Oxygen targets and 6-month outcome after out of hospital cardiac arrest: a pre-planned sub-analysis of the targeted hypothermia versus targeted normothermia after Out-of-Hospital Cardiac Arrest (TTM2) trial
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, randomizované kontrolované studie
PubMed
36271410
PubMed Central
PMC9585831
DOI
10.1186/s13054-022-04186-8
PII: 10.1186/s13054-022-04186-8
Knihovny.cz E-zdroje
- Klíčová slova
- Cardiac arrest, Hyperoxemia, Hypoxemia, Mortality, Neurological outcome,
- MeSH
- hypotermie * komplikace MeSH
- hypoxie komplikace MeSH
- kyslík MeSH
- lidé středního věku MeSH
- lidé MeSH
- parciální tlak MeSH
- senioři MeSH
- zástava srdce mimo nemocnici * komplikace MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- randomizované kontrolované studie MeSH
- Názvy látek
- kyslík MeSH
BACKGROUND: Optimal oxygen targets in patients resuscitated after cardiac arrest are uncertain. The primary aim of this study was to describe the values of partial pressure of oxygen values (PaO2) and the episodes of hypoxemia and hyperoxemia occurring within the first 72 h of mechanical ventilation in out of hospital cardiac arrest (OHCA) patients. The secondary aim was to evaluate the association of PaO2 with patients' outcome. METHODS: Preplanned secondary analysis of the targeted hypothermia versus targeted normothermia after OHCA (TTM2) trial. Arterial blood gases values were collected from randomization every 4 h for the first 32 h, and then, every 8 h until day 3. Hypoxemia was defined as PaO2 < 60 mmHg and severe hyperoxemia as PaO2 > 300 mmHg. Mortality and poor neurological outcome (defined according to modified Rankin scale) were collected at 6 months. RESULTS: 1418 patients were included in the analysis. The mean age was 64 ± 14 years, and 292 patients (20.6%) were female. 24.9% of patients had at least one episode of hypoxemia, and 7.6% of patients had at least one episode of severe hyperoxemia. Both hypoxemia and hyperoxemia were independently associated with 6-month mortality, but not with poor neurological outcome. The best cutoff point associated with 6-month mortality for hypoxemia was 69 mmHg (Risk Ratio, RR = 1.009, 95% CI 0.93-1.09), and for hyperoxemia was 195 mmHg (RR = 1.006, 95% CI 0.95-1.06). The time exposure, i.e., the area under the curve (PaO2-AUC), for hyperoxemia was significantly associated with mortality (p = 0.003). CONCLUSIONS: In OHCA patients, both hypoxemia and hyperoxemia are associated with 6-months mortality, with an effect mediated by the timing exposure to high values of oxygen. Precise titration of oxygen levels should be considered in this group of patients. TRIAL REGISTRATION: clinicaltrials.gov NCT02908308 , Registered September 20, 2016.
Department of Anaesthesia and Intensive Care A O U Policlinico San Marco Catania Italy
Department of Clinical Medicine Aarhus University Aarhus Denmark
Department of Clinical Medicine Anaesthesiology and Intensive Care Lund University Lund Sweden
Department of Clinical Sciences Lund Anesthesia and Intensive Care Lund University Lund Sweden
Department of Clinical Sciences Malmö Lund University Malmö Sweden
Department of Critical Care University of Melbourne Parkville VIC Australia
Department of Intensive Care Austin Hospital Melbourne Australia
Department of Intensive Care Medicine Aarhus University Hospital Aarhus Denmark
Department of Intensive Care Medicine Université Libre de Bruxelles Hopital Erasme Brussels Belgium
Department of Medicine University of Barcelona Barcelona Spain
Department of Operation and Intensive Care Hallands Hospital Halmstad Lund University Halland Sweden
