Misprocessing of α -Galactosidase A, Endoplasmic Reticulum Stress, and the Unfolded Protein Response

. 2025 Apr 01 ; 36 (4) : 628-644. [epub] 20241112

Status In-Process Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39704415

Grantová podpora
LX22NPO5104 European Union - Next Generation EU from the Ministry of Education, Youth and Sports of the Czech Republicy
NU21-07-00033 Ministry of Health of the Czech Republic
NU21-08-00324 Ministerstvo Zdravotnictví Ceské Republiky
LM2023067 Ministry of Education, Youth and Sports of the Czech Republic
UNCE 24/MED/022 Charles University in Prague
101003406 (HIPPOSTRUCT) European Union's Horizon 2020 Research and Innovation Programme under the Marie Skłodowska-Curie Grant Agreement

Odkazy

PubMed 39704415
PubMed Central PMC11975233
DOI 10.1681/asn.0000000535
PII: 00001751-202504000-00011
Knihovny.cz E-zdroje

KEY POINTS: The clinical significance of a number of missense variants of α-galactosidase A is often ambiguous. Defective proteostasis of some missense α-galactosidase A variants induced chronic endoplasmic reticulum stress and the unfolded protein response. Endoplasmic reticulum stress and the unfolded protein response may explain clinical manifestations of non-classic Fabry disease. BACKGROUND: Classic Fabry disease is caused by GLA mutations that result in loss of enzymatic activity of α-galactosidase A, lysosomal storage of globotriaosylceramide, and a resulting multisystemic disease. In non-classic Fabry disease, patients have some preserved α-galactosidase A activity and a milder disease course. Heterozygous female patients may also be affected. While Fabry disease pathogenesis has been mostly attributed to catalytic deficiency of mutated α-galactosidase A, lysosomal storage, and impairment of lysosomal functions, other pathogenic factors may contribute, especially in nonclassic Fabry disease. METHODS: We characterized the genetic, clinical, biochemical, molecular, cellular, and organ pathology correlates of the p.L394P α-galactosidase A variant that was identified initially in six individuals with kidney failure by the Czech national screening program for Fabry disease and by further screening in an additional 24 family members. RESULTS: Clinical findings in affected male patients revealed a milder clinical course, with approximately 15% residual α-galactosidase A activity with normal plasma lyso-globotriaosylceramide levels and abnormally low ratio of these values. None of the four available kidney biopsies showed lysosomal storage. Laboratory investigations documented intracellular retention of mutated α-galactosidase A with resulting endoplasmic reticulum stress and the unfolded protein response, which were alleviated with BRD4780, a small molecule clearing misfolded proteins from the early secretory compartment. We observed similar findings of endoplasmic reticulum stress and unfolded protein response in five kidney biopsies with several other classic and non-classic Fabry disease missense α-galactosidase A variants. CONCLUSIONS: We identified defective proteostasis of mutated α-galactosidase A resulting in chronic endoplasmic reticulum stress and unfolded protein response of α-galactosidase A expressing cells as a contributor to Fabry disease pathogenesis.

Komentář v

doi: 10.1681/ASN.0000000625 PubMed

Zobrazit více v PubMed

Cairns T, Müntze J, Gernert J, Spingler L, Nordbeck P, Wanner C. Hot topics in Fabry disease. Postgrad Med J. 2018;94(1118):709–713. doi:10.1136/postgradmedj-2018-136056 PubMed DOI PMC

Oder D, Nordbeck P, Wanner C. Long term treatment with enzyme replacement therapy in patients with Fabry disease. Nephron. 2016;134(1):30–36. doi:10.1159/000448968 PubMed DOI

Dutra-Clarke M Tapia D Curtin E, et al. . Variable clinical features of patients with Fabry disease and outcome of enzyme replacement therapy. Mol Genet Metab. 2021;132(2):S36. doi:10.1016/j.ymgme.2020.12.069 PubMed DOI PMC

Germain DP Hughes DA Nicholls K, et al. . Treatment of Fabry's disease with the pharmacologic chaperone migalastat. New Engl J Med. 2016;375(6):545–555. doi:10.1056/NEJMoa1510198 PubMed DOI

Lenders M, Stappers F, Brand E. In vitro and in vivo amenability to migalastat in Fabry disease. Mol Ther Methods Clin Dev. 2020;19:24–34. doi:10.1016/j.omtm.2020.08.012 PubMed DOI PMC

Arends M Wanner C Hughes D, et al. . Characterization of classical and nonclassical Fabry disease: a multicenter study. J Am Soc Nephrol. 2017;28(5):1631–1641. doi:10.1681/ASN.2016090964 PubMed DOI PMC

Germain DP Levade T Hachulla E, et al. . Challenging the traditional approach for interpreting genetic variants: lessons from Fabry disease. Clin Genet. 2022;101(4):390–402. doi:10.1111/cge.14102 PubMed DOI PMC

