.28, PMID: PubMed DOI
Nogales B., Guerrero R., Esteve I. (1994). Susceptibility of various purple and green sulfur bacteria to different antimicrobial agents. FEMS Microbiol. Lett. 123, 37–42. doi: 10.1111/j.1574-6968.1994.tb07198.x, PMID: PubMed DOI
Olson J. M. (2004). The FMO protein. Photosynth. Res. 80, 181–187. doi: 10.1023/B:PRES.0000030428.36950.43 PubMed DOI
Oren A., Garrity G. M. (2021). Valid publication of the names of forty-two phyla of prokaryotes. Int. J. Syst. Evol. Microbiol. 71:005056. doi: 10.1099/ijsem.0.005056 PubMed DOI
Orf G. S., Blankenship R. E. (2013). Chlorosome antenna complexes from green photosynthetic bacteria. Photosynth. Res. 116, 315–331. doi: 10.1007/s11120-013-9869-3 PubMed DOI
Otte S. C. M., van de Meent E. J., van Veelen P. A., Pundsnes A. S., Amesz J. (1993). Identification of the major chlorosomal bacteriochlorophylls of the green sulfur bacteria Chlorobium vibrioforme and Chlorobium phaeovibrioides; their function in lateral energy transfer. Photosynth. Res. 35, 159–169. doi: 10.1007/BF00014746, PMID: PubMed DOI
Overmann J. (2015). “Green sulfur bacteria” in Bergey’s Manual of Systematics of Archaea and Bacteria. ed. Whitman W. B. (John Wiley & Sons, Ltd; ), 1–8.
Overmann J., Cypionka H., Pfennig N. (1992a). An extremely low-light adapted phototrophic sulfur bacterium from the Black Sea. Limnol. Oceanogr. 37, 150–155. doi: 10.4319/lo.1992.37.1.0150 DOI
Overmann J., Fischer U., Pfennig N. (1992b). A new purple sulfur bacterium from saline littoral sediments, Thiorhodovibrio winogradskyi gen. Nov. and sp. nov. Arch. Microbiol. 157, 329–335. doi: 10.1007/BF00248677 DOI
Overmann J., Tuschak C. (1997). Phylogeny and molecular fingerprinting of green sulfur bacteria. Arch. Microbiol. 167, 302–309. doi: 10.1007/s002030050448 PubMed DOI
Overmann J., van Gemerden H. (2000). Microbial interactions involving sulfur bacteria: implications for the ecology and evolution of bacterial communities. FEMS Microbiol. Rev. 24, 591–599. doi: 10.1111/j.1574-6976.2000.tb00560.x, PMID: PubMed DOI
Paalme T., Olivson A., Vilu R. (1982). 13C-NMR study of CO2-fixation during the heterotrophic growth in Chlorobium thiosulfatophilum. Biochim. Biophys. Acta Mol. Cell Res. 720, 311–319. doi: 10.1016/0167-4889(82)90056-8 DOI
Percival S. L., Williams D. W. (2014). “Cyanobacteria” in Microbiology of Waterborne Diseases (Second edition), Amsterdam: Elsevier, Academic Press, 79–88.
Pfennig N., Biebl H. (1976). Desulfuromonas acetoxidans gen. Nov. and sp. nov., a new anaerobic, sulfur-reducing, acetate-oxidizing bacterium. Arch. Microbiol. 110, 3–12. doi: 10.1007/BF00416962, PMID: PubMed DOI
Pfennig N., Trüper H. G. (1981). “Isolation of members of the families Chromatiaceae and Chlorobiaceae” in The Prokaryotes. eds. Starr M. P., Stolp H., Trüper H. G., Balows A., Schlegel H. G. (Berlin, Heidelberg: Springer Berlin Heidelberg; ), 279–289.