Department of Surgery University of Valencia Valencia Spain
Intensive Care Unit St George Hospital Sydney Australia
Intensive Care Unit Wellington Regional Hospital Wellington New Zealand
Medical Research Institute of New Zealand Private Bag 7902 Wellington 6242 New Zealand
Monash University Melbourne VIC Australia
University Hospitals Bristol NHS Foundation Trust Bristol UK
Zobrazit více v PubMed
Sasson C, Rogers MAM, Dahl J, Kellermann AL. Predictors of survival from out-of-hospital cardiac arrest. Circ Cardiovasc Qual Outcomes. 2010;3:63–81. PubMed
Zandbergen EGJ, de Haan RJ, Reitsma JB, Hijdra A. Survival and recovery of consciousness in anoxic-ischemic coma after cardiopulmonary resuscitation. Intensive Care Med. 2003;29:1911–1915. PubMed
Eastwood GM, Tanaka A, Espinoza EDV, Peck L, Young H, Mårtensson J, et al. Conservative oxygen therapy in mechanically ventilated patients following cardiac arrest: a retrospective nested cohort study. Resuscitation. 2016;101:108–114. PubMed
Newell C, Grier S, Soar J. Airway and ventilation management during cardiopulmonary resuscitation and after successful resuscitation. Crit Care. 2018;22:190. PubMed PMC
Nolan JP, Neumar RW, Adrie C, Aibiki M, Berg RA, Böttiger BW, et al. Post-cardiac arrest syndrome: epidemiology, pathophysiology, treatment, and prognostication. Resuscitation. 2008;79:350–379. PubMed
Sekhon MS, Ainslie PN, Griesdale DE. Clinical pathophysiology of hypoxic ischemic brain injury after cardiac arrest: a “two-hit” model. Crit Care. 2017;21:90. PubMed PMC
Ebner F, Ullén S, Åneman A, Cronberg T, Mattsson N, Friberg H, et al. Associations between partial pressure of oxygen and neurological outcome in out-of-hospital cardiac arrest patients: an explorative analysis of a randomized trial. Crit Care. 2019;23:30. PubMed PMC
Bellomo R, Bailey M, Eastwood GM, Nichol A, Pilcher D, Hart GK, et al. Arterial hyperoxia and in-hospital mortality after resuscitation from cardiac arrest. Crit Care. 2011;15:R90. PubMed PMC
Wang C-H, Chang W-T, Huang C-H, Tsai M-S, Yu P-H, Wang A-Y, et al. The effect of hyperoxia on survival following adult cardiac arrest: a systematic review and meta-analysis of observational studies. Resuscitation. 2014;85:1142–1148. PubMed
Vincent J-L, Taccone FS, He X. Harmful effects of hyperoxia in postcardiac arrest, sepsis, traumatic brain injury, or stroke: the importance of individualized oxygen therapy in critically ill patients. Can Respir J. 2017;2017:1–7. PubMed PMC
Brueckl C, Kaestle S, Kerem A, Habazettl H, Krombach F, Kuppe H, et al. Hyperoxia-induced reactive oxygen species formation in pulmonary capillary endothelial cells in situ. Am J Respir Cell Mol Biol. 2006;34:453–463. PubMed
Brugniaux JV, Coombs GB, Barak OF, Dujic Z, Sekhon MS, Ainslie PN. Highs and lows of hyperoxia: physiological, performance, and clinical aspects. Am J Physiol Integr Comp Physiol. 2018;315:R1–27. PubMed
Farquhar H, Weatherall M, Wijesinghe M, Perrin K, Ranchord A, Simmonds M, et al. Systematic review of studies of the effect of hyperoxia on coronary blood flow. Am Heart J. 2009;158:371–377. PubMed
Cornet AD, Kooter AJ, Peters MJ, Smulders YM. The potential harm of oxygen therapy in medical emergencies. Crit Care. 2013;17:313. PubMed PMC
Damiani E, Donati A, Girardis M. Oxygen in the critically ill. Curr Opin Anaesthesiol. 2018;31:129–135. PubMed
Crawford P, Good PA, Gutierrez E, Feinberg JH, Boehmer JP, Silber DH, et al. Effects of supplemental oxygen on forearm vasodilation in humans. J Appl Physiol. 1997;82:1601–1606. PubMed