Del Pino M Andrés A Bernabéu AÁ, et al. . Fabry nephropathy: an evidence-based narrative review. Kidney Blood Press Res. 2018;43(2):406–421. doi:10.1159/000488121 PubMed DOI

Waldek S, Feriozzi S. Fabry nephropathy: a review - how can we optimize the management of Fabry nephropathy? BMC Nephrol. 2014;15:72. doi:10.1186/1471-2369-15-72 PubMed DOI PMC

Germain DP Oliveira JP Bichet DG, et al. . Use of a rare disease registry for establishing phenotypic classification of previously unassigned GLA variants: a consensus classification system by a multispecialty Fabry disease genotype-phenotype workgroup. J Med Genet. 2020;57(8):542–551. doi:10.1136/jmedgenet-2019-106467 PubMed DOI PMC

Schiffmann R, Fuller M, Clarke LA, Aerts JMFG. Is it Fabry disease? Genet Med. 2016;18(12):1181–1185. doi:10.1038/gim.2016.55 PubMed DOI

Wang RY, Lelis A, Mirocha J, Wilcox WR. Heterozygous Fabry women are not just carriers, but have a significant burden of disease and impaired quality of life. Genet Med. 2007;9(1):34–45. doi:10.1097/gim.0b013e31802d8321 PubMed DOI

Vedder AC Linthorst GE van Breemen MJ, et al. . The Dutch Fabry cohort: diversity of clinical manifestations and Gb3 levels. J Inherit Metab Dis. 2007;30(1):68–78. doi:10.1007/s10545-006-0484-8 PubMed DOI

Kok K, Zwiers KC, Boot RG, Overkleeft HS, Aerts JMFG, Artola M. Fabry disease: molecular basis, pathophysiology, diagnostics and potential therapeutic directions. Biomolecules. 2021;11(2):271. doi:10.3390/biom11020271 PubMed DOI PMC

Elsaid HOA Furriol J Blomqvist M, et al. . Reduced α-galactosidase A activity in zebrafish (Danio rerio) mirrors distinct features of Fabry nephropathy phenotype. Mol Genet Metab Rep. 2022;31:100851. doi:10.1016/j.ymgmr.2022.100851 PubMed DOI PMC

Braun F Blomberg L Brodesser S, et al. . Enzyme replacement therapy clears Gb3 deposits from a podocyte cell culture model of Fabry disease but fails to restore altered cellular signaling. Cell Physiol Biochem. 2019;52(5):1139–1150. doi:10.33594/000000077 PubMed DOI

Eikrem O Skrunes R Tøndel C, et al. . Pathomechanisms of renal Fabry disease. Cell Tissue Res. 2017;369(1):53–62. doi:10.1007/s00441-017-2609-9 PubMed DOI

Ledonne NC, Fairley JL, Sweeley CC. Biosynthesis of alpha-galactosidase-a in cultured chang liver-cells. Arch Biochem Biophys. 1983;224(1):186–195. doi:10.1016/0003-9861(83)90203-5 PubMed DOI

Lemansky P, Bishop DF, Desnick RJ, Hasilik A, von Figura K. Synthesis and processing of alpha-galactosidase A in human fibroblasts. Evidence for different mutations in Fabry disease. J Biol Chem. 1987;262(5):2062–2065. PMID: 3029062 PubMed

Ishii S Chang HH Kawasaki K, et al. . Mutant alpha-galactosidase A enzymes identified in Fabry disease patients with residual enzyme activity: biochemical characterization and restoration of normal intracellular processing by 1-deoxygalactonojirimycin. Biochem J. 2007;406(2):285–295. doi:10.1042/BJ20070479 PubMed DOI PMC

Riillo C, Bonapace G, Moricca MT, Sestito S, Salatino A, Concolino D. c.376A>G, (p.Ser126Gly) Alpha-Galactosidase A mutation induces ER stress, unfolded protein response and reduced enzyme trafficking to lysosome: possible relevance in the pathogenesis of late-onset forms of Fabry Disease. Mol Genet Metab. 2023;140(3):107700. doi:10.1016/j.ymgme.2023.107700 PubMed DOI

Consolato F De Fusco M Schaeffer C, et al. . α-Gal A missense variants associated with Fabry disease can lead to ER stress and induction of the unfolded protein response. Mol Genet Metab Rep. 2022;33:100926. doi:10.1016/j.ymgmr.2022.100926 PubMed DOI PMC

Mayes JS, Scheerer JB, Sifers RN, Donaldson ML. Differential assay for lysosomal alpha-galactosidases in human tissues and its application to Fabry's disease. Clin Chim Acta. 1981;112(2):247–251. doi:10.1016/0009-8981(81)90384-3 PubMed DOI

