The Characterization of Enterococcus Genus: Resistance Mechanisms and Inflammatory Bowel Disease
Status PubMed-not-MEDLINE Jazyk angličtina Země Polsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
32292819
PubMed Central
PMC7147287
DOI
10.1515/med-2020-0032
PII: med-2020-0032
Knihovny.cz E-zdroje
- Klíčová slova
- Enterococcaceae, Enterococcus faecium, antibiotics, nosocomial diseases, resistance, vancomycin,
- Publikační typ
- časopisecké články MeSH
The constantly growing bacterial resistance against antibiotics is recently causing serious problems in the field of human and veterinary medicine as well as in agriculture. The mechanisms of resistance formation and its preventions are not well explored in most bacterial genera. The aim of this review is to analyse recent literature data on the principles of antibiotic resistance formation in bacteria of the Enterococcus genus. Furthermore, the habitat of the Enterococcus genus, its pathogenicity and pathogenicity factors, its epidemiology, genetic and molecular aspects of antibiotic resistance, and the relationship between these bacteria and bowel diseases are discussed. So-called VREfm - vancomycin resistant Enterococcus faecium and its currently rapidly growing resistance as well as the significance of these bacteria in nosocomial diseases is described.
Zobrazit více v PubMed
Arias C.A., Murray B.E.. The rise of the Enterococcus beyond vancomycin resistance. Nat Rev Microbiol. 2012;10:266–278. PubMed PMC
MacDougall C., Johnstone J., Prematunge C., Adomako K., Nadolny E., Truong E., Saedi A., Garber G., Sander B.. Economic evaluation of vancomycin-resistant enterococci (VRE) control practices: a systematic review. J Hosp Infect. 2019 ISSN 0195-6701. PubMed
O’Driscoll T., Crank C.W.. Vancomycin-resistant enterococcal infections: Epidemiology, clinical manifestations, and optimal management. Infect Drug Resist. 2015;8:217–230. PubMed PMC
Ch’ng J., Chong K.K.L., Lam L.N., Wong J.J., Kline K.A.. Biofilm-associated infection by enterococci. Nat Rev Microbiol. 2019;17:82–94. PubMed
Hollenbeck B.L., Rice L.B.. Intrinsic and acquired resistance mechanisms in Enterococcus. Virulence. 2012;3:421–433. PubMed PMC
Lebreton F., Willems R.J.L., Gilmore M.S. Gilmore M.S., Clewell D.B., Ike Y., Shankar N. Enterococci: From Commensals to Leading Causes of Drug Resistant Infection. Vol. 159. Massachusetts Eye and Ear Infirmary; Boston: 2014. Enterococcus Diversity, Origins in Nature, and Gut Colonization. (eds.)
Ratanasuwan W., Iwen P.C., Hinrichs S.H., Rupp M.E.. Bacteremia due to motile Enterococcus species: clinical features and outcomes. Clin Infect Dis. 1999;28:1175–1177. PubMed
Švec P., Devriese L.A., Genus I. Bergey D.H., Whitman W.B., De Vos P., Garrity G.M., Jones D. Bergey’s Manual of Systematic Bacteriology, Vol. 3: The Firmicutes, 2nd edition. Springer, New York: 2009. Enterococcus; pp. 594–607. (eds.) ISBN 978-0-387-95041-9.
Carr J.H. #209, CDC: Public Health Image Library. 2017. https://phil.cdc.gov/Details.aspx?pid=209 Retrieved from.
Colonies of Enterococcus faecalis Microbiology in Pictures. 2015. https://www.microbiologyinpictures.com/bacteria%20photos/enterococcus%20faecalis%20photos/enterococcus%20faecalis%2003.html Retrieved from.
Collins M.D., Jones D., Farrow J.A.E., Kilpper-Balz R., Schleifer K.H.. Enterococcus avium nom. rev. comb. nov., Enterococcus casseliflavus nom. rev., comb. nov., Enterococcus durans nom. rev., comb. nov., Enterococcus gallinarum comb. nov., and Enterococcus malodoratus sp. nov., Int J Syst Bacteriol. 1984;34:220–223.
Collins M.D., Farrow J.A.E., Jones D.. Enterococcus mundtii sp. nov. Int J Syst Bacteriol. 1986;36:8–12.