Poddar S., Khurana S. (2011). Geobacter: the electric microbe! Efficient microbial fuel cells to generate clean, cheap electricity. Indian J. Microbiol. 51, 240–241. doi: 10.1007/s12088-011-0180-8, PMID: PubMed DOI PMC
Portis A. R., Parry M. A. J. (2007). Discoveries in rubisco (ribulose 1,5-bisphosphate carboxylase/oxygenase): a historical perspective. Photosynth. Res. 94, 121–143. doi: 10.1007/s11120-007-9225-6, PMID: PubMed DOI
Pšenčík J., Ikonen T. P., Laurinmäki P., Merckel M. C., Butcher S. J., Serimaa R. E., et al. . (2004). Lamellar organization of pigments in chlorosomes, the light harvesting complexes of green photosynthetic bacteria. Biophys. J. 87, 1165–1172. doi: 10.1529/biophysj.104.040956, PMID: PubMed DOI PMC
Puskar R., Du Truong C., Swain K., Chowdhury S., Chan K.-Y., Li S., et al. . (2022). Molecular asymmetry of a photosynthetic supercomplex from green sulfur bacteria. Nat. Commun. 13:5824. doi: 10.1038/s41467-022-33505-4, PMID: PubMed DOI PMC
Rubio Gomez M. A., Ibba M. (2020). Aminoacyl-tRNA synthetases. RNA 26, 910–936. doi: 10.1261/rna.071720.119, PMID: PubMed DOI PMC
Saeed M. U., Hussain N., Sumrin A., Shahbaz A., Noor S., Bilal M., et al. . (2022). Microbial bioremediation strategies with wastewater treatment potentialities—a review. Sci. Total Environ. 818:151754. doi: 10.1016/j.scitotenv.2021.151754 PubMed DOI
Saeid A., Chojnacka K. (2014). “Sulfuric Acid” in Reference module in biomedical sciences, encyclopedia of toxicology (Third Edition). ed. P. Wexler (Academic Press; ), 424–426.
Sánchez-Baracaldo P., Cardona T. (2020). On the origin of oxygenic photosynthesis and Cyanobacteria. New Phytol. 225, 1440–1446. doi: 10.1111/nph.16249 PubMed DOI
Sattley W. M., Swingley W. D. (2013). “Properties and evolutionary implications of the heliobacterial genome” in Advances in botanical research. ed. Beatty J. T. (Elsevier; ), 66, 67–97.
Seo D., Sakurai H. (2002). Purification and characterization of ferredoxin–NAD(P)+ reductase from the green sulfur bacterium Chlorobium tepidum. Biochim. Biophys. Acta Protein Struct. Mol. Enzymol. 1597, 123–132. doi: 10.1016/S0167-4838(02)00269-8, PMID: PubMed DOI
Shafiq I., Shafique S., Akhter P., Yang W., Hussain M. (2022). Recent developments in alumina supported hydrodesulfurization catalysts for the production of sulfur-free refinery products: a technical review. Catal. Rev. 64, 1–86. doi: 10.1080/01614940.2020.1780824 DOI
Sharifian-Koupaiee H., Naghavi N. S., Tavakoli-Ghinani T. (2022). Semi-continuous desulfurization of natural gas in photobioreactor by green sulfur-oxidizing bacterial consortia isolated from hot spring. Biomass Convers. Biorefinery 12, 2515–2523. doi: 10.1007/s13399-020-01068-3 DOI
Sharma S., Joshi J., Kataria S., Verma S. K., Chatterjee S., Jain M., et al. . (2020). “Regulation of the Calvin cycle under abiotic stresses: an overview” in Plant life under changing environment, responses and management. Academic Press, 681-717.
Sirevåg R., Ormerod J. G. (1970). Carbon dioxide fixation in green Sulphur bacteria. Biochem. J. 120, 399–408. doi: 10.1042/bj1200399, PMID: PubMed DOI PMC
Struk M., Kushkevych I., Vítězová M. (2020). Biogas upgrading methods: recent advancements and emerging technologies. Rev. Environ. Sci. Biotechnol. 19, 651–671. doi: 10.1007/s11157-020-09539-9 DOI
Struk M., Sepúlveda-Muñoz C. A., Kushkevych I., Muñoz R. (2023). Photoautotrophic removal of hydrogen sulfide from biogas using purple and green sulfur bacteria. J. Hazard. Mater. 443:130337. doi: 10.1016/j.jhazmat.2022.130337, PMID: PubMed DOI
Struk M., Vítězová M., Vítěz T., Bartoš M., Kushkevych I. (2019). Modřice plant anaerobic digester: microbial distribution and biogas production. Water Air Soil Pollut. 230:240. doi: 10.1007/s11270-019-4289-4 DOI
Swingley W. D., Blankenship R. E., Raymond J. (2009). “Evolutionary relationships among purple photosynthetic Bacteria and the origin of Proteobacterial photosynthetic systems” in The Purple Phototrophic Bacteria. eds. Hunter C. N., Daldal F., Thurnauer M. C., Beatty J. T. (Dordrecht: Springer Netherlands; ), 17–29.