Kuchar L Berna L Poupetova H, et al. . LysoGb3 quantification facilitates phenotypic categorization of Fabry disease patients: insights gained by a novel MS/MS method. Clin Chim Acta. 2024;561:119824. doi:10.1016/j.cca.2024.119824 PubMed DOI

Hartmannova H Piherová L Tauchmannová K, et al. . Acadian variant of Fanconi syndrome is caused by mitochondrial respiratory chain complex I deficiency due to a non-coding mutation in complex I assembly factor NDUFAF6. Hum Mol Genet. 2016;25(18):4062–4079. doi:10.1093/hmg/ddw245 PubMed DOI

Kuchar L, Asfaw B, Rybová J, Ledvinová J. Tandem mass spectrometry of sphingolipids: applications for diagnosis of sphingolipidoses. Adv Clin Chem. 2016;77:177–219. doi:10.1016/bs.acc.2016.06.004 PubMed DOI

Kuchar L Ledvinová J Hrebícek M, et al. . Prosaposin deficiency and saposin B deficiency (activator-deficient metachromatic leukodystrophy): report on two patients detected by analysis of urinary sphingolipids and carrying novel PSAP gene mutations. Am J Med Genet A. 2009;149A(4):613–621. doi:10.1002/ajmg.a.32712 PubMed DOI PMC

Dostalova G Hlubocka Z Lindner J, et al. . Late diagnosis of mucopolysaccharidosis type IVB and successful aortic valve replacement in a 60-year-old female patient. Cardiovasc Pathol. 2018;35:52–56. doi:10.1016/j.carpath.2018.04.001 PubMed DOI

Bolar NA Golzio C Živná M, et al. . Heterozygous loss-of-function SEC61A1 mutations cause autosomal-dominant tubulo-interstitial and glomerulocystic kidney disease with anemia. Am J Hum Genet. 2016;99(1):174–187. doi:10.1016/j.ajhg.2016.05.028 PubMed DOI PMC

Didion JP, Martin M, Collins FS. Atropos: specific, sensitive, and speedy trimming of sequencing reads. PeerJ. 2017;5:e3720. doi:10.7717/peerj.3720 PubMed DOI PMC

Patro R, Duggal G, Love MI, Irizarry RA, Kingsford C. Salmon provides fast and bias-aware quantification of transcript expression. Nat Methods. 2017;14(4):417–419. doi:10.1038/nmeth.4197 PubMed DOI PMC

Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550. doi:10.1186/s13059-014-0550-8 PubMed DOI PMC

Cox J, Mann M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol. 2008;26(12):1367–1372. doi:10.1038/nbt.1511 PubMed DOI

Tyanova S Temu T Sinitcyn P, et al. . The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat Methods. 2016;13(9):731–740. doi:10.1038/nmeth.3901 PubMed DOI

Subramanian A Tamayo P Mootha VK, et al. . Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A. 2005;102(43):15545–15550. doi:10.1073/pnas.0506580102 PubMed DOI PMC

Richards S Aziz N Bale S, et al. . Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17(5):405–424. doi:10.1038/gim.2015.30 PubMed DOI PMC

Christensen EI Zhou Q Sørensen SS, et al. . Distribution of alpha-galactosidase A in normal human kidney and renal accumulation and distribution of recombinant alpha-galactosidase A in Fabry mice. J Am Soc Nephrol. 2007;18(3):698–706. doi:10.1681/ASN.2006080822 PubMed DOI

Inoue T, Maekawa H, Inagi R. Organelle crosstalk in the kidney. Kidney Int. 2019;95(6):1318–1325. doi:10.1016/j.kint.2018.11.035 PubMed DOI

Dvela-Levitt M Kost-Alimova M Emani M, et al. . Small molecule targets TMED9 and promotes lysosomal degradation to reverse proteinopathy. Cell. 2019;178(3):521–535.e23. doi:10.1016/j.cell.2019.07.002 PubMed DOI

Zivna M Kidd K Zaidan M, et al. . An international cohort study of autosomal dominant tubulointerstitial kidney disease due to REN mutations identifies distinct clinical subtypes. Kidney Int. 2020;98(6):1589–1604. doi:10.1016/j.kint.2020.06.041 PubMed DOI PMC

Park SJ, Kim Y, Chen YM. Endoplasmic reticulum stress and monogenic kidney diseases in precision nephrology. Pediatr Nephrol. 2019;34(9):1493–1500. doi:10.1007/s00467-018-4031-2 PubMed DOI PMC

Oh-hashi K, Koga H, Ikeda S, Shimada K, Hirata Y, Kiuchi K. CRELD2 is a novel endoplasmic reticulum stress-inducible gene. Biochem Biophysical Res Commun. 2009;387(3):504–510. doi:10.1016/j.bbrc.2009.07.047 PubMed DOI