Collins M.D., Facklam R.R., Farrow J.A., Williamson R.. Enterococcus raffinosus sp. nov. Enterococcus solitarius sp. nov. and Enterococcus pseudoavium sp. nov., FEMS Microbiol Lett. 1989;48:283–288. PubMed
Collins M.D., Rodrigues U.M., Pigott N.E., Facklam R.R.. Enterococcus dispar sp. nov. a new Enterococcus species from human sources. Lett Appl Microbiol. 1991;12:95–98. PubMed
Farrow J.A.E., Collins M.D.. Enterococcus hirae. a new species that includes amino acid assay strain NCDO 1258 and strains causing growth depression in young chickens, Int J Syst Bacteriol. 1985;35:73. –.
Schleifer K.H., Kilpper-Bälz R.. Transfer of Streptococcus faecalis and Streptococcus faecium to the genus Enterococcus nom. rev. as Enterococcus faecalis comb. nov. and Enterococcus faecium comb. nov. Int J Syst Bacteriol. 1984;34:31–34.
Navarre W.W., Schneewind O.. Surface proteins of gram-positive bacteria and mechanisms of their targeting to the cell wall envelope. Microbiol Mol Biol. 1999;63:174229. PubMed PMC
Huycke M.M., Hancock L.E. Semedo-Lemsaddek T., Barreto-Crespo M.T., Tenreiro R. Enterococcus and Safety. Nova Science Publishers, Inc; New York: 2012. Enterococcal physiology and cell wall structure and dynamics; pp. 21–57. (eds.)
Sedláček I. Taxonomy of prokaryotes. 1st edition. 2007. Masaryk University, Brno, 270 pages, ISBN 8021042079.
Gregory E.M., Fridovich I.. Induction of superoxide dismutase by molecular oxygen. J Bacteriol. 1973;114:543–548. PubMed PMC
Miller H., Poole L.B., Claiborne A.. Heterogeneity among the flavin-containing NADH peroxidases of group D streptococci. Analysis of the enzyme from Streptococcus faecalis ATCC 9790. J Biol Chem. 1990;265:9857–9863. PubMed
Gunsalus I.C., Horecker B.L., Wood W.A.. Pathways of carbohydrate metabolism in microorganisms. Bacteriol Rev. 1955;19:79–128. PubMed PMC
Garg S.K., Mital B.K.. Enterococci in milk and milk products. Crit Rev Microbiol. 1991;18:15–45. PubMed
Ludwig W., Seewaldt E., Kilpper-Bälz R., Schleifer K.H., Magrum L., Woese C.R., Fox G.E., Stackebrandt E.. The phylogenetic position of Streptococcus and Enterococcus. J Gen Microbiol. 1985;131:543–551. PubMed
Schleifer K.H., Kilpper-Bälz R.. Molecular and chemotaxonomic approaches to the classification of streptococci. enterococci and lactococci: a review, Syst Appl Microbiol. 1987;10:1–19.
Byappanahalli M.N., Nevers M.B., Korajkic A., Staley Z.R., Harwood V.J.. Enterococci in the environment. Microbiol Mol Biol Rev. 2012;76:685–706. PubMed PMC
Klein G., Pack A., Bonaparte C., Reuter G.. Taxonomy and physiology of probiotic lactic acid bacteria. Int J Food Microbiol. 1998;41:103–125. PubMed
Martin J.D., Mundt J.O.. Enterococci in insects. Appl Microbiol. 1972;24:575–580. PubMed PMC
Signoretto C., Burlacchini G., Lleò M.M., Pruzzo C., Zampini M., Pane L., Franzini G., Canepari P.. Adhesion of Enterococcus faecalis in the nonculturable state to plankton is the main mechanism responsible for persistence of this bacterium in both lake and seawater. Appl Environ Microbiol. 2004;70:6892–6896. PubMed PMC
Whitman R.L., Shively D.A., Pawlik H., Nevers M.B., Byappanahalli M.N.. Occurrence of Escherichia coli and enterococci in Cladophora (Chlorophyta) in nearshore water and beach sand of Lake Michigan. Appl Environ Microbiol. 2003;69:4714–4719. PubMed PMC
Bednář M., Fraňková V., Schindler J., Souček A., Vávra J. Medical Microbiology: Bacteriology, Virology, Parasitology, 1st edition. Marvil, Praha: 1996. 558 pages, ISBN 8023802976.