Robba C, Siwicka-Gieroba D, Sikter A, Battaglini D, Dąbrowski W, Schultz MJ, et al. Pathophysiology and clinical consequences of arterial blood gases and pH after cardiac arrest. Intensive Care Med Exp. 2020;8:19. PubMed PMC
Kilgannon JH. Association between arterial hyperoxia following resuscitation from cardiac arrest and in-hospital mortality. JAMA. 2010;303:2165. PubMed
Janz DR, Hollenbeck RD, Pollock JS, McPherson JA, Rice TW. Hyperoxia is associated with increased mortality in patients treated with mild therapeutic hypothermia after sudden cardiac arrest*. Crit Care Med. 2012;40:3135–3139. PubMed PMC
Ihle JF, Bernard S, Bailey MJ, Pilcher DV, Smith K, Scheinkestel CD. Hyperoxia in the intensive care unit and outcome after out-of-hospital ventricular fibrillation cardiac arrest. Crit Care Resusc. 2013;15:186–190. PubMed
Elmer J, Scutella M, Pullalarevu R, Wang B, Vaghasia N, Trzeciak S, et al. The association between hyperoxia and patient outcomes after cardiac arrest: analysis of a high-resolution database. Intensive Care Med. 2015;41:49–57. PubMed PMC
Robba C, Nielsen N, Dankiewicz J, Badenes R, Battaglini D, Ball L, et al. Ventilation management and outcomes in out-of-hospital cardiac arrest: a protocol for a preplanned secondary analysis of the TTM2 trial. BMJ Open. 2022;12:e058001. PubMed PMC
Dankiewicz J, Cronberg T, Lilja G, Jakobsen JC, Levin H, Ullén S, et al. Hypothermia versus normothermia after out-of-hospital cardiac arrest. N Engl J Med. 2021;384:2283–2294. PubMed
von Elm E, Altman DG, Egger M, Pocock SJ, Gøtzsche PC, Vandenbroucke JP. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies. Lancet. 2007;370:1453–1457. PubMed
Roberts BW, Kilgannon JH, Hunter BR, Puskarich MA, Pierce L, Donnino M, et al. Association between early hyperoxia exposure after resuscitation from cardiac arrest and neurological disability. Circulation. 2018;137:2114–2124. PubMed PMC
Charlson M, Szatrowski TP, Peterson J, Gold J. Validation of a combined comorbidity index. J Clin Epidemiol. 1994;47:1245–1251. PubMed
Robba C, Badenes R, Battaglini D, Ball L, Brunetti I, Jakobsen JC, et al. Ventilatory settings in the initial 72 h and their association with outcome in out-of-hospital cardiac arrest patients: a preplanned secondary analysis of the targeted hypothermia versus targeted normothermia after out-of-hospital cardiac arrest (TTM2) tr. Intensive Care Med. 2022;48:1024–1038. PubMed PMC
Taran S, Pelosi P, Robba C. Optimizing oxygen delivery to the injured brain. Curr Opin Crit Care. 2022;28:145–156. PubMed
Singhal AB, Dijkhuizen RM, Rosen BR, Lo EH. Normobaric hyperoxia reduces MRI diffusion abnormalities and infarct size in experimental stroke. Neurology. 2002;58:945–952. PubMed
Nelskylä A, Parr MJ, Skrifvars MB. Prevalence and factors correlating with hyperoxia exposure following cardiac arrest—an observational single centre study. Scand J Trauma Resusc Emerg Med. 2013;21:35. PubMed PMC
Shin HK, Dunn AK, Jones PB, Boas DA, Lo EH, Moskowitz MA, et al. Normobaric hyperoxia improves cerebral blood flow and oxygenation, and inhibits peri-infarct depolarizations in experimental focal ischaemia. Brain. 2007;130:1631–1642. PubMed PMC
Alternative Therapy Evaluation Committee for the Insurance Corporation of Brithish Columbia A review of the scientific evidence on the treatment of traumatic brain injuries and strokes with hyperbaric oxygen. Brain Inj. 2003;17:225–236. PubMed
Rincon F, Mayer SA, Rivolta J, Stillman J, Boden-Albala B, Elkind MSV, et al. Impact of delayed transfer of critically ill stroke patients from the emergency department to the neuro-ICU. Neurocrit Care. 2010;13:75–81. PubMed