Lenders M Weidemann F Kurschat C, et al. . Alpha-galactosidase A p.A143T, a non-Fabry disease-causing variant. Orphanet J Rare Dis. 2016;11(1):54. doi:10.1186/s13023-016-0441-z PubMed DOI PMC

Kim SH, Choi SJ. Management of hypertension in Fabry disease. Electrolyte Blood Press. 2023;21(1):8–17. doi:10.5049/EBP.2023.21.1.8 PubMed DOI PMC

Sanchez-Nino MD Ceballos MI Carriazo S, et al. . Interaction of Fabry disease and diabetes mellitus: suboptimal recruitment of kidney protective factors. Int J Mol Sci. 2023;24(21):15853. doi:10.3390/ijms242115853 PubMed DOI PMC

Shrestha N, De Franco E, Arvan P, Cnop M. Pathological β-cell endoplasmic reticulum stress in type 2 diabetes: current evidence. Front Endocrinol (Lausanne). 2021;12:650158. doi:10.3389/fendo.2021.650158 PubMed DOI PMC

Leinekugel P, Michel S, Conzelmann E, Sandhoff K. Quantitative correlation between the residual activity of beta-hexosaminidase A and arylsulfatase A and the severity of the resulting lysosomal storage disease. Hum Genet. 1992;88(5):513–523. doi:10.1007/BF00219337 PubMed DOI

Braunstein H, Papazian M, Maor G, Lukas J, Rolfs A, Horowitz M. Misfolding of lysosomal α-galactosidase a in a fly model and its alleviation by the pharmacological chaperone migalastat. Int J Mol Sci. 2020;21(19):7397. doi:10.3390/ijms21197397 PubMed DOI PMC

Lukas J Cimmaruta C Liguori L, et al. . Assessment of gene variant amenability for pharmacological chaperone therapy with 1-deoxygalactonojirimycin in Fabry disease. Int J Mol Sci. 2020;21(3):956. doi:10.3390/ijms21030956 PubMed DOI PMC

Citro V Cammisa M Liguori L, et al. . The large phenotypic spectrum of Fabry disease requires graduated diagnosis and personalized therapy: a meta-analysis can help to differentiate missense mutations. Int J Mol Sci. 2016;17(12):2010. doi:10.3390/ijms17122010 PubMed DOI PMC

Cunard R. Endoplasmic reticulum stress, a driver or an innocent bystander in endothelial dysfunction associated with hypertension? Curr Hypertens Rep. 2017;19(8):64. doi:10.1007/s11906-017-0762-x PubMed DOI

Ajoolabady A Wang S Kroemer G, et al. . ER stress in cardiometabolic diseases: from molecular mechanisms to therapeutics. Endocr Rev. 2021;42(6):839–871. doi:10.1210/endrev/bnab006 PubMed DOI

Wodrich APK, Scott AW, Shukla AK, Harris BT, Giniger E. The unfolded protein responses in Health, aging, and neurodegeneration: recent advances and future considerations. Front Mol Neurosci. 2022;15:831116. doi:10.3389/fnmol.2022.831116 PubMed DOI PMC

Klein A Klug K Breyer M, et al. . Genetic variants of unknown significance in alpha-galactosidase A: cellular delineation from Fabry disease. J Inherit Metab Dis. 2024;47(4):805–817. doi:10.1002/jimd.12743 PubMed DOI

Smid BE Hollak CEM Poorthuis BJHM, et al. . Diagnostic dilemmas in Fabry disease: a case series study on GLA mutations of unknown clinical significance. Clin Genet. 2015;88(2):161–166. doi:10.1111/cge.12449 PubMed DOI

Germain DP. Fabry disease. Orphanet J Rare Dis. 2010;5:30. doi:10.1186/1750-1172-5-30 PubMed DOI PMC

Lenders M Nordbeck P Kurschat C, et al. . Treatment of Fabry's disease with migalastat: outcome from a prospective observational multicenter study (FAMOUS). Clin Pharmacol Ther. 2020;108(2):326–337. doi:10.1002/cpt.1832 PubMed DOI

Parenti G, Medina DL, Ballabio A. The rapidly evolving view of lysosomal storage diseases. EMBO Mol Med. 2021;13(2):e12836. doi:10.15252/emmm.202012836 PubMed DOI PMC

Grandjean JMD, Wiseman RL. Small molecule strategies to harness the unfolded protein response: where do we go from here? J Biol Chem. 2020;295(46):15692–15711. doi:10.1074/jbc.REV120.010218 PubMed DOI PMC

Perez-Riverol Y Bai J Bandla C, et al. . The PRIDE database resources in 2022: a hub for mass spectrometry-based proteomics evidences. Nucleic Acids Res. 2022;50(D1):D543–D552. doi:10.1093/nar/gkab1038 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...