Tabita F. R., McFadden B. A., Pfennig N. (1974). D-ribulose-1,5-bisphosphate carboxylase in Chlorobium thiosulfatophilum Tassajara. Biochim. Biophys. Acta. Enzymol. 341, 187–194. doi: 10.1016/0005-2744(74)90079-5, PMID: PubMed DOI
Tang K.-H., Blankenship R. E. (2010). Both forward and reverse TCA cycles operate in green sulfur Bacteria. J. Biol. Chem. 285, 35848–35854. doi: 10.1074/jbc.M110.157834, PMID: PubMed DOI PMC
Tang J. K.-H., Saikin S. K., Pingali S. V., Enriquez M. M., Huh J., Frank H. A., et al. . (2013). Temperature and carbon assimilation regulate the chlorosome biogenesis in green sulfur bacteria. Biophys. J. 105, 1346–1356. doi: 10.1016/j.bpj.2013.07.027, PMID: PubMed DOI PMC
Tang K.-H., Tang Y. J., Blankenship R. E. (2011). Carbon metabolic pathways in phototrophic Bacteria and their broader evolutionary implications. Front. Microbiol. 2:165. doi: 10.3389/fmicb.2011.00165, PMID: PubMed DOI PMC
Tucci M., Carolina C. V., Resitano M., Matturro B., Crognale S., Pietrini I., et al. . (2021). Simultaneous removal of hydrocarbons and sulfate from groundwater using a “bioelectric well.”. Electrochim. Acta 388:138636. doi: 10.1016/j.electacta.2021.138636 DOI
Unden G. (2013). “Energy transduction in anaerobic Bacteria” in Encyclopedia of biological chemistry. Academic Press, 24–30.
Van Gemerden H. (1986). Production of elemental sulfur by green and purple sulfur bacteria. Arch. Microbiol. 146, 52–56. doi: 10.1007/BF00690158 DOI
van Niel C. B. (1932). On the morphology and physiology of the purple and green Sulphur bacteria. Arch. Mikrobiol. 3, 1–112. doi: 10.1007/BF00454965 DOI
van Niel C. B. (1971). “Techniques for the enrichment, isolation, and maintenance of the photosynthetic bacteria” in Methods in enzymology. Academic Press, 23, 3–28.
Van Vliet D. M., Von Meijenfeldt F. A. B., Dutilh B. E., Villanueva L., Sinninghe Damsté J. S., Stams A. J. M., et al. . (2021). The bacterial sulfur cycle in expanding dysoxic and euxinic marine waters. Environ. Microbiol. 23, 2834–2857. doi: 10.1111/1462-2920.15265, PMID: PubMed DOI PMC
Vila X., Abella C. A. (1994). Effects of light quality on the physiology and the ecology of planktonic green sulfur bacteria in lakes. Photosynth. Res. 41, 53–65. doi: 10.1007/BF02184145, PMID: PubMed DOI
Wahlund T. M., Madigan M. T. (1995). Genetic transfer by conjugation in the thermophilic green sulfur bacterium Chlorobium tepidum. J. Bacteriol. 177, 2583–2588. doi: 10.1128/jb.177.9.2583-2588.1995, PMID: PubMed DOI PMC
Woese C. R., Weisburg W. G., Hahn C. M., Paster B. J., Zablen L. B., Lewis B. J., et al. . (1985). The phylogeny of purple Bacteria: the gamma subdivision. Syst. Appl. Microbiol. 6, 25–33. doi: 10.1016/S0723-2020(85)80007-2 PubMed DOI
Xie H., Lyratzakis A., Khera R., Koutantou M., Welsch S., Michel H., et al. . (2023). Cryo-EM structure of the whole photosynthetic reaction center apparatus from the green sulfur bacterium Chlorobaculum tepidum. Proc. Natl. Acad. Sci. USA 120:e2216734120. doi: 10.1073/pnas.2216734120 PubMed PMC