Jett B.D., Huycke M.M., Gilmore M.S.. Virulence of enterococci. Clin Microbiol Rev. 1994;7:462–478. PubMed PMC
Dunny G.M.. Genetic functions and cell–cell interactions in the pheromone-inducible plasmid transfer system of Enterococcus faecalis. Mol Microbiol. 1990;4:689–696. PubMed
Dunny G.M.. The peptide pheromone-inducible conjugation system of Enterococcus faecalis plasmid pCF10: cell-cell signalling. gene transfer, complexity and evolution, Philos Trans R Soc Lond Ser B-Biol Sci. 2007;362:1185–1193. PubMed PMC
Bennett R.J., Dunny G.M.. Analogous telesensing pathways regulate mating and virulence in two opportunistic human pathogens. mBIO. 2010;1:181–186. PubMed PMC
Bizzini A., Zhao C., Auffray Y., Hartke A.. The Enterococcus faecalis superoxide dismutase is essential for its tolerance to vancomycin and penicillin. J Antimicrob Chemother. 2009;64:1196–1202. PubMed
Morroni G., Brenciani A., Litta-Mulondo A., Vignaroli C., Mangiaterra G., Fioriti S., Biavasco F.. Characterization of a new transferable MDR plasmid carrying the pbp5 gene from a clade B commensal Enterococcus faecium. J Antimicrob Chemother. 74:843. –. PubMed
Moellering R.C., Weinberg A.N.. Studies on antibiotic synergism against enterococci. II. Effect of various antibiotics on the uptake of 14 C-labeled streptomycin by enterococci. J Clin Invest. 1971;50:2580–2584. PubMed PMC
Chow J.W.. Aminoglycoside resistance in enterococci. Clin Infect Dis. 2000;31:586–589. PubMed
Cremniter J., Mainardi J.L., Josseaume N., Quincampoix J.C., Dubost L., Hugonnet J.E., Marie A., Gutmann L., Rice L.B., Arthur M.. Novel mechanism of resistance to glycopeptide antibiotics in Enterococcus faecium. J Biol Chem. 2006;281:32254–32262. PubMed PMC
Willems R.J., Top J., van den Braak N., van Belkum A., Mevius D.J., Hendriks G., van Santen-Verheuvel M., van Embden J.D.A.. Molecular diversity and evolutionary relationships of Tn1546-like elements in enterococci from humans and animals. Antimicrob Agents Chemother. 1999;43:483–491. PubMed PMC
Liu Y., Wang Y., Wu C., Shen Z., Schwarz S., Du X.D., Dai L., Zhang W., Zhang Q., Shen J.. First report of the multidrug resistance gene cfr in Enterococcus faecalis of animal origin. Antimicrob Agents Chemother. 2012;56:1650–1654. PubMed PMC
Antibiotic resistance, WHO. 2018. www.who.int/en/news-room/fact-sheets/detail/antibiotic-resistance Retrieved from.
Mutters N.T., Mersch-Sundermann V., Mutters R., Brandt C., Schneider-Brachert W., Frank U.. Control of the spread of vancomycin-resistant enterococci in hospitals: epidemiology and clinical relevance. Dtsch Arztebl Int. 2013;110:725–731. PubMed PMC
Surveillance of antimicrobial resistance in Europe: Annual report of the European Antimicrobial Resistance Surveillance Network (EARS-Net) 2017. https://ecdc.europa.eu/sites/portal/files/documents/EARS-Net-report-2017-update-jan-2019.pdf ECDC, 2018, Retrieved from.
Antibiotic Resistance, CDDEP. 2017. https://resistancemap.cddep.org/AntibioticResistance.php Retrieved from.