Le Gall JR. A new Simplified Acute Physiology Score (SAPS II) based on a European/North American multicenter study. JAMA J Am Med Assoc. 1993;270:2957–2963. PubMed
Wang HE, Prince DK, Drennan IR, Grunau B, Carlbom DJ, Johnson N, et al. Post-resuscitation arterial oxygen and carbon dioxide and outcomes after out-of-hospital cardiac arrest. Resuscitation. 2017;120:113–118. PubMed PMC
Spindelboeck W, Gemes G, Strasser C, Toescher K, Kores B, Metnitz P, et al. Arterial blood gases during and their dynamic changes after cardiopulmonary resuscitation: a prospective clinical study. Resuscitation. 2016;106:24–29. PubMed
Nolan JP, Sandroni C, Böttiger BW, Cariou A, Cronberg T, Friberg H, et al. European Resuscitation Council and European Society of Intensive Care Medicine guidelines 2021: post-resuscitation care. Intensive Care Med. 2021;47:369–421. PubMed PMC
Palmer E, Post B, Klapaukh R, Marra G, MacCallum NS, Brealey D, et al. The association between supraphysiologic arterial oxygen levels and mortality in critically ill patients. A multicenter observational cohort study. Am J Respir Crit Care Med. 2019;200:1373–1380. PubMed PMC
Ni Y-N, Wang Y-M, Liang B-M, Liang Z-A. The effect of hyperoxia on mortality in critically ill patients: a systematic review and meta analysis. BMC Pulm Med. 2019;19:53. PubMed PMC
La Via L, Astuto M, Bignami EG, Basalacchi D, Dezio V, Girardis M, et al. The effects of exposure to severe hyperoxemia on neurological outcome and mortality after cardiac arrest. Minerva Anestesiol. 2022;Online ahead of print. PubMed
Johnson NJ, Dodampahala K, Rosselot B, Perman SM, Mikkelsen ME, Goyal M, et al. The association between arterial oxygen tension and neurological outcome after cardiac arrest. Ther Hypothermia Temp Manag. 2017;7:36–41. PubMed
Johnson NJ, Carlbom DJ, Gaieski DF. Ventilator management and respiratory care after cardiac arrest. Chest. 2018;153:1466–1477. PubMed
Kilgannon JH, Jones AE, Parrillo JE, Dellinger RP, Milcarek B, Hunter K, et al. Relationship between supranormal oxygen tension and outcome after resuscitation from cardiac arrest. Circulation. 2011;123:2717–2722. PubMed
Kim TJ, Kim J-M, Lee JS, Park S-H, Jeong H-B, Choi J-K, et al. Prognostication of neurological outcome after cardiac arrest using wavelet phase coherence analysis of cerebral oxygen. Resuscitation. 2020;150:41–49. PubMed
Ebner F, Riker RR, Haxhija Z, Seder DB, May TL, Ullén S, et al. The association of partial pressures of oxygen and carbon dioxide with neurological outcome after out-of-hospital cardiac arrest: an explorative International Cardiac Arrest Registry 2.0 study. Scand J Trauma Resusc Emerg Med. 2020;28:67. PubMed PMC
Peluso L, Belloni I, Calabró L, Dell’Anna AM, Nobile L, Creteur J, et al. Oxygen and carbon dioxide levels in patients after cardiac arrest. Resuscitation. 2020;150:1–7. PubMed
Schjørring OL, Klitgaard TL, Perner A, Wetterslev J, Lange T, Siegemund M, et al. Lower or higher oxygenation targets for acute hypoxemic respiratory failure. N Engl J Med. 2021;384:1301–1311. PubMed
Young PJ, Arabi YM, Bagshaw SM, Bellomo R, Fujii T, Haniffa R, et al. Protocol and statistical analysis plan for the mega randomised registry trial research program comparing conservative versus liberal oxygenation targets in adults receiving unplanned invasive mechanical ventilation in the ICU (Mega-ROX) Crit Care Resusc. 2022;24:137–149. PubMed PMC
Schmidt H, Kjaergaard J, Hassager C, Møller JE, Mølstrøm S,Grand J, Borregaard B, et al. Blood-Pressure Targets in Comatose Survivors of Cardiac Arrest. N Engl J Med. 2022;online ahead of print. PubMed
ClinicalTrials.gov
NCT02908308