Messler S., Klare I., Wappler F., Werner G., Ligges U., Sakka S.G., Mattner F.. Reduction of nosocomial bloodstream infections and nosocomial vancomycin-resistant Enterococcus faecium on an intensive care unit after introduction of antiseptic octenidine-based bathing. J Hosp Infect. 2019;101:264–271. PubMed
Papanicolaou G.A., Meyers B.R., Meyers J., Mendelson M.H., Lou W., Emre S., Sheiner P., Miller C.. Nosocomial infections with vancomycin-resistant Enterococcus faecium in liver transplant recipients: risk factors for acquisition and mortality. Clin Infect Dis. 1996;23:760–766. PubMed
Raja K., Antony M., Harikrishnan S.. Infective endocarditis due to streptococci and enterococci: A 3-year retrospective study. Indian J Pathol Microbiol. 2018;61:545–548. PubMed
Stevens M.P., Edmond M.B.. Endocarditis due to vancomycin-resistant enterococci: case report and review of the literature. Clin Infect Dis. 2005;41:1134–1142. PubMed
Kushkevych I., Dordević D., Kollar P., Vítězová M., Drago L.. Hydrogen sulfide as a toxic product in the small–large intestine axis and its role in IBD development. J Clin Med. 2019;8:1054. PubMed PMC
Kováč J., Vítězová M., Kushkevych I.. Metabolic activity of sulfate-reducing bacteria from rodents with colitis. Open Med. 2018;13:344–349. PubMed PMC
Kushkevych I., Vítězová M., Fedrová P., Vochyanová Z., Paráková L., Hošek J.. Kinetic properties of growth of intestinal sulphate-reducing bacteria isolated from healthy mice and mice with ulcerative colitis. Acta Vet Brno. 2017;86:405–411.
Kushkevych I., Dordević D., Vítězová M., Kollár P.. Cross-correlation analysis of the Desulfovibrio growth parameters of intestinal species isolated from people with colitis. Biologia. 2018;73:1137–1143.
Kushkevych I., Dordević D., Vítězová M.. Analysis of pH dose-dependent growth of sulfate-reducing bacteria. Open Med. 2019;14:66–74. PubMed PMC
Kushkevych I., Dordević D., Kollar P.. Analysis of physiological parameters of Desulfovibrio strains from individuals with colitis. Open Life Sci. 2018;13:481–488. PubMed PMC
Baumgart D.C. Crohn’s Disease and Ulcerative Colitis: From Epidemiology and Immunobiology to a Rational Diagnostic and Therapeutic Approach. 2nd edition. 2017. Springer, Cham, 695 pages. ISBN 978-3-319-33701-2.
Wang S., Yao L., Liu Y.. Fecal microbiome from patients with ulcerative colitis is potent to induce inflammatory responses. Int Immunopharmacol. 2018;59:361–368. PubMed
Kushkevych I., Fafula R., Parak T., Bartoš M.. Activity of Na+/ K+-activated Mg2+-dependent ATP hydrolase in the cell-free extracts of the sulfate-reducing bacteria Desulfovibrio piger Vib-7 and Desulfomicrobium sp. Rod-9, Acta Vet Brno. 2015;84:3–12.
Kushkevych I.V.. Activity and kinetic properties of phosphotransacetylase from intestinal sulfate-reducing bacteria. Acta Biochem Pol. 2015;62:1037–1108. PubMed
Kushkevych I.V.. Kinetic Properties of Pyruvate Ferredoxin Oxidoreductase of Intestinal Sulfate-Reducing Bacteria Desulfovibrio piger Vib-7 and Desulfomicrobium sp. Rod-9. Pol J Microbiol. 2015;64:107–114. PubMed
Kushkevych I., Kotrsová V., Dordević D., Buňková L., Vítězová M.. Amedei A.. Hydrogen Sulfide Effects on the Survival of Lactobacilli with Emphasis on the Development of Inflammatory Bowel Diseases. Biomolecules. 2019;9(12):752. &. PubMed PMC
Kushkevych I., Dordević D., Vítězová M.. Toxicity of hydrogen sulfide toward sulfate-reducing bacteria. Desulfovibrio piger Vib-7, Arch Microbiol. 2019;201:389–397. PubMed
Van der Wiel-Korstanje J.A.A., Winkler K.J.. The faecal flora in ulcerative colitis. J Med Microbiol. 1975;8:491–501. PubMed
Zhou Y., Chen H., He H., Du Y., Hu J., Li Y., Li Y., Zhou Y., Wang H., Chen Y., Nie Y.. Increased Enterococcus faecalis infection is associated with clinically active Crohn disease. Medicine. 2016;95:5019. PubMed PMC
Isenmann R., Schwarz M., Christ C., Rozdzinski E., Schmidt E., Marre R., Beger H.G.. Altered expression of fibronectin facilitates translocation of Enterococcus faecalis in patients with Crohn’s disease. Gastroenterology. 2000;118:1768.
Isenmann R., Schwarz M., Rozdzinski E., Christ C., Schmidt E., Augat P., Marre R., Beger H.G.. Interaction of fibronectin and aggregation substance promotes adherence of Enterococcus faecalis to human colon. Dig Dis Sci. 2002;47:462–468. PubMed